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1. Introduction
Tumor growth is the result of a chain of processes that
lead to uninhibited cell division and loss of normal tis-
sue homeostasis. Cancer cells may infiltrate and re-
place normal tissue, or form a macroscopic “mass”
that displaces other tissue structures. This tissue-
displacing potential of macroscopic tumors is termed
“mass-effect”. Glioblastoma (GBM), the most frequent
malignant brain tumor in adults, exhibits both infiltra-
tive and displacive growth characteristics.

Physical forces arising from tumor growth can con-
tribute to tumor progression and generate mechanical
stresses in the tumor as well as in the surrounding tis-
sues. In brain tumors, elevated solid stress causes
neuronal loss and neurological dysfunction [2], and in-
creased tumor mass-effect is associated to poor prog-
nosis in Glioblastoma (GBM) patients [3].

These findings suggest that a tumor’s propensity
to displace healthy tissue provides information about
its tumor micro-environment of potentially predictive
value for treatment and outcome. However, most
previous clinically motivated mathematical brain tu-
mor models, e.g. [4], focused on the tumors’ inva-
sive growth characteristics, without taking into account
their mass-effect.

We have previously investigated a simple mathe-
matical model of mechanically-coupled tumor growth
and showed that the parameters of this model can be
estimated reliably from noisy synthetic data [1]. Here
we report its application for estimating patient-specific
tumor growth characteristics from clinical MR imaging
data (n = 13) and discuss potential applications of per-
sonalized biomechanical brain tumor growth models.

2. Methods
As clinical reference we used publicly available single-
timepoint pre-operative MR-imaging datasets of 13
patients from the Ivy Glioblastoma Atlas Project (Ivy
GAP1). Each dataset was segmented into regions
corresponding to T1-contrast enhancing tumor (T1),
T2/FLAIR enhancing (T2) and lateral ventricles (LV )
using the automatic segmentation software BraTu-
mIA2 and subsequent manual post-processing. For
each case, a patient-specific “healthy” reference brain
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parameter min max step units

WM diffusivity DWM 0.10 0.80 0.05 mm2

day
proliferation rate ρ 0.10 0.10 n.a. 1

day
mech. coupling λ 0.10 1.00 0.10
growth time t 0 200 1

Table 1: Parameter sampling grid for optimization. We
assumed DWM = 5 · DGM.

was created by affine registration of a normal-brain
atlas to the T1-weighted MR image of the respective
tumor-bearing brain.

To estimate patient-specific tumor growth char-
acteristics for these cases, we extended the
2D single-species mechanically-coupled reaction-
diffusion model presented in [1] to 3D. In brief, the
mathematical model describes invasive tumor growth
as a reaction-diffusion process with tumor cell density
c(x), diffusion coefficient D(x) and logistic growth pro-
liferation rate ρ. The growth domain is modeled as
a linear elastic continuum consisting of different brain
tissues (white matter, grey matter, cerebro-spinal fluid)
with their respective material properties. Simulation of
the tumor’s tissue-displacing mass-effect assumes a
linear coupling between local tumor cell density and
growth-induced strain εgrowth with mechanical coupling
parameter λ: εgrowth = λ c I.

To allow for higher flexibility in the choice of opti-
mization cost function compared to [1], we used a grid
search approach, Table 1, for identifying the optimal
parameter-set for each of the patient cases. Quality of
model fit was quantified by the dice overlap between
patient segmentation and model predictions for T1, T2
and LV structures. Parameter selection was based on
the maximum combined (T1-T2-LV ) dice coefficient,
computed as the average of T1, T2 and LV dice.

3. Results and discussion
We identified patient-specific growth parameters
{D/ρ, λ, t} resulting in T1-T2-LV dice coefficients be-
tween 0.49 − 0.67 across all patients, and T1 dice
coefficients ranging between 0.54 − 0.85. Although,
optimization was performed using T1-T2-LV dice, the
selected parameter combinations approximate the ac-
tual T1 tumor volume very well (R2 = 0.97), Fig. 1 (A).

Figure 1 (B) compares patient image and optimal
simulation results in a central tumor slice of three pa-
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Figure 1: (A) Estimated vs actual T1 tumor volume.
(B) Comparison of patient image and model fit in cen-
tral tumor slice of cases with highest (W30), interme-
diate (W09) and lowest (W43) dice overlap.
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Figure 2: Estimated tumor characteristics D/ρ and λ.
Errorbars indicate the standard deviation of parameter
distributions that yield highest 0.5% of dice estimates.

tient cases corresponding to the highest (W30), inter-
mediate (W09) and lowest (W43) T1-T2-LV dice co-
efficient. In general, the model provides a very good
fit to the T1 tumor and is able to reproduce regularly
shaped T2 imaging contours. As expected, given its
simplicity, the model performs less well on very irreg-
ular shaped contours as in W43.

We used LV dice to introduce a measure of tumor-
induced normal-tissue deformation in the optimization
cost function. Although, perfect match between sim-
ulated and actual patient ventricles is rarely achieved,
the effect of tumor-induced mechanical compression
in and out-of-plane can be clearly observed in cases
W30 and W09. This confirms that the proposed model
and parameter optimization capture the global biome-
chanical impact of the growing tumor at least partially.

Figure 2 characterizes the included tumors by their
invasive (D/ρ) and displacive (λ) characteristics: Tu-
mors with higher (lower) D/ρ display a more invasive
(nodular) phenotype, tumors with higher (lower) λ dis-
play a stronger (weaker) displacive behavior.

Most mechanically-coupled model-based tumor
growth approaches have been studied in the context
of automated brain tumor image segmentation, but
without exploiting their potential for growth character-
ization. Patient-specific biomechanical tumor growth
models allow tumors to be characterized along mul-
tiple growth dimensions, such as their invasive (D/ρ)
and displacive (λ) potential, Fig. 2, which may pro-
vide markers of tumor biology. For example, D/ρ has

been shown predictive of a tumor’s isocitrate dehydro-
genase 1 (IDH1) mutation status. Studies such as [2,
3] indicate a similar predictive potential for a model-
based measure of tumor displaciveness, but this re-
mains to be confirmed in higher-numbered studies
that include additional clinical and biological data.

Biomechanically-coupled growth models also pro-
vide access to the distribution of tumor-induced me-
chanical stresses in the tumor and in normal brain.
This information, correlated to functional brain areas,
may be relevant for treatment planning and assess-
ment. Its incorporation in tumor growth models has al-
ready been shown to yield more accurate predictions
of growth and treatment effect.

4. Conclusion
This study demonstrates feasibility of characterizing
invasive and displacive GBM growth attributes from
single time-point clinical MR imaging. The mechani-
cal properties of brain tissue have been well charac-
terized and multiple approaches exist to incorporate
tumor growth in a biomechanical modeling framework.
Here we assessed one of the simplest and most com-
mon type of mechanically coupled growth model with
regard to its ability to fit tumor geometry and ventricle
shape of 13 human GBM cases. We plan to investi-
gate the clinical utility of this model by benchmarking
against specific use-cases that will also drive future
model improvement and development.
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