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Abstract
In this study, 3D finite element analyses (FEA) are conducted to quantify the orthotropic elastic properties and investigate 
the load transfer mechanism of bone at the sub-lamellar level. Three finite element (FE) unit cells with periodic boundary 
conditions are presented to model a two-scale microstructure of bone including a mineralized collagen fibril (MCF), the 
extrafibrillar matrix (EFM) and the resulting fibril array (FAY) under arbitrary loading. The axial and transverse elastic 
properties of the FAY computed by FEA are calibrated with unique experimental results on ovine micro-samples showing 
a coherent fibril orientation. They are then systematically compared with those calculated using analytical methods includ-
ing the basic Voigt, Reuss and shear-lag models, the Mori–Tanaka scheme and the upper and lower bounds by Hashin and 
Shtrikman. The predicted axial strain ratios between the two-scales are discussed with respect to a recent small-angle X-ray 
scattering and wide-angle X-ray diffraction study. Beyond apparent elastic properties, the FE models provide stress distribu-
tions at both hierarchical levels, confirm the shear lag mechanisms within the MCF and between MCF and EFM and identify 
potential damage sites under arbitrary loading conditions. A comprehensive sensitivity analysis shows that mineral volume 
fraction in the fibril array is the dominant parameter on the axial and transverse elastic moduli, while the MCF volume 
fraction in FAY is the most sensitive variable for the ratio of axial versus transverse elastic modulus followed by the elastic 
moduli of hydroxyapatite and collagen. The FE model of the FAY developed and calibrated in the current study represents 
an anatomically realistic, experimentally validated and computationally efficient basis for investigating the apparent yield, 
post-yield and failure behaviors of lamellar bone in future research.

Keywords Anisotropic elasticity · Extracellular matrix · Finite element model · Mineralized collagen fibril · Extrafibrillar 
matrix · Sensitivity analysis

1 Introduction

Bone is a mineralized biological tissue that provides struc-
tural support and stability, stores minerals, produces blood 
cells and protects vital internal organs (Weiner et al. 1999; 
Fratzl and Weinkamer 2007). The hierarchical structure of 
bone is subdivided into several scales from nano to macro 
(Fig. 1) (Rho et al. 1998; Reznikov et al. 2014), and the 

optimized arrangement of its constituents forms a light-
weight composite material with high stiffness, strength and 
fracture toughness (Weiner et al.1999). At the nanoscale, 
the mineralized collagen fibril (MCF) is made of collagen, 
hydroxyapatite (HA) crystals and water and is regarded as 
the primary building block of bone extracellular matrix 
(ECM) (Olszta et al. 2007; Minary-Jolandan and Yu 2009a; 
Hang and Barber 2010). Mineralized collagen fibrils embed-
ded in extrafibrillar matrix (EFM) combine into fibril 
arrays at the microscale (Currey 2013). At the next scale 
of a few to hundreds of microns, random arrangements of 
these arrays form woven bone, while orthogonal, twisted 
and other arrangements of fibril arrays (FAY) form lamel-
lae constituting the lamellar bone found in bone structural 
units (BSU) such as osteons or trabecular packets and in 
circumferential lamellae at the periosteal/endosteal surfaces 
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of compact bone (Giraud-Guille 1988; Akiva et al. 1998). At 
the mesoscale between several hundred microns and millim-
eters, the osteons form cylindrical lamellar systems around 
a Haversian channel, while trabecular packets build a 3D 
microstructure of beams and plates surrounded by marrow. 
In the course of the bone remodeling process, the osteons 
and trabecular packets overlap interstitial lamellae from for-
mer bone structural units (Aoubiza et al. 1996; Dong and 
Guo 2006; Parnell and Grimal 2008). Correspondingly, the 
macroscale ranges from millimeters to centimeters, denoting 
the whole bone level (Currey 2013).

In general, investigation of bone mechanical properties 
aims to a better understanding of fragility and failure of the 
bone-implant interface. Besides, the acquired knowledge 
may be utilized to design and develop novel composite 
materials to be used in biomedical engineering applications 
(Cassella et al. 1996; Fratzl-Zelman et al. 2014; Bishop 
2016; Paschalis et al. 2016). Numerous methods are used to 
model the multi-scale mechanical properties of bone such as 
structural and continuum mechanics, micromechanics, finite 
element analysis (FEA) and molecular dynamics (MD). 
However, only few experimental methods are available to 
measure model parameters at the lower scales. Accordingly, 
the MCF/EFM and FAY levels are considered in this study 
and several modeling strategies and experiments on these 
two-scales are briefly reviewed in the following section.

Basic models including Voigt (1889) and Reuss (1929) 
consider the bone composite as a material consisting of 
matrix and fiber phases and estimate the apparent axial or 
transverse elastic properties with regard to volume fraction 
and elastic modulus of the constituents under uniform strain 

and stress, respectively (Cox 1952; Hirsch 1962; Hashin and 
Shtrikman 1963; Currey 1969; Padawer and Beecher 1970; 
Katz 1971; Lusis et al. 1973; Piekarski 1973; Halpin and 
Kardos 1976; Wagner and Weiner 1992; Wall 1997). Jäger 
and Fratzl (2000) proposed a model of MCF with a stag-
gered arrangement of HA platelets in collagen fibrils, known 
as the shear-lag model which was then exploited by Gao 
et al. (2003) to calculate the longitudinal elastic modulus 
of bone.

Based on continuum micromechanics theory, Mori and 
Tanaka (MT) (Mori and Tanaka 1973; Benveniste 1987) 
derived equations to compute the effective elastic modulus 
of matrix-inclusion composite materials. The self-consistent 
(SC) method is another micromechanical approach proposed 
by Hershey (1954) and Kröner (1958) for polycrystalline 
aggregates which was further developed by Hill (1963) and 
Budiansky (1965) for composite materials. Both MT and 
SC methods were employed to estimate the elastic proper-
ties of bone at MCF, EFM and FAY levels (Hellmich et al. 
2004; Fritsch and Hellmich 2007; Nikolov and Raabe 2008; 
Hamed et al. 2010; Reisinger et al. 2010).

