
Noname manuscript No.
(will be inserted by the editor)

Fast algorithms for the quantile regression process

Victor Chernozhukov ∙ Iván
Fernández-Val ∙ Blaise Melly

Received: date / Accepted: date

Abstract The widespread use of quantile regression methods depends cru-
cially on the existence of fast algorithms. Despite numerous algorithmic im-
provements, the computation time is still non-negligible because researchers
often estimate many quantile regressions and use the bootstrap for inference.
We suggest two new fast algorithms for the estimation of a sequence of quantile
regressions at many quantile indexes. The first algorithm applies the prepro-
cessing idea of Portnoy and Koenker (1997) but exploits a previously estimated
quantile regression to guess the sign of the residuals. This step allows for a
reduction of the effective sample size. The second algorithm starts from a pre-
viously estimated quantile regression at a similar quantile index and updates
it using a single Newton-Raphson iteration. The first algorithm is exact, while
the second is only asymptotically equivalent to the traditional quantile re-
gression estimator. We also apply the preprocessing idea to the bootstrap by
using the sample estimates to guess the sign of the residuals in the bootstrap
sample. Simulations show that our new algorithms provide very large improve-
ments in computation time without significant (if any) cost in the quality of
the estimates. For instance, we divide by 100 the time required to estimate 99
quantile regressions with 20 regressors and 50,000 observations.
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1 Introduction

The idea of estimating regression parameters by minimizing the sum of ab-
solute errors (i.e. median regression) predates the least squares method by
about 50 years. Roger Joseph Boscovich suggested in 1857 to fit a straight
line to observational data by minimizing the sum of absolute residuals under
the restriction that the sum of residuals be zero. Laplace found in 1899 that
the solution to this problem is a weighted median.1 Gauss suggested later to
use the least squares criterion. For him, the choice of the loss function is an
arbitrary convention and “it cannot be denied that Laplace’s convention vi-
olates continuity and hence resists analytic treatment, while the results that
my convention leads to are distinguished by their wonderful simplicity and
generality.” Thus, it was mostly due to the simplicity of the analysis and of
the computation that least squares methods have dominated the statistical
and econometric literature during two hundred years.2

Only the development of the simplex algorithm during the 20th century
and its adaptation for median regression by Barrodale and Roberts (1974)
made least absolute error methods applicable to multivariate regressions for
problems of moderate size. Portnoy and Koenker (1997) developed an inte-
rior points algorithm and a preprocessing step that significantly reduces the
computation time for large samples with many covariates. These algorithms
are implemented in different programming languages and certainly explain the
surge of applications of quantile regression methods during the last 20 years.

Despite these improvements, the computation time is still non-negligible in
two cases: when we are interested in the whole quantile regression process and
when we want to use bootstrap for inference. Researchers are rarely interested
in only one quantile regression but often estimate many quantile regressions.
The most common motivation for using quantile regression is, indeed, to an-
alyze heterogeneity. Some estimation and inferential procedures even require
the preliminary estimation of the whole quantile regression process. For in-
stance, Koenker and Portnoy (1987) integrate the trimmed quantile regression
process to get conditional trimmed means. Koenker and Xiao (2002), Cher-
nozhukov and Fernández-Val (2005) and Chernozhukov and Hansen (2006)
test functional null hypotheses such as the absence of any effect of a covariate
or the location-scale model, which requires estimating the whole quantile re-
gression process. Machado and Mata (2005) and Chernozhukov et al. (2013)
must compute the whole quantile regression process to estimate the conditional
distribution function by inverting the estimated conditional quantile function.
In a second step, they integrate the conditional distribution function over the
distribution of the covariates to obtain unconditional distributions.

