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Abstract

Meta-analysis results are usually presented in forest plots, which show the individ-
ual study results and the summary effect along with their confidence intervals. In
this paper, we propose a system of linear springs as a mechanical analogue of meta-
analysis that enables visualisation and enhances intuition. The length of a spring
corresponds to a study treatment effect and the stiffness of the spring corresponds
to its inverse variance. To synthesise study springs we use two main operations:
connection in parallel and connection in series. We show the equivalence between
meta-analysis and linear springs for fixed effect and random effects pairwise meta-
analysis and we also derive indirect treatment effects. We use examples to illustrate
the different meta-analytical schemes using the corresponding system of springs.
The proposed visualization tool can serve as an educational plot, especially useful
for researchers with no statistical background. The analogy between meta-analysis
and springs facilitates intuition for notions such as heterogeneity and the differences
between fixed and random effects meta-analysis.
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1 INTRODUCTION

A forest plot is the most common graphical tool to depict the results of a pairwise meta-analysis. It shows the treatment effects
of individual studies, usually as squares whose area is proportional to their weight, along with their confidence intervals. The
summary effect is usually lying at the bottom of the forest plot, illustrated as a diamond, the width of which represents its
confidence interval. The addition of squares around each study’s point estimate, representing study’s precision, originates from
initial concerns that the eye is drawn to the most imprecise studies, as the confidence intervals are wider1. The addition is said
to be inspired by modified box plots2 and proposed in 1983 by Stephen Evans at a Royal Statistical Society medical section
meeting at the London School of Hygiene and Tropical Medicine3. Researchers have proposed several modifications of the
forest plot as well as alternative plots, such as the Galbraith and the Abbe plot, to show meta-analysis results4,5,6,7. A vast array
of graphical displays for meta-analysis have been recently summarized by Kossmeier et al.8.
In this paper, we propose a mechanical representation of meta-analysis as linear springs, which shows not only the meta-

analysis results, but also the synthesis process itself. We will use two main operations for synthesizing evidence: connection of
springs in parallel and connection of springs in series. We show that the equivalence between meta-analysis and linear springs
holds for the fixed effect and random effects models and propose a visualization tool to illustrate this equivalence. The visual-
ization tool can serve as an intuitive educational approach for researchers with no statistical background illustrating the analogy
between meta-analysis and a system of linear springs.
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The rest of the paper is organised as follows. We start by introducing the needed notions from mechanics in 2.1 and then show
in 2.2 how a single study can be illustrated as a spring. The analogy of fixed effect pairwise meta-analysis to a system of springs
is outlined in 2.3. In 2.4 we make use of serial connection to derive indirect meta-analytic effect estimates and in 2.5 we outline
the representation of random effects pairwise meta-analysis as a system of springs. We conclude with a discussion.

2 METHODS

2.1 Definitions from mechanics
A spring is a simple mechanical component that can compress and expand in one dimension. An example from everyday life is
the coil spring inside certain ballpoint pens. Springs are characterized by two quantities: natural length LBA, where B and A
refer to spring’s ends, and stiffness k. Natural length LBA is the distance between the spring’s ends B and A when no forces are
applied to it. It holds that LAB = pB − pA = −LBA = pA − pB where pA and pB give the positions of ends A and B respectively.
Thus, the definition of LBA involves assuming either of the spring’s ends as the reference and LBA can be either positive or
negative depending on the relative position of the non-referent end. Let us assume that the first index of LBA indicates the
reference treatment, which is assumed to be ’fixed’; the end referring to the non-reference treatment is assumed to be ’open’.
Unlike natural length, which is constant for each spring, we also define the spring’s current length lBA ∈ (−∞,∞) which is the
length when forces are acting on it. For positive natural length, when the current length is greater than the natural the spring is
extended and when the current length is smaller than the natural the spring is compressed. The opposite holds when LBA < 0.
The displacement xBA of the spring is defined as the difference of the spring’s current length to the spring’s natural length:
xBA = lBA − LBA. As an effective spring we define the substitution of parts of the system into a single spring with the exact
same stiffness and length.
A linear spring obeys Hook’s law which states that the force fA needed to displace a spring by xBA is proportional to that

displacement xBA. The constant factor k is the spring’s stiffness.

fA = kxBA (1)

