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The aim of the study was to assess the expression of the immune checkpoint inhibitor 21 

programmed death-ligand 1 (PD-L1) in equine sarcoids (ES). PD-L1 is expressed by various 22 

cancer cells to block T cell-mediated elimination of tumor cells. 23 

Antibodies targeting human PD-L1 were tested by immunohistochemistry (IHC) for their 24 

cross-reactivity with equine PD-L1 using formalin-fixed, paraffin-embedded (FFPE) tissues.  25 

Our results do not support an important role of PD-L1-mediated immune evasion in ES 26 

disease, and hence do not offer a rationale for anti-PD-1/PD-L1-based immunotherapy against 27 

ES.  28 

Keywords: Equine sarcoids, immune checkpoint inhibition, immune evasion, 29 

immunohistochemistry, PD-L1  30 

1. Introduction 31 

Equine sarcoids (ES) are the most common tumors in equids and account for more than half 32 

of all skin tumors in this species [1,2]. Treatment is often challenging due to the notoriously 33 

high propensity for tumor recurrence [3], the lack of tissue-sparing treatment options and 34 

effective systemic or prophylactic treatment modalities. 35 

In human medical oncology, a novel therapeutic approach has recently achieved remarkable 36 

successes: targeting of the immune checkpoint inhibitor programmed death-ligand 1 (PD-L1) 37 

or programmed cell death protein 1 (PD-1) [4,5]. It has resulted in tumor eradication in cancer 38 

patients previously thought to be incurable (e.g. advanced melanoma or lung cancer). 39 

The physiologic role of immune checkpoints is to maintain self-tolerance and protect tissues 40 

from self-damage, for instance while responding to an infection [6–8]. The dysregulation of 41 

these immune checkpoint proteins can be observed in various cancers, and represents an 42 

important mechanism for tumor cells to evade the immune system [6,9]. PD-L1 is expressed 43 
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by various cancer cells to block T cell-mediated elimination of the tumor cells by binding to 44 

programmed cell death protein 1 (PD-1) at the surface of T lymphocytes. This mechanism of 45 

immune evasion can be prevented by using specific antibodies against PD-L1 or PD-1 [6]. 46 

The aim of this study was to establish an immunohistochemistry (IHC) staining protocol to 47 

assess PD-L1 expression in ES-derived and other equine tissue samples. As an additional 48 

control to investigate the cross-reactivity of the antibody for equine PD-L1, we also tested 49 

mandibular lymph node as lymph nodal tissue has been described to contain immune cells 50 

expressing PD-L1 in humans [10]. 51 

We hypothesized that (transformed) equine fibroblasts derived from ES tumors express PD-52 

L1. Substantial expression would support PD-L1 as a mechanism of immune evasion in ES 53 

disease and consequently, immunotherapy directed against PD-L1 would be a reasonable 54 

approach for the treatment of ES tumors. 55 

2. Material and Methods 56 

Lesional tissue samples from ten horses presented for surgical removal of histologically 57 

confirmed ES tumors were investigated. Samples were obtained from seven geldings, two 58 

mares and one stallion of different breeds (one Shetland pony, one Rocky mountain horse, 59 

one American Quarter horse, one Arabian, one Friesian, one Swiss Warmblood, one 60 

Franches-Montagnes and one mixed breed) and included ES tumors of different gross 61 

morphology (three fibroblastic, four verrucous, two nodular and one mixed). These samples 62 

were retrieved from the ISME (Swiss Institue of Equine Medicine) tumor tissue bank. 63 

Samples of equine placenta from a Franches-Montagnes mare and samples of an equine 64 

mandibular lymph node from a Selle-Français mare were collected from patients of the ISME. 65 