Ji and Gao (2004) computed the elastic properties of 
MCF by FEA based on a shear-lag geometry, while Yuan 
et al. (2011) developed 2D and 3D FE models to determine 
the effect of collagen and HA modulus, mineral volume frac-
tion, and thickness of mineral platelets on the MCF longitu-
dinal modulus. Barkaoui and Hambli (2011, 2014) assessed 
the elastic modulus of a 3D FE model of the mineralized 
collagen microfibril containing five tropocollagen molecules 
linked together with springs, while the entire structure was 
embedded in a mineral matrix. They also calculated the 

Fig.1  Hierarchical structure of cortical bone (Nikel et al. 2018)
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multi-scale elastic properties of bone ECM using neural 
networks trained with FEM at the nanoscale and homogeni-
zation theory at higher scales (Barkaoui et al. 2014, 2016). 
As suggested by Vercher-Martínez et al. (2015), the effect 
of mineral staggering on the elastic modulus of MCF can 
be determined by changing the longitudinal and transverse 
distance of minerals as well as rotating the mineral plate-
lets in the FE model. Schwarcz et al. (2017) and Abueidda 
et al. (2017) modeled the nanostructure of bone with a new 
collagen-mineral arrangement (McNally et al. 2012, 2013; 
Schwarcz et al. 2014) where mineral platelets coat the outer 
surfaces of collagen fibrils and compared the resulting elastic 
properties with those models in which mineral platelets are 
distributed within collagen fibrils (Jäger and Fratzl 2000). 
Maghsoudi-Ganjeh et al. (2019) proposed a 2D cohesive FE 
model of the FAY that reveals damage initiation mechanisms 
under compression and tension. Wang and Ural (2018) used 
a 3D statistical model of the FAY to investigate the influence 
of size and orientation of MCFs on the mechanical response 
under transverse and longitudinal loading. Many of these FE 
models involve a large number of unverifiable assumptions, 
require large computational resources, lack comparison with 
previous analytical models, and miss experimental valida-
tion at the proper hierarchical levels.

At the molecular level, MD methods are used to explore 
the mechanical properties of collagen fibrils in the absence 
or presence of mineral platelets, but do not include the EFM 
yet (Lorenzo and Caffarena 2005; Buehler 2006, 2007, 2008; 
Bhowmik et al. 2007; Dubey and Tomar 2008; Stevens 2008; 
Tang et al. 2009; Gautieri et al. 2011; Nair et al. 2013).

Quantifying the mechanical properties of bone at nano- 
and microscale has been the object of only few experimental 
methods. Asgari et al. (2019) utilized indentation by atomic 
force microscopy (AFM) (Wallace 2012) to measure the 
longitudinal and transverse elastic moduli of bone at the 
nanoscale. Nanoindentation was applied extensively along 
various anatomical orientations to quantify the anisotropic 
elasticity of human lamellar bone and FAYs from mineral-
ized turkey leg tendon (Franzoso and Zysset 2009; Reis-
inger et al. 2011a; Spiesz and Zysset 2015). In addition to 
nano-indentation, Schwiedrzik et al. (2014) used micropillar 
compression tests in a scanning electron microscope (SEM), 
to measure the mechanical behavior of ovine FAYs under 
monotonic and cyclic loads. Tertuliano and Greer (2016) 
performed uniaxial compression experiments on micro- 
and nano-pillars to determine their mechanical properties. 
More recently, Casari et al. (2019a) presented a technologi-
cal breakthrough to test micron-sized specimens under uni-
axial tensile loading. The sample geometry was optimized 
by FEA and the developed micro-tensile setup self-aligned 
with the specimen’s axis to prevent stress concentrations. 
This methodology was then used to quantify the tensile 
mechanical properties of ovine bone at the FAY level in 

axial and transverse directions. The obtained results were 
then compared to those of micropillar compression of the 
same tissue (Casari et al. 2019b) and revealed for the first 
time the strength tension–compression asymmetry of bone 
at the FAY level.

In the above context, the current study aims at developing 
simple, cost-efficient, 3D homogenized unit-cell FE models 
that reproduce the key stress transfer mechanism between 
MCF and EFM and delivers the recent experimental elas-
tic properties of the FAY in axial and transverse directions 
(Casari et al. 2019b) with the best current knowledge of the 
compositional and dimensional properties of the bone ECM. 
The predictions of the FE model for axial and transverse 
elastic moduli are systematically compared to the ones of 
published analytical models for the same FAY organization. 
A comprehensive sensitivity analysis is then carried out in 
order to determine the most influential parameters on the 
anisotropic elastic moduli of the FAY. Following this broad 
validation study, the FE model will be devoted to the explo-
ration of the basic mechanisms of damage accumulation and 
to the estimation of apparent post-yield properties of the 
bone ECM in 3D.

2  Materials and methods

In this section, the constituents and morphology of bone 
MCF, EFM and FAY are presented and the details of the 
FE models, their experimental calibration, their sensitivity 
analysis and the analytical models utilized for comparison 
are described.

2.1  Constituents

Bone is a natural composite comprising an inorganic phase, 
an organic phase and water. The inorganic phase of bone 
mainly consists of mineral platelets with a chemical com-
position based on hydroxyapatite (HA),Ca5(PO4)3OH , sub-
jected to multiple ion substitutions (Cowin 2001; Dubey 
and Tomar 2008). Small-angle X-ray scattering (SAXS) 
(Fratzl et al. 1992; Paris et al. 2000; Fratzl 2003), trans-
mission electron microscopy (TEM) (Weiner and Traub 
1992; Landis 1996; Landis et al. 1996) and scanning TEM 
(STEM) tomography (Reznikov et al. 2018) have typically 
been used to determine the shape and size of mineral crys-
tals. The results suggested an approximately plate-like shape 
in mineralized turkey leg tendons (MTLT) and human bone 
(Robinson 1952; Jackson et al. 1978; landis and Price 1986; 
Traub et al. 1989; MJ and BF 1993; Lees et al. 1994; Pros-
tak and Lees 1996; Rubin et al. 2003), and a needle-like 
geometry in mouse, rat, dog and horse bone (Fratzl et al. 
1992, 1996). In this regard, an AFM study confirmed that 
HA crystals in bovine bone have a plate-like shape (Eppell 



2130 E. Alizadeh et al.

1 3

et al. 2001) and researchers reported a range of HA thick-
ness from 2 to 7 nm, a length from 15 to 200 nm and a width 
from 10 to 80 nm (Landis and Silver 2002; Rubin et al. 2003; 
Vercher-Martínez et al. 2015). The elastic modulus of HA 
platelets is reported in the range of 80–120 GPa (Ravaglioli 
and Krajewski 1991; Amaral et al. 2002), and wet mineral 
density is approximately 3.1 g/cm3 (Lees 1987; Hellmich 
et al. 2004).