A common use of springs is to store energy. For example, if one compresses a spring of stiffness k by x and locks it in place
with a latch the spring has stored energyU = 1∕2kx2. This is referred to as potential energy which the spring can give back later.
In the example of a ballpoint pen, when we push to open the pen, the spring inside has the potential energy that is needed for it to
stay in place. The work is the energy spent to compress the spring and equals the spring’s potential energy. In the general case an
external force is exerted to the system in order to stay still. In this context we will ignore energy due to motion (kinetic energy)
meaning systems are always static. We thus define a transition from one state to another as a quastistatic process meaning the
velocity is infinitesimal and the system remains always in equilibrium. A system equilibrates when either there is no force or all
forces acting on it cancel out. From now on we will be using the term energy when referring to potential energy U.
For a system of i = 1,… , n springs the energy of each individual spring’s i Ui

Ui =
1
2
kix

2
i,BA (2)

is the potential energy stored in the spring when its length is displaced by xBA and the total energy U is given by

U =
n
∑

i=1
Ui (3)

2.2 Effect : spring representation; single study
Suppose that n studies comparing treatments A and B have been conducted and each contributes an effect size yi,BA, i = 1, ..., n
with variances v̂i. Each study is weighted according to its inverse variance, ŵi =

1
v̂i
. The spring representation of a study effect

is straightforward. The effect size yi,BA of treatment comparison B vs A with reference treatment B equals the spring’s natural
length. The stiffness coefficient equals the inverse variance weight, meaning that more precise studies are represented by stiffer
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Meta-analysis Springs

Terminology
Study Spring

Treatments Spring ends
Summary estimate Effective spring

Quantity Symbol Quantity Symbol

se
ct
io
n
2.
2 Study treatment effect yi,BA Natural length (no force - constant) Li,BA

Study variance v̂i Compliance 1∕ki
Study weight (or precision) ŵi Stiffness (constant) ki
- - Current length (variable) lBA

se
ct
io
n
2.
3

Summary estimate fixed effect �̂DBA Effective length of parallel springs LDBA
Variance of summary estimate V ar

(

�̂DBA
)

Compliance of effective spring 1∕kD

Precision of summary estimate 1∕V ar
(

�̂DBA
)

Stiffness of effective spring kD

- - Force on open end A fi,A = kixi,BA
- �̂DBA-yi,BA Displacement (deviation from common effect) xi,BA = lDBA − Li,BA
Study contribution on Q Qi =

(yi,BA−�̂DBA)
2

vi
Spring energy* Ui =

1
2
kix2i,BA

Q for Heterogeneity Q =
∑n
i Qi Total energy U =

∑n
i Ui

se
ct
io
n
2.
4 True treatment effects : Transitivity �BA = �BC + �CA Springs in series lBA = lBC + lCA

Indirect estimated treatment effect �̂IBA = �̂DBC + �̂DCA Effective length of springs in series LIBA = LDBC + LDCA
Variance of indirect treatment effect V ar

(

�̂IBA
)

Compliance of effective spring 1
kIBA

= 1
kDBC

+ 1
kDCA

Precision of indirect treatment effect 1∕V ar
(

�̂IBA
)

Stiffness of effective spring kIBA

se
ct
io
n
2.
5

Summary estimate random effects �̂D∗
BA Summary length LD∗

BA
Variance of summary estimate V ar

(

�̂D∗
BA

)

Effective compliance (summary level) 1∕kD∗

Precision of summary estimate 1∕V ar
(

�̂D∗
BA

)

Effective stiffness (summary level) kD∗

Random effects �i Random effects spring length li,�
- 1∕�2 Stiffness of random effects spring k�
Heterogeneity �2 Compliance of random effects spring 1∕k�
Random effects variance v∗i = vi + �2 Inverse of effective stiffness (study level) 1

kIi
= 1

ki
+ 1

k�

TABLE 1 Pairwise meta-analysis - Spring system representation. *The spring’s energy Ui corresponds to Qi∕2.

springs. Thus, the equivalence of a study to a spring is summarised as:

Li,BA ≡ yi,BA (4)

ki ≡
1
v̂i

(5)