In addition, researchers often use the bootstrap to estimate the standard
errors of quantile regression. Many simulation studies show that it often pro-
vides the best estimate of the variance of the point estimates. It also has the

1 Among others, see Chapter 1 in Stigler (1986).
2 See Koenker (2000) and Koenker (2017) for a more detailed historical account of the

computation of median regression.
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advantage of avoiding the (explicit) choice of a smoothing parameter, which
is required for the analytical estimators of the variance. Finally, it is difficult
to avoid the bootstrap (or other simulation methods) to test some types of
functional hypotheses.

In these two cases, when the number of observations is large, the com-
putational burden of quantile regression may still be a reason not to use
this method. In their survey of the decomposition literature, Fortin et al.
(2011) mention the following main limitation of the quantile regression ap-
proach: “This decomposition method is computationally demanding, and be-
comes quite cumbersome for data sets numbering more than a few thousand
observations. Bootstrapping quantile regressions for sizeable number of quan-
tiles τ (100 would be a minimum) is computationally tedious with large data
sets.” Further improvements are clearly needed to enable more widespread
applications of quantile regression estimators.

In this paper we suggest two new algorithms to estimate the quantile re-
gression process. The first algorithm is a natural extension of the preprocessing
idea of Portnoy and Koenker (1997). The intuition is fairly simple. The fitted
quantile regression line interpolates k data points, where k is the number of
regressors. Only the sign of the residuals of the other observations matters
for the determination of the quantile regression coefficients. If one can guess
the sign of some residuals, then these observations do not need to enter into
the optimization problem, thus reducing the effective sample size. When many
quantile regressions are estimated, then we can start with a conventional al-
gorithm for the first quantile regression and then progressively climb over the
conditional quantile function, using recursively the previous quantile regres-
sion as a guess for the next one. This algorithm provides numerically the same
estimate as the traditional algorithms because we can check if the guesses were
correct and stop only if this is the case.

This algorithm seriously reduces the computation time when we estimate
many quantile regressions. When these improvements are still insufficient, we
suggest a new estimator for the quantile regression process. The idea consists
in approximating the difference between two quantile regression coefficient
vectors at two close quantile indexes using a first-order Taylor approximation.
The one-step algorithm starts from one quantile regression estimated using one
of the existing algorithms and then obtains sequentially all remaining quantile
regressions using one-step approximations. This algorithm is extremely quick,
but the estimates are numerically different from the estimates obtained using
the other algorithms. Nevertheless, the one-step estimator is asymptotically
equivalent to the standard quantile regression estimator if the distance between
the quantile indexes decreases sufficiently fast with the sample size.

We also apply the preprocessing idea to compute the bootstrap estimates.
When we bootstrap a quantile regression, we can use the sample estimates to
guess the sign of the residuals in the bootstrap sample. With this algorithm,
bootstrapping the quantile regression estimator is actually quicker than boot-
strapping the OLS estimator. We cannot apply a similar approach to least
squares estimators because of their global nature.
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Instead of bootstrapping the quantile regression estimates, it is possible to
bootstrap the score (or estimating equation) of the estimator. This approach
amounts in fact to using the one-step estimator to compute the bootstrap esti-
mate when we take the sample estimate as a preliminary guess. This inference
procedure, which has been suggested for quantile regression by Chernozhukov
and Hansen (2006) and Belloni et al. (2017), is extremely fast and can also
be used to perform uniform inference. Its drawback is the necessity to choose
a smoothing parameter to estimate the conditional density of the response
variable given the covariates.

The simulations we report in Section 6 show that the preprocessing algo-
rithm is 30 times faster than Stata’s built-in algorithm when we have 50, 000
observations, 20 regressors and we estimate 99 quantile regressions. The one-
step estimator further divides the computing time by almost 4. The prepro-
cessing step applied to the bootstrap of a single quantile regression divides the
computing time by about 10. The score multiplier bootstrap further divides
the computing time by 10 compared to the preprocessing algorithm. Thus,
these new algorithms open new possibilities for quantile regression methods.
For instance, in the application reported in Section 7, we could estimate 91
different quantile regressions in a sample of 2, 194, 021 observations, with 14
regressors and bootstrap 100 times the estimates in about 30 minutes on a
laptop. The same estimation with the built-in commands of Stata would take
over two months. A Stata package is available from the website of authors at
https://sites.google.com/site/blaisemelly/home/computer-programs/fast.