Collagen type I represents 90% of the organic phase in 
bone, comprises chains with repetitive amino acid sequences 
and assembles into a triple helical structure called tropocol-
lagen. The formation of covalent cross-links between colla-
gen molecules contributes to a self-organization into colla-
gen fibrils (Rice et al. 1964; Miller 1984; Parry 1988; Kadler 
et al. 1996; Fratzl et al. 2004; Buehler 2008). The collagen 
fibril follows a staggered arrangement with a 67 nm perio-
dicity composed of a 40 nm gap zone and a 27 nm overlap 
zone (Katz and Li 1973a, b; Weiner and Traub 1986; Landis 
et al. 1993; Rho et al. 1998; Orgel et al. 2001). It is notewor-
thy that the density of wet collagen is approximately 1.18 g/
cm3 (Piekarski 1973; Cusack and Miller 1979; Deuerling 
et al. 2009; Gautieri et al. 2011). The mechanical proper-
ties of collagen fibrils can be measured experimentally or 
calculated bottom up by MD (Eppell et al. 2005; Heim et al. 
2006; Van Der Rijt et al. 2006; Wenger et al. 2007; Yang 
et al. 2007). A wide range of elastic moduli of collagen 
from 0.2 up to 21 GPa are reported in the literature (Harley 
et al. 1977; Cusack and Miller 1979; Hofmann et al. 1984; 
Sasaki and Odajima 1996; Eppell et al. 2005; Lorenzo and 
Caffarena 2005; Vesentini et al.2005; Buehler 2006; Heim 
et al. 2006; Van Der Rijt et al. 2006; Yang et al. 2007, 2008; 
Wenger et al. 2007; Grant et al. 2008; Minary-Jolandan and 
Yu 2009b; Shen et al. 2010). The elastic modulus of colla-
gen fibrils depends on the experimental technique, collagen 
orientation and hydration state, but a value between 5 and 
7 GPa seems realistic in continuum models (Reisinger et al. 
2010).

The non-collagenous protein (NCP) constitutes the 
remaining 10% of the organic phase which consists of oste-
opontin, osteocalcin, osteonectin, phosphoproteins, bone 
sialoproteins and proteoglycans (Mbuyi-Muamba et al. 1989; 
Kasugai et al. 1991; Ingram et al. 1993; Roach 1994; Cribb 
and Scott 1995; Nanci 1999; Raspanti et al. 2002; Hansma 
et al. 2005; Fantner et al. 2007; Wise et al. 2007; Thurner 
2009; Urist and Strates 2009; Sroga and Vashishth 2012; 
Al-Qtaitat and Aldalaen 2014). The NCPs control mineral 
crystal nucleation and also regulate its growth, size, orienta-
tion and morphology. In addition, NCPs may allow the rela-
tive sliding of mineral crystals and play an important role in 
plasticity, toughening and energy dissipation of bone (Mann 
et al. 1989; Boskey 1992; Qiu et al. 2004; Fantner et al. 
2005; Adams et al. 2008; Buehler et al. 2008; Zappone et al. 
2008; Huang et al. 2009; Poundarik et al. 2009,2012; Ritchie 

et al. 2009; Thurner et al. 2010; Nikel et al. 2013; Hang et al. 
2014; Morgan et al. 2015). For simplicity, the density of 
wet NCPs is considered similar to that of the collagen phase 
in this study, i.e., 1.18 g/cm3. Unfortunately, the mechani-
cal properties of NCPs are widely unknown. Due to their 
flexible coiling configuration, the elastic modulus of NPCs 
must be lower than the one of collagen and was assumed to 
be equal/lower than 1 GPa in previous research (Nikolov 
and Raabe 2008; Hamed et al. 2012). The mineral platelet 
and collagen type I are the main constituents of the mineral-
ized collagen fibril (MCF), while HA crystals and NCPs are 
the building blocks of the extrafibrillar matrix (EFM). The 
aspect ratio of mineral crystals is reported to range from 
30 to 40 in bone (Gao et al. 2003). However, some studies 
considered a mineral aspect ratio of 14, respecting the 40 nm 
length of HA crystals deposited in the gap zone between 
collagen fibrils divided by the 3 nm thickness of platelets 
(Akkus 2005; Reisinger et al. 2010; Maghsoudi-Ganjeh et al. 
2019). Therefore, the mineral platelet aspect ratio has been 
cited from 14 up to 45 in different studies (Siegmund et al. 
2008; Vercher-Martínez et al. 2015). The reported mineral 
content in the interfibrillar and extrafibrillar spaces diverges 
among researchers; however, most publications indicate that 
the amount of mineral in the MCF reaches 70% (Katz and 
Li 1973b; Sasaki and Sudoh 1997; Jäger and Fratzl 2000; 
Nikolov and Raabe 2008). Alexander et al. (2012) deter-
mined the amount of mineral in the gap zones of collagen 
fibrils by steric models and STEM. Their results suggested 
that HA minerals, distributed in the gap zone and intermo-
lecular overlap region of interafibrillar matrix, are, respec-
tively, 42 and 28% of the total HA minerals. Hence, their 
models claimed that 30% of the bone mineral is located in 
the EFM. In contrast, some other AFM and SAXS studies 
on turkey leg tendon and horse bone suggested the presence 
of approximately 70% of total HA crystals in the EFM (Lees 
et al. 1994; Fratzl et al. 1996).

The MCF and EFM assemble to form FAYs (Weiner and 
Traub 1992; Rho et al. 1998; Fratzl and Weinkamer 2007) 
with a high aspect ratio (Birk et al. 1997; Silver et al. 2003; 
Hassenkam et al. 2004; Wallace 2012). The volume fraction 
of MCF in the fibril array varies between 0.2 and 0.9 (Jasiuk 
and Ostoja-Starzewski 2004; Nikolov and Raabe 2008; Reis-
inger et al. 2010), while the total mineral volume fraction in 
the fibril array ranges from 0.15 to 0.52 (Gupta et al 2006; 
Nikolov and Raabe 2008; Reisinger et al. 2010; Barkaoui 
et al. 2014, 2015; Maghsoudi-Ganjeh et al. 2019).