If the effect of A is larger than that of B in study i, both yi,BA and Li,BA are positive and negative otherwise. Usually comparison
XR is read X vs R and the reference treatment is the second term R. However, since there is no formal convention, we follow
the same notation for springs and effects with the first treatment of the comparison indicating the reference.
In the following we use the illustrative worked example given in Table 14.1 of Borenstein’s et al. Introduction to Meta-

analysis9. The outcome data is continuous and consists of mean values, standard deviations and sample sizes per arm. One of
those studies, Peck, is illustrated in figure 1 both in a forest plot (figure 1a) and as a spring (figure 1b). Contrary to the forest plot,
where the length of the line shows the confidence interval, the spring’s length corresponds to the effect size (mean difference)
of the Peck study. In particular, we compute a mean difference of 10 for B vs A for the Peck study, corresponding to a natural
length of L1,BA = 10 for the spring in 1b. The stiffness coefficient k1 is equal to k1 = 1

v̂1
= 1

6.042
= 0.0274 and is represented

as the thickness of the spring in figure 1b. Defining B as the reference treatment is shown in figure 1b as fixing end B and
leaving end A open. As springs are assumed to be linear, only additive effect sizes such as mean difference, standardized mean
difference, log odds ratio, log risk ratio, risk difference, etc can be represented. Measures on the ratio scale, such as odds ratio,
risk ratio, hazard ratio, cannot be represented.
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MD   SE

B

FIGURE 1 Spring representation of a study. Panel a: the forest plot of the fictional Peck study. Panel b: Corresponding spring
representation of panel a. Since B is the reference treatment it is shown to be fixed. The spring’s thickness is proportional to the
stiffness coefficent k. MD: mean difference; SD: standard deviation; SE: standard error.

2.3 Fixed effect pairwise meta-analysis : springs in parallel
The fixed (or common) effect model for pairwise meta-analysis can be formulated as:

yi,BA = �BA + "i; "i ∼ N
(

0, vi
)

(6)

where �BA is the assumed true effect and "i is the random error of study i. The summary estimate �̂DBA (our estimation of the
true effect using direct evidence) is given by the following weighted average of the observed effects9:

�̂DBA =
∑n
i=1 ŵiyi,BA
∑n
i=1 ŵi

(7)

with ŵi being the inverse variance weights. If the true variances were known, the summary estimate’s variance would be
V ar

(

�̂DBA
)

= 1
∑n
i=1 wi

. In practice, it is common that we estimate it as

V ar
(

�̂DBA
)

= 1
∑n
i=1 ŵi

(8)

although models that avoid the assumption of within-study normality are also available. Among those, GLMMs is a reliable
alternative; it is not currently clear how the representation of meta-analysis using GLMMs can be visualized as a system of
springs.
We can represent the observed study treatment effects yi,BA of a fixed effect meta-analysis by a series of parallel open springs

where the end of the reference end is fixed for each spring. To do so, we use the same example of9 as before, using two of
the studies, Grant and Peck. Figure 2a shows the forest plot for these two studies, whose synthesis results to a summary mean
difference of 7.12.
The observed effects are visualized as springs in figure 2b; their length shows their effect size and more precise studies are

represented by stiffer (thicker) springs. The process of synthesizing all B vs A studies corresponds to forcing all springs to have
equal length, lDBA, by fixing all open ends together. In this position we have to exert force to hold the system in place. We then
let the system reach its minimum energy (figure 2c) where no external force is acting on it. The set of springs –all of length lDBA-
can now be replaced with an effective spring, of natural length LDBA = lDBA, which represents the summary meta-analytic effect
(figure 2d). The common current length where the energy is minimum is found by replacing ki = ŵi and xi,BA = lDBA − yi,BA
(table:1) in equation 2; equation 3 becomes

U =
n
∑

i=1

1
2
ŵi

(

lDBA − yi,BA
)2 (9)
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And it turns out that the common current length lDBA is the one that satisfies

U ′ = 0 ⇒
n
∑

i=1
fi,A = 0 ⇒

n
∑

i=1
ŵi

(

lDBA − yi,BA
)

= 0 (10)

that is

lDBA =
∑n
i=1 ŵiyi,BA
∑n
i=1 ŵi

(11)

In equilibrium all forces on the open end cancel out, which means that the total force applied is 0. In an actual realization of
the spring system where springs would have mass and friction would act on them, we could simply release the system after
we joined its ends. The friction acting on the system would force the system to stop at equilibrium length by turning the extra
potential energy into heat. It holds that U = 1

2
Q where Q is the Q statistic for heterogeneity for the comparison B vs A. Thus,

Q for heterogeneity can be interpreted as double the energy that is needed for all studies to get aligned to the same point; that
of the effective spring or the summary effect.
The stiffness of the effective spring in (fig:2d) will be derived by synthesising the stiffnesses of the two parallel springs of