We organize the rest of the paper as follows. Section 2 briefly defines the
quantile regression model and estimator, describes the existing algorithms and
provides the limiting distribution of the estimator. In Section 3, we adapt the
preprocessing step of Portnoy and Koenker (1997) to estimate the whole quan-
tile regression process. In Section 4, we suggest the new one-step estimator.
Section 5 uses the same strategies to develop fast algorithms for bootstrap.
Section 6 and 7 provide the results of the simulations and of the application,
respectively. Finally, in Section 8 we point out some directions of research that
may be fruitful.

2 The quantile regression process

This section gives a very brief introduction to the linear quantile regression
model. For a more thorough discussion we recommend the book written by
Koenker (2005) and the recent Handbook of Quantile Regression (Koenker
et al., 2017).

2.1 The quantile regression model

We are often interested in learning the effect of a k × 1 vector of covariates
(including a constant) X on the distribution of a scalar response variable Y .
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Let QY (τ |x) be the τ conditional quantile of Y given X = x with 0 < τ < 1.
The conditional quantile function of Y given X, τ 7→ QY (τ |X), completely
describes the dependence between Y and X. For computational convenience
and simplicity of the interpretation, we assume that the conditional quantile
functions are linear in x:

Assumption 1 (Linearity)

QY (τ |x) = x′β (τ)

for all τ ∈ T , which is a closed subset of [ε, 1 − ε] for some 0 < ε < 1.

In this paper we focus on central quantile regression and suggest inference
procedures justified by asymptotic normality arguments. Therefore, we must
exclude the tail regions. For extremal quantile regressions Chernozhukov and
Fernández-Val (2011) have suggested alternative inference procedures based on
extreme value approximations. As a rule of thumb for continuous regressors,
they suggest that normal inference performs satisfactorily if we set ε = 15∙k/n.

Most existing sampling properties of the quantile regression estimator have
been derived for continuous response variables. Beyond the technical reasons
for this assumption, the linearity assumption for the conditional quantile func-
tions is highly implausible for discrete or mixed discrete-continuous response
variables. Therefore, we impose the following standard assumption:

Assumption 2 (Continuity) The conditional density function fY (y|x) ex-
ists, is uniformly continuous in (y, x) and bounded on the support of (Y,X).

For identification reasons, we require that the (density weighted) covariates
are not linearly dependent:

Assumption 3 (Rank condition) The minimal eigenvalue of the Jacobian
matrix J(τ) := E[fy(X ′β(τ)|X)XX ′)] is bounded away from zero uniformly
over τ ∈ T .

Finally, we must impose a condition on the distribution of the covariates:

Assumption 4 (Distribution of the covariates) E‖X‖2+ε < ∞ for some
ε > 0.

Assumptions 3 and 4 impose that the derivatives of the coefficient function
τ 7→ β(τ) are bounded uniformly on T because, by simple algebra (e.g., proof
of Theorem 3 in Angrist et al. (2006)),

dβ(τ)
dτ

= J(τ)−1E(X). (1)

Under the linearity and the continuity assumptions, by the definition of
the quantile function, the parameter β(τ) satisfies the following conditional
moment restriction:

P (Y ≤ x′β(τ)|X = x) = τ. (2)
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It can be shown that β(τ) is the unique solution to the following optimiza-
tion problem:

β (τ) = arg min
b∈Rk

E [ρτ (Y − X ′b)] (3)

where ρτ is the check function defined as ρτ (U) = (τ − 1 (U ≤ 0)) ∙U and 1 (∙)
is the indicator function.3 The objective function is globally convex and its
first derivative with respect to b is E [(τ − 1 (Y ≤ X ′b)) X]. Thus, β(τ) solves
the unconditional moment condition

M (τ, β (τ)) := E [(τ − 1 (Y ≤ X ′β (τ))) X] = 0, (4)

which follows from the original conditional moment (2).