All owner gave their informed written consent.  66 

Jo
urn

al 
Pre-

pro
of



PD-L1 is expressed at the surface of villous syncytiotrophoblasts and cytotrophoblasts of the 67 

placenta to confer the fetomaternal tolerance [11]. Human placenta tissue samples, used as 68 

positive control, were obtained from the Translational Research Unit (TRU) of the University 69 

of Bern.  70 

A rabbit polyclonal antibody (orb158130, Biorbyt, UK) was used, which reacts with human 71 

and mouse PD-L1, and is predicted to cross-react with the horse antigen. Comparison of the 72 

equine PD-L1 amino acid sequence using BLAST (https://blast.ncbi.nlm.nih.gov) revealed an 73 

80% homology to human PD-L1.  74 

As a positive control for the IHC protocol on FFPE slides the cytokeratine AE1/AE3 antibody 75 

(monoclonal mouse α-human, Dako, M3515) was used at a dilution of 1:50. Negative controls 76 

were created by omitting the primary antibodies. 77 

Four-µm FFPE tumor sections were dried on silane-coated slides. The slides were 78 

subsequently deparaffinizaded and re-hydrated. Antigen retrieval was performed in citrate 79 

buffer (pH 6.0), by boiling for 10 minutes in the microwave oven. Endogenous peroxidase 80 

activity was blocked with 3% hydrogen peroxide for 30 minutes. Bovine serum albumin, also 81 

at a concentration of 3%, was subsequently added. The primary antibody (orb158130, 82 

Biorbyt, dilution 1:200, incubation at room temperature) was applied overnight. The 83 

secondary biotinylated antibody (Dako, K0675) + System HRP (Dako, K0675) were added. 84 

Between every step the slides were washed in 0,05% Tween Tris-buffered saline 85 

(TBS/Tween) solution at pH 7.6 (Dako, S3006). DAB (3,3‘-diaminobenzidine 86 

tetrahydrochloride) was used for the staining. In a final step, slides were counterstained with 87 

hematoxylin. IHC protocol is shown in detail in Table 1. 88 

The stained slides were assessed by a board-certified pathologist (SR) using light microscopy, 89 

inspecting the sections with x4, x10, x20 and x40 objectives. A semiquantitative scoring 90 
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system was applied for the assessment of cell staining. A positive cell was defined as a cell 91 

exhibiting a membranous signal alone or a membranous and cytoplasmatic signal. The 92 

following scoring system was used: grade 0: 0%, grade 1: <10%, grade 2:10-25%, grade 3: 93 

25-50%, and grade 4: >50% of cells staining positive for PD-L1. 94 

3. Results 95 

Positive (cytokeratin-staining) and negative controls (primary antibody omitted) yielded 96 

expected results, thus highlighting the technical accuracy of the experiment (data not shown). 97 

PD-L1-staining of equine placental tissue yielded a membrane and a cytoplasmic signal 98 

(Figure 1), consistent with the staining of the human placenta samples. Although the signal 99 

was somewhat weaker than on the human placenta, the result suggests that the orb158130 100 

antibody does detect PD-L1 in horses. This result was corroborated in the horse lymph node, 101 

showing a few clearly positive cells, especially in the area of lymph follicle but also in others 102 

areas. The signal was mainly granular and localized in the membrane and the cytoplasm. In 103 

7/9 examined ES tumors, less than 10% of the tumor cells exhibited a positive signal. Only in 104 

2/9 ES tumors 25-50% of the cells showed a positive signal for PD-L1 (score 3+). The results 105 

are summarized in Table 2. 106 

4. Discussion 107 

Based on the findings of this study, ES-derived, transformed equine fibroblasts do not appear 108 

to consistently express PD-L1. In fact, most of the cells of the analyzed ES tumors stained 109 

negative for the protein PD-L1. In 7/9 of the examined ES tumor samples, less than 10% of 110 

the tumor cells tested positive for PD-L1 expression. In contrast, cells in equine and human 111 

placental samples consistently expressed PD-L1. Similarly, cells in lymph tissue showed a 112 

granular membranous and cytoplasmic signal.  113 
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Although the number of examined tumors is low, this pilot experiment suggests that PD-L1 is 114 

not generally expressed by ES-derived transformed equine fibroblasts and therefore PD-1 115 

blockade is unlikely a general mechanism of immune evasion in ES disease. However, PD-L1 116 

is not only expressed by tumor cells but also by T- and B-lymphocytes and dendritic cells that 117 

infiltrate the tumor microenvironment [12]. Reportedly, the predominant immune cell 118 

populations which infiltrate ES tissues are macrophages and monocytes [13], but also T-cells 119 