(fig:2c). For springs with stiffnesses k1 and k2 which are connected in parallel, their displacements equal the total displacement
xeff = x1 = x2 and the total force is given as feff = f1+f2 which gives keff ∗ xeff = k1xeff+k2xeff and thus keff = k1+k2.
So the stiffness of the effective spring is given by the sum of the individual springs in parallel. For the example of fig:2d, the
stiffness of the effective spring is kD = k1 + k2 = 0.0703 + 0.0274 = 0.0977.
In the general case:

kD =
n
∑

i=1
ki (12)

By replacing ki = ŵi it holds that
kD = 1

Var(�̂DBA)
(13)

The inverse of the stiffness of the effective spring is equivalent to the variance of the fixed effect meta-analytic summary.

7.12  3.20

MD  SE

AB

a

Grant L1,BA=6

k1=0.0703

b

FIGURE 2 Combining studies in parallel. Panel a: Forest plot of two fictional studies9 and their fixed effect summary. Panel b:
Spring representation of panel a prior to synthesis (as open springs). Panel c: Synthesis process by constraining the study springs
so as they have the same length which equals the fixed effect summary estimate. Panel d: Effective spring of panel c, which
represents the fixed effect summary estimate and its variance. MD: mean difference; SD: standard deviation; SE: standard error.
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We showed that the parallel spring system in equilibrium is analogous to the fixed effect pairwise meta-analysis model and the
summary effect corresponds to the effective spring (fig:2c) that can replace the system of springs. We depict spring’s stiffness
as thickness. The amount that each spring is compressed or extended depicts how much it differs from the summary treatment
effect. This provides intuition to the summary process, since stiff springs are more difficult to move meaning the effect size of
a study is more important in the synthesis when the precision is high. An alternative way to visualise yi,BA = �BA + "i would
be representing �BA as a stick (or rod) and "i as a coil spring attached to that rod. The coil spring representing "i would be of
zero natural length and stiffness wi. In such a visualization, it would hold that Li,BA ≡ �BA. As this approach is less intuitive,
we replace Li,BA with its effective spring, which results from synthesizing �BA and "i.

2.4 Indirect estimate : springs in series
Network meta-analysis is an increasingly used evidence synthesis tool that combines information from studies comparing more
than two treatments10,11,12,13. The simplest form of a networkmeta-analysis is the derivation of an indirect effect14; in the fictional
example of figure 3a, suppose that we have a series of studies comparing B vs C and C vs A which result to mean differences 4
and 12 respectively. Under the transitivity assumption (table:1), we have

�̂IBA = �̂DBC + �̂DCA (14)
Var

(

�̂IBA
)

= Var
(

�̂DBC
)

+ Var
(

�̂DCA
)

(15)

where the superscripts I and D refer to indirect and direct summary effects respectively.
Such successive estimates can be represented as a system of effective springs in series, as is shown in figure 3b. In order to

CB

LDBC=4

kDBC=0.0693

b

FIGURE 3 Springs in series. Panel a. Fictional forest plot for comparisonsB vsC andC vsA Panel b. The spring representation
of panel a. Panel c. The effective spring of panel b. MD: mean difference; SE: standard error.

represent these comparisons, we can simply join the springs to their common comparator (C in figure 3b). Then, consistently
with equation 14, the synthesis process consists of connecting these two springs in series, which results to an effective spring
with length

LIBA = LDBC + LDCA (16)
and means that we can replace the two springs of figure 3b with lengths LDBC and LDCA with an effective spring of length LIBA
The stiffness of the effective spring for springs in series is given by:

1
kIBA

=
d
∑

j=1

1
kj

(17)
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where d is the number of springs in serial connection, here 2. The effective spring of length LIBA and stiffness kIBA is shown in
figure 3c. By replacing 1∕kj with Var

(

�̂DBC
)

and Var
(

�̂DCA
)

it is easily shown that the effective stiffness (eq:17) corresponds to
the inverse variance of the indirect effect (eq:15). Equation 17 implies that kIBA is smaller than any kj .