2.2 The quantile regression estimator

Let {yi, xi}n
i=1 be a random sample from {Y,X}. The quantile regression esti-

mator of Koenker and Bassett (1978) is the M-estimator that solves the sample
analog of (3):

β̂ (τ) ∈ arg min
b∈Rk

n∑

i=1

ρτ (yi − x′
ib) . (5)

This estimator is not an exact Z-estimator because the check function is not
differentiable at 0. However, for continuous response variables, this will affect
only the k observations for which yi = x′

iβ̂(τ). Thus, the remainder term van-
ishes asymptotically and this estimator can be interpreted as an approximate
Z-estimator:

M̂
(
τ, β̂ (τ)

)
:=

1
n

n∑

i=1

(
τ − 1

(
yi ≤ x′

iβ̂ (τ)
))

xi = op

(
1
√

n

)

. (6)

The minimization problem (5) that β̂ (τ) solves can be written as a con-
vex linear program. This kind of problem can be relatively efficiently solved
with some modifications of the simplex algorithm, see Barrodale and Roberts
(1974), Koenker and D’Orey (1987) and Koenker and d’Orey (1994). The mod-
ified simplex algorithm performs extremely well for problems of moderate size
but becomes relatively slow in larger samples. Worst-case theoretical results
indicate that the number of iterations required can increase exponentially with
the sample size. For this reason, Portnoy and Koenker (1997) have developed
an interior point algorithm. Unlike the simplex, interior point algorithms start
in the interior of the feasible region of the linear programming program and
travel on a path towards the boundary, converging at the optimum. The in-
equality constraints are replaced by a barrier that penalizes points that are
close to the boundary of the feasible set. Since this barrier idea was pioneered
by Ragnar Frisch and each iteration corresponds to a Newton step, Portnoy

3 See Koenker and Bassett (1978).
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and Koenker (1997) call their application of the interior point method to quan-
tile regression the Newton-Frisch algorithm. Portnoy and Koenker (1997) have
also suggested a preprocessing step that we will discuss in Section 3.

2.3 Sampling properties

For the sake of completeness we provide distribution theory for the quantile
regression coefficient process. Following Angrist et al. (2006), we do not impose
Assumption 1, therefore allowing for the possibility of model misspecification.

Proposition 1 (Asymptotic distribution theory) Under Assumptions 2
to 4, the quantile regression estimator defined in (5) is consistent for the pa-
rameter defined in (3) uniformly over T . Moreover, the quantile regression
process J(∙)

√
n(β̂(∙)− β(∙)) weakly converges to a zero mean Gaussian process

z(∙) in `∞(T )k, where `∞(T ) is the set of bounded functions on T and z(∙) is
defined by its covariance function

Σ(τ, τ ′) ≡ E[(τ − 1 (Y ≤ X ′β(τ))) (τ ′ − 1 (Y ≤ X ′β(τ ′))) XX ′].

If the model is correctly specified, i.e. under Assumption 1, then Σ(τ, τ ′) sim-
plifies to

(min(τ, τ ′) − ττ ′) ∙ E[XX ′].