The elastic modulus of plate-like mineral crystals is con-
sidered to be 110 GPa, and Young’s modulus of collagen and 
NCP is assumed to be 6 GPa and 0.6 GPa, respectively. The 
mineral volume fraction in MCF and the total mineral volume 
fraction in the fibril array is assigned in this work to be 0.296 
and 0.423, respectively. Besides, the NCP volume fraction in 
EFM is 0.069. The volume fraction of the MCF in the FAY 
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is assumed to be 0.8. Moreover, aspect ratios of 30 and 100 
are specified for the mineral platelets in the MCF and for the 
MCF inclusions in the FAY, respectively. It is important to 
mention that free water is not modeled as a separate phase in 
this study, assuming that all water is integrated in the organic 
phases. The values of the input parameters of the FE models 
are summarized in Table 1.

2.2  Finite element analysis

In this section, a two-scale model of bone ECM including min-
eralized collagen fibril (MCF), extrafibrillar matrix (EFM) and 
fibril array (FAY) is presented to evaluate the apparent elastic 
properties of bone at these two-scales. The results of MCF 
and EFM models are used as inputs for the FAY. In order to 
reduce the numerical simulation costs, representative volume 
elements (RVE) in the form of unit cells and periodic bound-
ary conditions (PBC) are employed (Wu et al. 2014). The unit 
cells were designed with the above dimensions along the exist-
ing planes of symmetry, meshed with hexahedral elements and 
the nodal sets of their boundary surfaces identified to apply 
the desired periodic boundary conditions. In order to compute 
the apparent elasticity tensors of MCF, EFM and FAY, the 
models are analyzed in three normal and three shear loading 
cases (Reisinger et al. 2011b). The numerical analyses are per-
formed with the FE software ABAQUS (Hibbitt 2013), and the 
morphological and mechanical properties of the constituents 
are based on Sect. 2.1. The details of the unit cells and their 
analyses are now described in the following sections.

2.2.1  Mineralized collagen fibril

The unit cell model of the MCF containing hydroxyapatite 
platelets and collagen is shown in Fig. 2. The HA platelet is 
supposed to have a length of l , a width of w and a thickness 
of d . In addition, the distances between the mineral crystals in 
X, Y and Z directions are denoted by b , r , and a , respectively. 
In the proposed model, the mineral crystals are situated in a 
staggered array with a periodicity of 67 nm. The length of HA 
crystals ( l ) is taken to be 110 nm, and the lateral distance in Z 
direction ( a ) is calculated based on Eq. (1).

As shown in Eq. (2), the aspect ratio of HA crystals ( � ) is 
considered 30 in this study and the thickness of minerals ( d ) 
is obtained, consequently.

(1)
l + a

2
= 67 nm

(2)� =
l

d

A volume fraction of 0.4 is adopted for the overlap region 
(

�Overlap−xz

)

 and the lateral distance in X direction ( b ) is cal-
culated according to Eq. (3). Besides, the width of HA plate-
lets ( w ) is computed by Eq. (4).

The volume fraction of mineral crystals in MCF 
(

�HA (MCF)

)

 is 0.296, and the lateral distance between min-
erals in Y direction ( r ) is provided by Eq. (5).

The geometrical parameters of the model, selected based 
on the above constraints are given in Table 2. The assump-
tions and the geometrical parameters are in the range of val-
ues reported in Sect. 2.1.

The mineralized collagen fibril is modeled with 8-node 
linear brick elements (C3D8) including eight nodes with 
three translational degrees of freedom at each node. Based 
on a mesh convergence study, the adopted mesh size has a 
maximum element size of 2 nm and is shown in Fig. 2.

2.2.2  Extrafibrillar matrix

For simplicity, a cubic model is assumed for the extrafibril-
lar matrix with a cubic HA crystal in a cubic unit cell as 
illustrated in Fig. 3. The volume fraction of mineral crystals 
in EFM is assumed to be 0.93, and the aspect ratio of HA 
platelet is 1. The cubic mineral inclusion is embedded in an 
NCP phase, filling the space between the two cubes. The 
mesh is based on a 0.3 nm element size and the same C3D8 
element type.

2.2.3  Fibril array

A hexagonal array is selected for modeling the FAY and 
the rectangular unit cell with circular MCFs surrounded 
by EFM is shown in Fig. 4. The MCF region in the FAY 
model includes a central circle and four quarters of circles 
in the corners. An aspect ratio of 100 is assumed for MCF, 
and its length is calculated accordingly. It is assumed that 
there are gap zones in the middle part and at the end of 
the MCF that are filled with EFM (Fig. 5). Likewise, a 
volume fraction of 0.8 is assumed for the MCF in the FAY. 
In order to achieve a hexagonal pattern in the fibril array, 
the height of rectangular unit cell is considered 

√

3 times 
its width and the cross-sectional dimension of the fibril 

(3)

�Overlap−xz =
(l − a)d

(l + a)(b + d)
→ b =

(

(l − a)

(l + a)�Overlap−xz

− 1

)

d

(4)w =
l

2

(5)�HA (MCF) =
1

(

1 +
a

l

)(

1 +
b

d

)(

1 +
r

w

)
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array is calculated accordingly. The input parameters for 
modeling the FAY are listed in Table 3. A C3D8 element 
with a maximum element size of 10 nm is used in the FAY 
model.

The strain ratios of HA platelets in MCF, and of MCF in 
FAY are obtained by calculating the average axial strain of 
the HA elements versus the MCF elements and the MCF 
elements versus the average axial strain in the FAY model.

Fig. 2  Configuration of a MCF model, b mineral platelet in the MCF model

Table 2  The geometrical 
parameters used in modeling 
the MCF

Parameter Variable Value (nm)

Length of HA platelet l 110
width of HA platelet w 55
Thickness of HA platelet d 3.67
Lateral distance between neighboring HA platelets in X direction b 2.22
Lateral distance between neighboring HA platelets in Y direction r 40.03
Longitudinal distance between neighboring HA platelets in Z direction a 24

Fig. 3  a Two embedded cubes for EFM, b external part of EFM (NCP phase), c internal part of EFM (HA crystal)
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2.3  Calibration with experimental results

The FE analysis of the FAY model proposed in this 
research is calibrated with the recent experimental results 
obtained by Casari et al. (2019b), in which the elastic and 
post-yield properties of ovine bone extracellular matrix 

are evaluated in the axial and transverse directions. Cali-
bration is achieved by adjusting two of the most sensitive 
parameters identified by Reisinger et al. 2010, namely the 
mineral volume fraction and the relative distribution of the 
mineral in MCF and EFM to minimize the difference with 

Fig. 4  Cross sections of fibril array in a the gap zone at the end part of FAY, b the length of model c the gap zone in the middle part of FAY 
(half-length of the fibril array is shown due to symmetry)

Fig. 5  a Gap zone in the middle part of central MCF, b gap zone at the end part of corner MCFs in fibril array
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the experimental axial and transverse moduli measured by 
Casari et al. (2019b) on dry ovine bone.