2.5 Random effects pairwise meta-analysis : springs in parallel and in series
To show the analogy of random effects meta-analysis with a system of linear springs, we need both synthesis operations:
connection in parallel and connection in series. The random effects pairwise meta-analysis model is written as:

yi,BA = �BA + "i + �i (18)
"i ∼ N

(

0, vi
)

(19)
�i ∼ N

(

0, �2
)

(20)

where yi,BA, �BA, "i, v̂i are as in section 2.3 , �i are the study random effects and �2 denotes heterogeneity. The random effects
summary estimate �̂D∗

BA and its variance V ar
(

�̂D∗
BA

)

are given as in equations 7 and 8 by replacing ŵi with ŵ∗
i =

1
v̂i+�2

. Various
methods can be used to estimate heterogeneity15,16,17. We have so far treated v̂i as if they were known and uncorrelated with
the effect size. However, the uncertainty around the estimation of vi, may impact both on the study-level treatment effects and
on the estimation of �2. Moreover, the assumption of uncorrelated variances with effect sizes may be unrealistic, especially for
standardized mean differences and log odds ratios.

AB

b

FIGURE 4 Random effects meta-analysis. Panel a: Forest plot of 3 studies and their fixed and random effects summaries. Panel
b: The spring representation of panel a. Dashed lines at the Ai ends of each spring represent random effects springs of zero
natural length. Panel c: Synthesis process by fixing the length of the system at the A ends of the heterogeneity springs. To the
right of each spring individual lengths of each study li and heterogeneity spring li,� are given. Panel d: Replacing springs of
panel c by their effective indirect kIi . At the bottom is the effective spring of the system giving the summary of the random
effects model. The same stiffness to thickness scale is used as to enable comparisons between panels. MD: mean difference; SD:
standard deviation; SE: standard error.
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Our approach to represent model 18 is adding in the system of springs of figure 2 an extra spring per study to represent �i.
This extra spring links the free end Ai of each spring Li,BAi to the common end A. The natural length of the random effects
springs is L� = 0 and stiffness k� = 1∕�2.
Let us assume that we have the three studies of figure 4a, Peck, Donat and Young. The heterogeneity for this subset of studies

is considerable, estimated at �2 = 13.8 using the DerSimonian and Laird method (although estimation with such few studies is
problematic). The random effects summary effect is 8.94. The springs in figure 4b represent these three studies, along with their
random effects. The random effects springs are drawn as vertical dashed lines to depict that they have zero natural length. As
their natural length is zero, they cannot be compressed but they can be stressed to any length either on the right or on the left.
Figure 4c illustrates the synthesis process, which consists of binding all open ends together and is equivalent to solving the

system of forces

n
∑

i=1
fi,A = 0 (21)

n
∑

j=1
fji,Ai = 0 ∀i (22)

for pointsA andAi. Figure 4c includes the representation of the random effects; their displacement from their zero natural length
(the change from Ai to A) shows their contribution to heterogeneity.
Alternatively, one can see the synthesis process as a two stage approach shown in panel d of Figure 4. In the first stage,

we replace the springs in series by their effective spring, with the same length and stiffness kIi = 1
1∕ki+1∕k�

. This process is
equivalent to deriving an indirect effect for the comparison B vs A via an intermediate node Ai. Thus, equations 14 and 15 are
used for the calculation of this mock ’indirect’ B vs A effect. The second stage of synthesis consists of connecting in parallel the
indirect effective springs using equations 12 and 13. Depending on the realization, the natural length for study i would either
be equivalent to �BA, �BA + "i, �BA + �i or �BA + "i + �i. The representation in figure 4d showcases that although stiffness
drops in every spring it affects more precise studies (see Donat). Figure 4d also shows the summary effect from random effects
meta-analysis as the effective spring LD∗

BA.

3 DISCUSSION

In this paper, we showed that meta-analysis can be represented by a system of linear springs. We used connection in parallel
and in series to show synthesis of studies within a pairwise comparison. The analogue of connection of springs in parallel is
the inverse variance weighted average, used to estimate the summary effect in fixed effect pairwise meta-analysis. Connection
in series is used for synthesizing successive estimates, for example for deriving indirect effects. Random effects pairwise meta-
analysis makes use of both synthesis operations parallel and in series to synthesize successively study and random effects and
in parallel study effects with random effects weights.
The representation of studies as springs provides insight into the process of meta-analysis, as well as the notions of fixed and

random effects models. It is well known that precise studies take relatively more weight under fixed than under random effects
meta-analysis18. This can be shown by the addition of the heterogeneity spring to each study. Their effective spring has less
stiffness than either spring and that drop is more evident in stiff springs.
A physical analogue for network meta-analysis has previously been proposed by Rücker, where the network of studies is rep-