Uniformly consistent estimators of J(τ) and Σ(τ, τ ′) are useful for analyt-
ical inference and will be required to implement the one-step estimator and
the score bootstrap. We use the sample analog of Σ(τ, τ ′) and Powell (1991)
kernel estimator of J(τ):

Σ̂ (τ, τ ′) =
1
n

n∑

i=1

(τ − 1(yi ≤ x′
iβ̂(τ)))(τ ′ − 1(yi ≤ x′

iβ̂(τ ′)))xix
′
i (7)

Ĵ (τ) =
1

n ∙ hn

n∑

i=1

K

(
yi − xiβ̂ (τ)

hn

)

xix
′
i (8)

where K (∙) is a kernel function and hn is a bandwidth. We use a standard
normal density as kernel function and the Hall and Sheather (1988) bandwidth

hn = n−1/3 ∙ Φ−1
(
1 −

α

2

)2/3
[

1.5 ∙ φ
(
Φ−1 (τ)

)2

2 ∙ Φ−1 (τ)2 + 1

]1/3

(9)

where φ (∙) and Φ−1 (∙) are the density and quantile functions of the standard
normal and α is the targeted level of the test. These estimators are uniformly
consistent under the additional assumption that E‖X‖4 is finite. The pointwise
variance can consistently be estimated by

Ĵ(τ)−1Σ̂(τ, τ )Ĵ(τ)−1. (10)
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3 Preprocessing for the quantile regression process

3.1 Portnoy and Koenker (1997)

The fitted quantile regression line interpolates at least k data points. It can
easily be shown from the moment condition (6) that the quantile regression
estimates are numerically identical if we change the values of the observations
that are not interpolated as long as they remain on the same side of the
regression line. The sign of the residuals yi − x′

iβ̂(τ) is the only thing that
matters in the determination of the estimates. This explains why the quantile
regression estimator is influenced only by the local behavior of the conditional
distribution of the response near the specified quantile and is robust to outliers
in the response variable if we do not go too far into the tails of the distribution.4

Portnoy and Koenker (1997) exploit this property to design a quicker al-
gorithm. Suppose for the moment that we knew that a certain subset JH of
the observations have positive residuals and another subset JL have negative
residuals. Then the solution to the original problem (5) is exactly the same as
the solution to the following revised problem

min
b∈RK

∑

i/∈(JH∪JL)

ρτ (yi − x′
ib) + ρτ (yL − x′

Lb) + ρτ (yH − x′
Hb) (11)

where xG =
∑

i∈JG
xi, for G ∈ {H,L}, and yL, yH are chosen small and

large enough, respectively, to ensure that the corresponding residuals remain
negative and positive. Solving this new problem gives numerically the same
estimates but is computationally cheaper because the effective sample size is
reduced by the number of observations in JH and JL.

In order to implement this idea we need to have some preliminary infor-
mation about the sign of some residuals. Portnoy and Koenker (1997) suggest
to use only a subsample to estimate an initial quantile regression that will be
used to guess the sign of the residuals in the whole sample. More formally,
their algorithm works as follows:

Algorithm 1 (Portnoy and Koenker (1997))

1. Solve the quantile regression problem (5) using only a subsample of size
(k ∙ n)2/3 from the original sample. This delivers a preliminary estimate
β̃ (τ) .

2. Calculate the residuals ri = yi − x′
iβ̃ (τ) and zi, a quickly computed con-

servative estimate of the standard error of ri. Calculate the τ − M
2n and

τ + M
2n quantiles of ri

zi
. The observations below this first quantile are in-

cluded in JL; the observations above this second quantile are included in
JH ; the M = m ∙(k ∙ n)2/3 observations between these quantiles are kept for
the next step. m is a parameter that can be chosen by the user; by default
it is set to 0.8.

4 On the other hand, note that quantile regression is not robust to outliers in the x-
direction.
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3. Solve the modified problem (11) and obtain β̂ (τ)
4. Check the residual signs of the observations in JL and JH :

(a) If no bad signs (or the number of bad signs is below the number of
allowed mispredicted signs), β̂ (τ) is the solution.

(b) If less than 0.1 ∙ M bad signs: take the observations with mispredicted
sign out of JL and JH and go back to step 3.

(c) If more than 0.1∙M bad signs: go back to step 1 with a doubled subsample
size.