2.4  Parameter sensitivity analysis

The sensitivity analysis is conducted on the calibrated FAY 
model for the following parameters: elastic modulus of 
HA 

(

EHA

)

 , elastic modulus of collagen 
(

ECollagen

)

 , elastic 
modulus of NCP 

(

ENCP

)

 , volume fraction of MCF in FAY 
(

�MCF

)

 , volume fraction of HA in FAY 
(

�HA

)

 , the volume 
fraction of NCP in EFM (�NCP ∕EFM) and the aspect ratio 
of HA 

(

aHA
)

 . Since Poisson ratios are known to have a lim-
ited effect on composite elasticity and the aspect ratio of the 
MCF is already very large, these parameters were excluded 
from the analysis. The longitudinal 

(

Eaxi

)

 and transverse 
(

Etrv

)

 elastic moduli as well as the longitudinal-to-transverse 
modulus ratio 

(

Eaxi∕Etrv

)

 of the FAY model are calculated 
for upper and lower bounds of the meaning full range of the 
individual input parameters, while other parameters are held 
constant at the operation point. By fitting quadratic functions 
to the elastic moduli and their ratio with respect to each 
input parameter, the derivatives of Eaxi , Etrv and Eaxi∕Etrv 
are calculated at the operation point. The relative sensitivity 
is calculated by multiplying the derivatives by the ratio of 
each input parameter versus the corresponding elastic vari-
able at the operation point. Moreover, the relative change is 
obtained by dividing the variation of Eaxi , Etrv and Eaxi∕Etrv 
over the meaningful range of the input parameters by the 
corresponding value at the operation point.

2.5  Analytical models

Different analytical models including Voigt and Reuss, 
Piekarski, shear-lag, Hashin–Shtrikman, and Mori–Tanaka 
methods are applied to investigate the elastic properties of 
MCF, EFM and FAY. In the current section, the subscripts 
m and f  , respectively, refer to the matrix and fiber. Simi-
larly,�,E,G and � denote volume fraction, elastic modulus, 
shear modulus and Poisson’s ratio, respectively. Mechanical 
properties of constituents and the composition of each model 
are selected based on the data presented in Sect. 2.1.

In the analytical model of MCF, HA platelet is assumed 
as fiber and the collagen as matrix. Besides, the mineral 

crystals and NCP in EFM, as well as the MCF and EFM in 
the FAY are considered as fiber and matrix, respectively. 
It should be emphasized that the results of MCF and EFM 
models are used as inputs for the FAY in each analytical 
method. The analytical models that are used in the current 
study are described below.

The effective longitudinal elastic modulus calculated 
by the Voigt method (Voigt 1889) in which the composite 
material is subjected to a uniform strain is given by

The Reuss model (Reuss 1929) [Eq. (7)] is used for 
assessing the effective transverse elastic modulus of com-
posite models considering the material with uniform stress 
layers of matrix and fiber:

The linear combination of Voigt and Reuss models was 
employed by Hirsch (1962) which calculated the interme-
diate properties of composite, being suitable for evaluating 
the elastic behavior of the bone. In this regard, Piekarski 
(1973) assumed bone as a two-phase composite and used 
Hirsch’s model (1962) to calculate the longitudinal elastic 
modulus of bone. In Piekarski’s model, the relative pro-
portion of upper and lower bounds of material is defined 
with x and (1 − x) and the value of x is proposed to be 
0.925 in bone (Piekarski 1973):

The mechanical model of MCF proposed by Jäger and 
Fratzl (2000) (shear-lag model) is also considered in the 
present study, where the staggered mineral bricks are 
arranged within collagen fibrils. Applying tensile stress 
in the model indicates that mineral platelets bear the ten-
sile load, while collagen matrix transfers the load between 
HA crystals in shear. Gao et al. (2003) utilized a one-
dimensional serial spring system consisting of mineral and 
protein elements to estimate the elastic modulus of bone as 
a composite material. The shear-lag formula in which the 
aspect ratio of mineral platelets is designated by � (Gao 
et al. 2003) is:

In the current study, the axial modulus of both MCF 
and FAY is obtained and the axial strain ratios s of HA 
platelets versus MCF and MCF versus FAY are calculated 
by applying the equation of the shear-lag model twice:

(6)EL = �fEf + �mEm.

(7)
1

Et

=
�f

Ef

+
�m

Em

.

(8)
1

EL

= x

(

1

�fEf + �mEm

)

+ (1 − x)

(

�f

Ef

+
�m

Em

)

.

(9)
1

EL

=
4
(

1 − �f

)

Gm�
2
f
�2

+
1

�fEf

.

Table 3  The geometrical parameters used in modeling the fibril array

Variable Symbol Value (nm)

Radius of MCF r1 50.0
Length of MCF l1 100 × 102

Gap region in the middle part of central MCF l2 200.0
Width of fibril array cross section C1 105.4
Height of fibril array cross section C2 182.0
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In comparison with the Voigt and Reuss models, 
refined upper and lower bounds of the elastic modulus of 
a composite can be obtained with the Hashin–Shtrikman 
theory (1963). The Hashin–Shtrikman (1963) equations 
are the following:

where K represents the bulk modulus.
The effective stiffness tensors of the three different 

models are also calculated with the Mori–Tanaka method 
(Benveniste 1987; Li and Wang 2008; Mortazavi et al. 
2013; Tran et al. 2018). In MCF, the collagen is assumed 
as matrix and hydroxyapatite is considered as inclusion. 
The flat ellipsoidal inclusions are used for calculating the 
Eshelby tensor in the MCF model (Eshelby 1957; With-
ers 1989; Meng et al. 2012; Mura 2013). In the EFM, the 
NCP is assumed as matrix and mineral platelet is con-
sidered as inclusion. Due to the cubic shape of the EFM 
model, presented in Sect. 2.2.2, spherical inclusions are 
used for EFM for the analytical estimation (Mura 2013). 
In the FAY, the EFM and MCF are, respectively, assumed 
as matrix and inclusion. The circular cylinder inclusions 
are applied for determining the Eshelby tensors for this 
model (Mura 2013). The effective stiffness tensor C is 
calculated with:

where Cm , Cf , S , I and �f are the stiffness tensor of matrix, 
stiffness tensor of fiber, Eshelby’s tensor, identity tensor and 
volume fraction of the fibers, respectively.