resented by an electrical circuit19. Rücker’s approach allowed methods of graph theory for electrical networks to be applied in
meta-analysis19. The implementation of the method in the netmeta R package has greatly popularised the use of network meta-
analysis20. Since the appearance in the literature in 2012 of the seminal paper19 the method has been extended in numerous
directions to include methods for investigating inconsistency, ranking treatments and exploring the effects of separate compo-
nents in network meta-analysis21,22,23. The subcase of comparing two treatments, as in pairwise meta-analysis, is also covered
by the electrical network and graph theory approach.
We aim to extend the work presented in this paper to represent network meta-analysis, having in mind the equivalence between

mechanical networks and electrical networks. In particular, any givenmechanical network has a corresponding electrical network
with the samemathematical representation. Among their elements, frictional resistance corresponds to electrical resistance, mass
to inductance, and compliance to capacitance. Despite the similarities, Rücker’s approach uses resistors to represent variance
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whereas we use stiffness to represent the reciprocal of variance. Thus, parallel connection of resistors uses the reciprocal scale,
whereas the stiffness of a parallel connection of springs is the sum of the stiffnesses of the individual springs.
While the tools presented already suffice to produce and depict network estimates, a special manipulation is needed for

multi-arm studies. A possible way to overcome this issue is to replace multi-arm studies with a required number of springs cor-
responding to two-arm studies, for example using the equivalence shown in19,21. Extension of the correspondence of quantities
and notions is also needed to include measures which apply only to network meta-analysis, such as inconsistency24. While elec-
trical networks have been shown to represent most features of network meta-analyses, such analogies are yet to be investigated
for mechanical networks. For example, inconsistency may be viewed as the energy spent to align the parallel system of effective
springs corresponding to different sources of evidence. We are currently developing open-source software to show pairwise and
network meta-analysis to enrich current graphical representations of evidence synthesis results.
Bowden and Jackson proposed another physical analogue for meta-analysis as a seesaw, where the effect estimate corresponds

to the centre of the mass25. An empirical study comparing the accuracy and effectiveness between physical analogues for meta-
analysis as well as conventional graphical methods, such as the forest plot, would be of interest. We anticipate that the various
visualisation methods would have different, yet possibly complementary, strengths. However, the accuracy may not be the only
criterion for judging the appropriateness of a graph; as Cleveland and McGill point out “The power of a graph is its ability to
enable one to take in the quantitative information, organise it, and see patterns and structure not readily revealed by other means
of studying the data”26. Forest plots certainly meet these requirements, and are thus used in the vast majority of meta-analyses
applications. Our springs representation suggestion only aims to complement the already existing approaches.
A limitation of figures 2 and 4 lies on the fact that the information contained in confidence intervals is not shown. This is not

necessarily the case; confidence intervals can be added as an extra line centred around the study treatment effect or the summary
effect. However, the representation would then contain a lot of information, so the extra line is not an integral part of the figure.
This limitation further reinforces the fact that we do not advocate spring representation of meta-analyses as a substitute for a
forest plot, but rather as a didactic tool. In fact, a wooden box with springs could be used as a useful educational device in
meta-analysis courses to help students understand important concepts, such as the synthesis process, the notion of heterogeneity
and the differences between fixed and random effects meta-analysis. The analogy with springs allows these concepts to become
intuitive and tangible without loss of rigor. A further limitation of the approach is its inability to be applied to meta-analyses
that use likelihood-based or Bayesian methods. We aim to extend the current work to a more general representation where
study effects can be represented as nonlinear springs. In summary, we provide a translation of meta-analysis to a corresponding
mechanical system of springs, which allows the intuitive visual representation of basic concepts of evidence synthesis.

4 HIGHLIGHTS

What is already known: Meta-analysis is very commonly applied in several fields including health sciences, education and
ecology. However, some concepts, such heterogeneity, are not always easy to grasp.

What is new: We show the analogy between meta-analysis and a system of linear springs and propose a new educational
graphical tool to enhance intuition of meta-analytical concepts.

Potential impact for Review Synthesis Methods readers outside the authors’ field: The proposed educational device can
help researchers understand the synthesis process, the differences between fixed and random effects and heterogeneity in
meta-analysis.

5 DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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