[14]. In our study, we focused on the quantification of PD-L1-positive transformed fibroblasts 120 

that are readily differentiated from immune cells, based on morphological criteria. As a small 121 

percentage of immune cells was also PD-L1-positive, it would be interesting to characterize 122 

the precise nature of these immune cells in ES in the future. 123 

In human medicine, overexpression of PD-L1 has been observed in some cancers, including 124 

melanomas [15]. Three equine melanomas were included in the study and in two lesions about 125 

30-50% of tumor cells stained positive for PD-L1. In this study, human placenta delivered at 126 

birth was used as a positive control. In human placentas the expression of PD-L1 is highest in 127 

the second and third trimester of pregnancy [16]. In equine placenta, endometrial cups are 128 

present in the uterine wall from day 40 and up to day 150 of gestation, but regress after day 129 

70. Given the particular role of endometrial cups in the development of the fetal immune 130 

system, staining of the epithelium of endometrial cups may differ in earlier gestation stages in 131 

equids compared to humans. 132 

The similarities in the PD-L1 staining pattern between human and equine positive control 133 

tissues found in this comparative analysis suggest that the antibody used in the described 134 

protocol is indeed valid for PD-L1 detection in equine tissues, albeit it is not an unequivocal 135 

proof for PD-L1-specificity of the antibody in the horse. As equine keratinocytes also stained 136 

positive in five out of nine slides with ES-derived tissues, unspecific cross-reactivity of the 137 

antibody cannot be ruled out and is the most likely explanation for this observation. 138 
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Alternatively, BPV-DNA may more consistently lead to the expression of PD-L1 in infected 139 

equine keratinocytes compared to BPV-transformed equine fibroblasts. Whereas BPV 140 

completes an infectious life-cycle within the epidermal keratinocytes of its natural bovine host 141 

and leading to the production of countless infectious virions [17], the BPV-infection in the 142 

equine host is generally considered "non-productive" or "abortive" [18,19]. More recently, 143 

however, BPV-DNA has also been detected in keratinocytes of ES tissues [20], albeit at much 144 

lower levels compared to those found in BPV-transformed equine fibroblasts. Nonetheless, 145 

these findings combined with reports of ES disease-transmission in the absence of a bovine 146 

source for BPV [21] give reason to belief that the BPV-infection in ES-affected horses may 147 

not be entirely "abortive". Likewise, it may be speculated that a BPV-infection may induce 148 

PD-L1 expression in equine keratinocytes but not in fibroblasts. Thus, this would be an 149 

explanation for the positive staining for PD-L1 of keratinocytes associated with ES-lesions, in 150 

the absence of positive staining of fibroblasts, as observed in this study. 151 

Ideally, the specificity of an antibody should be tested in isogenic cell lines or tissues 152 

containing a wild-type and a knockout of the gene of interest. Using CRISPR-cas9 technology 153 

it would be possible to induce Pd-l1 knockouts in cultured cells that normally express this 154 

receptor and thereby generate such controls. Another approach would be the expression of the 155 

equine Pd-l1 cDNA in cells that are PD-L1 negative. However, a disadvantage of this 156 

approach is that non-physiologically high expression levels are reached and that it remains 157 

unclear whether the antibody detects physiologically relevant protein levels. 158 

While our results do not support PD-L1 as a potential therapeutic target, it is not the only 159 

protein able to downregulate the immune response. Many immunosuppressive mechanisms 160 

have been documented in the tumor microenvironment, including the recruitment of 161 

regulatory T cells (Tregs) [22] or myeloid derived suppressor cells (MDSC) [23], production 162 

of IL-10 [24] and TGFβ [25] or expression of other immune checkpoint regulators, such as 163 
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CTLA-4 (cytotoxic T lymphocyte antigen) [26,27]. In this study, we focused on PD-L1, but 164 

further studies are needed to evaluate potential mechanisms of immune evasion and the 165 

presence of other negative regulatory molecules in the microenvironment of ES tumors. 166 