(10)
s =

1

1 +
4Ef

Gm�
2
×
(1−�f)

�f

(11)

Klower = Km +
�f

1

Kf−Km

+
3�m

3Km+4Gm

Kupper = Kf +
�m

1

Km−Kf

+
3�f

3Kf+4Gf

Glower = Gm +
�f

1

Gf−Gm

+
6�m(Km+2Gm)
5Gm(3Km+4Gm)

Gupper = Gf +
�m

1

Gm−Gf

+
6�f(Kf+2Gf)
5Gf(3Kf+4Gf)

Elower =
9KlowerGlower

3Klower + Glower

Eupper =
9KupperGupper

3Kupper + Gupper

,

(12)
C =Cm + �f

(

Cf − Cm

)[

I + SC
−1
m

(

Cf − Cm

)]−1

[

(

1 − �f

)

I + �f

[

I + SC
−1
m

(

Cf − Cm

)]−1
]−1

,

3  Results

3.1  Calibration with experimental results

The calibrated FEA results for FAY are compared with the 
experimental results of Casari et al. (2019b) in Table 4. The 
errors are in the range of 1%.

A mesh convergence study was conducted for the three 
FE models where the original element size reported above 
is divided by two. The results indicate that in the MCF 
model, the axial and transverse elastic moduli decreased 
by 0.05 and 0.25%, respectively. No changes were noticed 
in the EFM model and not only the axial and transverse 
elastic moduli but also the ratio of axial versus transverse 
moduli changed by less than 0.5% in FAY. The precision 
of the FE calibration is therefore in the range of the FE 
precision.

3.2  Mechanical properties of MCF, EFM and FAY 
with different analytical methods and FEA 
results

The axial and transverse elastic moduli of MCF, EFM, 
and FAY computed with analytical approaches and FEA 
are listed in Table 5. Since the MCF and FAY models are 
orthotropic, the average of elastic moduli in the two trans-
verse directions is reported as the transverse modulus for 
both FE and Mori–Tanaka methods. In MCF, the Piekarski 
model provides a good estimate of axial elastic modulus, 
while shear-lag delivers a strong underestimation. The elas-
tic properties of EFM are poorly estimated in most analyti-
cal calculations. In FAY, the Piekarski model overestimates 
and the shear lag model underestimates the axial modulus. 
Upper and lower bounds of the axial or transverse elastic 
moduli are obtained by the simple Voigt and Reuss models 
for all unit cells.

The effective orthotropic elastic moduli, shear moduli 
and Poisson’s ratios of MCF, EFM and FAY in FEA 
and Mori–Tanaka methods along X  , Y  and Z  directions 
are given in Table 6. In addition, the effective elasticity 

Table 4  Comparison between FE (current study) and experimental 
results (Casari et al. 2019b) of fibril array at the micro scale

Item Elastic modulus (GPa) Ratio of elastic 
modulus 

(

Eaxi

Etrv

)

Axial 
(

Eaxi

)

Transverse 
(

Etrv

)

FEA 29.78 14.86 2.00
Experiment 

(Casari et al. 
2019b)

30.00 15.05 1.99

Error (%) 0.73 1.26 0.50
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tensors of MCF, EFM and FAY obtained with the FE 
and Mori–Tanaka methods are plotted in Fig. 6 to illus-
trate the differences. The overall stiffness of MCF and 
FAY are consistent across the two methods, but the 
axial modulus is underestimated and the shape of the 
tensors is more anisotropic for the Mori–Tanaka method. 
Moreover, the Mori–Tanaka method underestimates the 
elastic modulus and overestimates the shear modulus 
of EFM.

3.3  Strain ratio

Using FEA, an axial strain ratio of 0.8 is obtained for HA in 
MCF, and a value of almost 0.99 is found for MCF in FAY. 
Using the shear lag method, the calculated axial strain ratios 
are consistently 0.74 and 0.98, respectively.

3.4  Stress distribution

In order to illustrate the load transfer mechanisms between 
phases, the stress distributions in MCF, EFM, and FAY 
computed by FEA for 2% apparent tensile strain along the 
longitudinal direction ( Z ) are provided in this section. The 
displayed values of stresses from our linear elastic analyses 
at this relatively large strain are therefore higher than those 
expected during an experiment.

3.4.1  Stress distribution in MCF

The stress distribution in Fig. 7 reflects the characteristic of 
the shear-lag model in which mineral platelets, with higher 
stiffness compared to the collagen, carry the axial stresses 
and collagen transfers the load between the HA crystals by 
shear stresses. Thus, the higher normal stresses appear in 
hydroxyapatite and the higher shear stresses are sustained 
by collagen in the MCF model.

3.4.2  Stress distribution in EFM

Normal and shear stresses in the EFM including mineral 
crystals and NCP are shown in Fig. 8, in which HA crystals 
sustain higher normal stresses due to their much higher stiff-
ness in comparison with the NCPs.

3.4.3  Stress distribution in FAY

The normal stresses �33 of the FAY cross section at the ends 
and in the middle region are shown in Fig. 9a, b, respec-
tively. The higher stresses in the MCF compared to the EFM 
phase confirm that the axial load is mainly sustained by the 

Table 5.  Elastic modulus of MCF, EFM and fibril array calculated 
with different analytical methods and FEA (GPa)

a The lower and upper bounds of Hashin–Shtrikman are presented as 
transverse and axial elastic modulus, respectively

Model Item Axial Transverse

MCF Voigt 36.84 –
Reuss – 8.33
Piekarski 29.32 –
Shear-lag 21.68 –
Hashin–Shtrikman 24.94 10.39
Mori–Tanaka 26.39 14.65
FEA 30.91 12.98

EFM Voigt 102.55
Reuss 8.06
Piekarski 54.56
Shear-lag 88.50
Hashin–Shtrikman 14.62–95.97a

Mori–Tanaka 14.62
FEA 25.34

FAY Voigt 49.98 –
Reuss – 8.27
Piekarski 34.20 –
Shear-lag 17.34 –
Hashin–Shtrikman 31.60 11.13
Mori–Tanaka 24.04 14.51
FEA 29.78 14.86

Table 6  Elastic and shear 
moduli and Poisson’s ratios of 
MCF, EFM and FAY obtained 
with Mori–Tanaka method and 
FEA (GPa) as well as their 
differences

Model Item E1 E2 E3 G23 G13 G12 �23 �31 �12

MCF Mori–Tanaka 9.81 19.49 26.39 8.81 3.29 3.30 0.195 0.322 0.179
FEA 11.66 14.30 30.91 4.67 3.68 3.31 0.126 0.287 0.211
△ (%) 15.87 36.29 14.62 88.65 10.60 0.30 54.76 12.19 15.16

EFM Mori–Tanaka 14.62 14.62 14.62 5.82 5.82 5.82 0.256 0.256 0.256
FEA 25.34 25.34 25.34 4.44 4.44 4.44 0.079 0.079 0.079
△ (%) 42.30 42.30 42.30 31.08 31.08 31.08 224.05 224.05 224.05

FAY Mori–Tanaka 10.64 18.38 24.04 8.09 3.70 3.68 0.200 0.308 0.193
FEA 13.68 16.04 29.78 4.62 3.82 3.51 0.123 0.236 0.193
△ (%) 22.22 14.59 19.27 75.11 3.14 4.84 62.60 30.51 0
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MCF. As shown in Fig. 9c, the largest normal stresses along 
the FAY are observed in the middle zone with a stress con-
centration factor of about 2, which is consistent with the 
failure mode of the MCF demonstrated in the tensile tests 
of Casari et al. (2019b).

3.5  Sensitivity analysis

Since the density of hydroxyapatite platelet is assumed 
approximately 3.1  g/cm3 (Lees 1987; Hellmich et  al. 
2004) and the density of collagen and NCP are consid-
ered 1.18 g/cm3 (Piekarski 1973; Cusack and Miller 1979; 
Deuerling et al. 2009; Gautieri et al. 2011), and thus the 
meaningful range for mineral volume fraction in FAY is 
set to 0.4–0.45 in order to maintain tissue density around 
2 g/cm3. Meaningful ranges of variation are also selected 
for elastic modulus of HA, collagen and also volume frac-
tion of MCF in FAY based on Table 1. On the other hand, 
the upper bound of NCP elastic modulus (Nikolov and 

Raabe 2008; Hamed et al. 2012) and aspect ratio of HA 
(Siegmund et al. 2008; Vercher-Martínez et al. 2015) are 
selected even higher than the values of Table 1 in order to 
explore asymptotic trends.

As shown in Table 7, the mineral volume fraction in 
FAY 

(

�HA

)

 demonstrates the highest relative sensitivity in 
both longitudinal and transverse elastic moduli. In turn, the 
MCF volume fraction in FAY 

(

�MCF

)

 is the most sensitive 
parameter for the ratio 

(

Eaxi∕Etrv

)

 . Furthermore, the elastic 
modulus of hydroxyapatite 

(

EHA

)

 and collagen 
(

ECollagen

)

 are 
the second most sensitive parameters in longitudinal and 
transverse moduli, respectively.

The relative change of elastic moduli and their ratio 
shows the relative variation of the input parameters with 
respect to the selected input parameter range. In fact, NCP 
elastic modulus delivers the highest relative changes with a 
range of 0.3–1.8 GPa for the axial and transverse moduli.

Interestingly, the 4 parameters with the highest relative 
sensitivity of �HA , �MCF , EHA and ECollagen exhibited a highly 

(a)

(b)

MCF EFM FAY

Fig. 6  Plot of the elasticity tensors of MCF, EFM and FAY deter-
mined based on a Mori–Tanaka method and b FEA (Unit: GPa ). 
The location of the surface corresponds to the elongation modulus, 

and the color designates the bulk modulus for all material directions  
(He and Curnier 1995)
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linear behavior, which means that the relative sensitivity did 
not change significantly in the meaningful range.

The behavior of the 3 least sensitive input parameters is 
shown in Fig. 10 and suggests that the influence of mineral 
aspect ratio on the three output variables levels off at the 
upper bound. The increase in both axial and transverse elas-
tic moduli weakens with increasing NCP elastic modulus, 
and the increasing NCP volume fraction appears to enhance 
moderately the ratio of axial versus transverse modulus in 
the upper range. Furthermore, the bilinear regression models 
between the four most sensitive parameters reveal that the 
interactions are either statistically insignificant or quantita-
tively negligible for Eaxi , Etrv and Eaxi∕Etrv.

4  Discussion and conclusion

The motivation for this research was the development of a 
computationally efficient FE model of the bone MCF and 
EFM to investigate the elastic and post-yield properties of 

the FAY with a maximum of experimental realism and a 
minimum of assumptions. The present study focused on the 
design of continuum unit-cell models in which the morpho-
logical parameters and material properties are calculated by 
calibrating the axial and transverse elastic moduli of FAY 
with state-of-the-art experimental data acquired under dry 
condition for ovine osteons with approximately parallel 
mineralized collagen fibrils. Then, a comparison of FEA 
with previous analytical models was conducted, a sensitiv-
ity analysis was undertaken to clarify the role of the various 
model parameters, and strain ratios between specific phases 
were calculated.

The proposed FAY model consists of aligned mineral-
ized collagen fibrils (MCF) embedded in an extrafibrillar 
matrix (EFM). The collagen and hydroxyapatite platelets are 
the main building blocks of MCF, while additional mineral 
crystals and NCPs are the constituents of EFM. In these 
first linear analyses, no delamination between phases or 
post-yield behavior of the constituents is modeled. Most FE 
models can be tuned to deliver realistic elastic properties, 

Fig. 7  Stress distribution in the MCF model under 2% tensile loading in the longitudinal direction, a normal stress �33 in mineral platelets, b nor-
mal stress �33 in collagen, c shear stress �13 in mineral platelets, d shear stress �13 in collagen  

(

Unit:
N

(nm)2

)
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and there is obviously no unique set of material parameters 
to fit the experiments. Compared to previous FE analyses, 
the present model represents a true compromise between 
simplicity and fidelity, is designed to reflect the correct load 
transfer mechanisms, and delivers accurate elastic proper-
ties. The architecture of the unit cells and the composition, 
dimensions and elastic properties of the constituents are 
fully compatible with current knowledge of bone ECM. A 
systematic comparison of two-scale FEA with those of ana-
lytical methods is performed from the simplest to the most 
sophisticated one. The Voigt and Reuss produce the upper 
and lower bounds for axial versus transverse elastic proper-
ties in both MCF and FAY. The shear-lag model involves the 
correct load transfer but produces lower axial elastic moduli 
in MCF and FAY, while Hashin and Shtrikman model deliv-
ers substantially improved bounds for the FAY. The aniso-
tropic results of the Mori–Tanaka model differ from those of 