5. Conclusion 167 

In this experiment, we observed positive PD-L1 staining in equine placental and lymph 168 

follicle cells, but only in low numbers of ES-derived equine fibroblasts. This suggests that this 169 

PD-L1 is not regularly expressed in ES and PD-L1 blockade does not serve as an important 170 

mechanism of immune evasion in this form of neoplasia. However, these findings need to be 171 

confirmed in a greater number of samples and using antibodies that are more thoroughly 172 

validated for applications in equine-derived tissues. Nonetheless, PD-L1 is not only expressed 173 

by tumor cells but also by immune cells that infiltrate the tumor microenvironment, and  174 

future research may reveal the precise nature of the immune cells within ES tissues that 175 

express PD-L1 and unravel their role in ES disease. Finally yet importantly, preliminary 176 

results obtained on equine melanomas indicate the potential of a targeted therapy of this 177 

tumor type with anti-PD-L1 antibodies. 178 
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Tables 274 

Table 1: Immunohistochemistry protocol used in the study 275 

Deparaffination and Hybridation   
Melting paraffin in the oven at 60°C 
Xylol  
Xylol  
Ethanol 100% 
Ethanol 100% 
Ethanol 95% 
Ethanol 70% 
Distilled water  

� 10min 
� 10min 
� 10min 
� 2min 
� 2min 
� 2min 
� 2min 
� 2min 

Antigen- Retrieval  
10mM Citrate Buffer pH 6.0 
Room temperature cooling 
Distilled water 

� 10min boiling in microwave 
� 5min 
� 2x 5min  

Endogenous peroxidase block  
H2O2 3% (in water) 
Distilled water  
Wash with Dako washing buffer (S3006) 

� 20min 
� 2x 5min  
� 5min 

Biotin blot  
Block endogenous protein with bovine 
serum albumin 3% (BSA) in PBS  
Wash with Dako washing buffer (S3006) 

� 30min 
 

� 2x5min 
Primary antibody   
PD-L1 in Ab diluent (S0809, Dako) 
Wash with Dako washing buffer (S3006) 

� Dilution 1 :200, overnight incubation 
� 3x5min 

Secondary antibody   
Universal secondary antibody (K0675, 
Dako) 
Wash with Dako washing buffer (S3006) 
 
HRP-conjugat streptavidin (K0675, Dako) 
 
Wash with Dako washing buffer (S3006) 
 
DAB  
 
Distilled water 
Hematoxylin couterstain 
Running tap water  
Distilled water 
Mounting  

� 30min 
� 3x5min 

 
� 30min 

 
� 3x5min 

 
� 4min 

 
� 5min 
� Few seconds  
� 5min  
� 5min  

 276 

  277 
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Table 2: Summary of the number of slides per score. One equine sarcoid was excluded of the 278 

study because most of the tissue was destroyed after the immunohistochemistry procedure. 279 

 280 

Score  0  1+  2+  3+  4+  

Human placenta          1  

Equine placenta          1  

Lymph node    1        

Equine Sarcoids            

• Verrucous   1  1    1    

• Nodular    2        

• Fibroblastic  1  1    1    

• Mixed (verrucous 

and fibroblastic)  1          

 281 

  282 
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Figure 283 

284 
Figure 1: Equine sarcoid, negative (no programmed death-ligand 1 staining) and positive 285 

controls. Note that the signal is consistently weaker in equine tissues compared to human 286 

tissues. 287 

Jo
urn

al 
Pre-

pro
of



Highlights 

 

• Establishment of an IHC protocol for equine PD-L1 using FFPE material 

• Preliminary finding indicate that equine sarcoid-derived tissues do not frequently express PD-

L1  

• The low expression levels of PD-L1 in equine sarcoid-derived tissues argue against PD-L1 

contribution to immune evasion in this neoplastic disease 
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