FEA for MCF and FAY and even more so for EFM (Fig. 6), 
as the architecture of EFM does not fulfill the hypothesis of 
dilute inclusions underlying the Mori–Tanaka scheme. An 
alternative homogenization schemes may have to be used 
for the EFM. The latter geometry was chosen to account for 
the observed granular morphology of the EFM and to reach 
the high volume fraction of the mineral phase necessary 
to achieve the observed elastic properties. The normal and 
shear stress distributions confirm the shear-lag mechanism 
proposed by Jäger and Fratzl (2000), which interestingly 
appears at all MCF, EFM and FAY levels.

In order to get some insight into how different input 
parameters affect the properties of FAY, a comprehensive 
sensitivity analysis is conducted on axial and transverse 
elastic moduli and their ratio with respect to the input 
parameters. As expected, mineral volume fraction domi-
nates the overall stiffness of the bone FAY. The elastic 

Fig. 8  Stress distribution in the EFM model under 2% tensile loading in the longitudinal direction, a normal stress �33 in mineral platelets, b nor-
mal stress �33 in NCP, c shear stress �13 in mineral crystals, d shear stress �13 in NCP  

(

Unit:
N

(nm)2

)
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Fig. 9  Normal stress �33 distribution in the FAY under 2% tensile loading in the longitudinal direction, a the cross section at the end of fibril 
array, b the cross section in the middle zone of the FAY, c the length of the FAY 

(

Unit:
N

(μm)2

)

Table 7  Sensitivity analysis of seven input parameters

The two highest values for each elastic property are bold

Item Operation point Meaningful range Relative sensitivity Relative change (%)

Eaxi Etrv Eaxi∕Etrv Eaxi Etrv Eaxi∕Etrv

EHA (GPa) 110 100–120 0.672 0.140 0.505 12.206 3.059 9.160
ECollagen(GPa) 6 5–7 0.197 0.686 − 0.500 6.561 22.850 − 16.632
ENCP(GPa) 0.6 0.3–1.8 0.135 0.158 − 0.025 25.326 26.491 − 1.652
�MCF 0.8 0.7–0.85 0.149 − 0.537 0.658 2.777 − 10.010 12.342
�HA 0.423 0.4–0.45 1.190 1.146 0.050 14.070 13.674 0.449
�NCP ∕EFM 0.069 0.05–0.3 − 0.073 − 0.112 0.014 − 5.534 − 20.185 17.420
aHA 30 14–80 0.099 0.017 0.084 15.161 2.224 13.040
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modulus of HA and collagen are also important. In fact, 
�MCF could be deduced from the axial versus transverse 
elastic moduli. The elastic constants Eaxi , Etrv and Eaxi∕Etrv 
were highly linear with respect to the 4 most sensitive 
parameters �HA , �MCF , EHA and ECollagen and minimal if no 
interaction was found between them. The 3 other param-
eters have a moderate influence and increasing the mineral 

aspect ratio has a minimal influence on the elastic proper-
ties of the FAY.

Since limited results are available on strain ratios (Reis-
inger et al. 2010), we calculated the one of HA in MCF 
and the one of MCF in FAY by both FEA and the shear-
lag method. The strain ratios are consistent between the 
two methods, though much higher than those reported in 

Fig. 10  Axial, transverse and 
the axial/transverse elastic 
modulus of FAY versus, a NCP 
elastic modulus, b volume frac-
tion of NCP in EFM, c aspect 
ratio of hydroxyapatite

(a)

(b)
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experimental studies. A recent analytical study suggests 
that this discrepancy is mainly associated with the progres-
sive recruitment of MCFs with different pre-strain into 
a statistical distribution of stretching, sliding and failing 
MCFs and can therefore not be described by a linear elas-
tic shear-lag or a unit cell model (Groetsch et al. 2019).

Although highly consistent with current knowledge, the 
proposed FEA approach has some important limitations. 
First, for the sake of numerical efficiency, all constituents 
are represented by continua and their molecular nature 
deliberately ignored. This can be justified by the large 
size (approximately 100 �m3 ) of the tested FAY volumes 
in micro-sample experiments, by the interest in apparent 
mechanical properties and the focus on dominant deforma-
tion patterns at that particular scale. Clearly, bridges will 
need to be established between molecular and continuum 
descriptions, but this endeavor seems still very challeng-
ing. Bound water is included in the volume fractions of the 
organic constituents, and its mechanical role is integrated 
into the elastic moduli of collagen and NCP. Poroelastic-
ity is not modeled due to the absence of free water within 
the available validation experiments performed in vacuo. 
The role of water can be included in the model when-
ever tensile and compressive results on wet FAYs become 
available.

Second, the use of a unit cell model misses the role of 
defects or the statistical distribution of MCFs and mate-
rial parameters as explored for instance by Wang and Ural 
(2018). We justify this again by the simplicity of the mod-
els, their numerical efficiency and their ability to deliver a 
3D deformation pattern for an idealized but representative 
configuration of an average FAY.

It is noteworthy that the CPU time (4 cores, 18 Gb 
RAM, 3.06 GHz) for calculating the axial and transverse 
elastic moduli in FAY using the two-scale FEM is approxi-
mately 1 h. This is slower that analytical models, but much 
faster than statistical FE models of FAYs.

In summary, a computationally efficient two-scale FE 
model of the bone FAY is proposed that reflects the current 
knowledge of ECM composition and architecture. Using 
unit cells with periodic boundary conditions, both axial 
and transverse elastic moduli of ovine bone are matched 
accurately to the recent experimental results measured at 
the FAY scale. The apparent elastic properties of MCF, 
EFM, and FAY are computed and systematically compared 
with the predictions of analytical methods. The obtained 
stress distributions reflect the classical shear-lag model at 
both MCF and FAY scales. Finally, our extensively vali-
dated and efficient FE models will be exploited to inves-
tigate the critical damage accumulation mechanisms in 
tension and compression and to estimate the anisotropic 
post-yield properties in the bone ECM.
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