Formal computational complexity results in Portnoy and Koenker (1997)
indicate that the number of computation required by the simplex is quadratic
in n, by the interior point method is of order nk3 log2 n, and by the prepro-
cessing algorithm is of order n2/3k3 log2 n + nk2.

3.2 Preprocessing for the quantile regression process

In many cases, the researcher is interested in the quantile regression coefficients
at several quantiles. This allows analyzing the heterogeneity of behavior, which
is the main motivation for using quantile regression. For instance, it is common
to estimate 99 quantile regressions, one at each percentile, and plot the esti-
mated coefficients. Tests of functional hypotheses such as those suggested in
Koenker and Xiao (2002), Chernozhukov and Fernández-Val (2005) and Cher-
nozhukov and Hansen (2006) necessitate the estimation of a large number of
quantile regressions. Some estimators also require the preliminary estimation
of the whole quantile regression process, such as the estimators suggested in
Koenker and Portnoy (1987), Machado and Mata (2005) and Chernozhukov
et al. (2013).

In the population we can let the quantile index τ increase continuously from
0 to 1 to obtain a continuous quantile regression coefficient process. In finite
samples, however, only a finite number of distinct quantile regressions exists.
In the univariate case, there are obviously only n different sample quantiles.
In the general multivariate case, the number of distinct solutions depends on
the specific sample but Portnoy (1991) was able to show that the number
of distinct quantile regressions is of order Op(n log n) when the number of
covariates is fixed. Koenker and D’Orey (1987) provides an efficient parametric
linear programming algorithm that computes the whole quantile regression
process.5 Given β̂(τ), a single simplex pivot is required to obtain the next
quantile regression estimates. This is a feasible solution when n and k are
not too large but it is not feasible to compute Op(n log n) different quantile
regressions in the type of applications that we want to cover. Therefore, we do
not try to estimate the whole quantile regression process. Instead, we discretize
the quantile regression process and estimate quantile regressions only on a grid
of quantile indexes such as τ = 0.01, 0.02, ..., 0.98, 0.99.

5 Parametric programming is a technique for investigating the effects of a change in the
parameters (here of the quantile index τ) of the objective function.
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In order to approximate well enough the conditional distribution, several
estimators requires that the mesh width of the grid converges to 0 at the
n−1/2 rate or faster.6 Neocleous and Portnoy (2008) show that it is enough
to estimate quantile regressions on a grid with a mesh width of order n−1/4

if we linearly interpolates between the estimated conditional quantiles and an
additional smoothness condition is satisfied (the derivative of the conditional
density must be bounded). Thus, interpolation may be used in a second step
to improve the estimated conditional quantile function but even in this case a
significant number of quantile regressions must be estimated.

At the moment, when a researcher wants to estimate 99 quantile regres-
sions, she must estimate them separately and the computation time will be 99
times longer than the time needed for a single quantile regression.7 We build
on the preprocessing idea of Portnoy and Koenker (1997) and suggest an algo-
rithm that exploits recursively the quantile regressions that have already been
estimated in order to estimate the next one.8

Assume we want to estimate J different quantile regressions at the quantile
indexes τ1 < τ2 < ... < τJ .

Algorithm 2 (Preprocessing for the quantile regression process)
To initialize the algorithm, β̂ (τ1) is estimated using one of the traditional
algorithms described above. Then, iteratively for j = 2, ..., J :

1. Use β̂ (τj−1) as a preliminary estimate.
2. Calculate the residuals ri = yi − x′

iβ̂ (τj−1) and zi, a quickly computed
conservative estimate of the standard error of ri. Calculate the τ − M

2n and
τ+ M

2n quantiles of ri

zi
. The observations below this first quantile are included

in JL; the observations above this second quantile are included in JH ; the
M = m ∙ (k ∙ n)1/2 observations between these quantiles are kept for the
next step. m is a parameter that can be chosen by the user; by default it is
set to 3.

3. Solve the modified problem (11) and obtain β̂ (τj)
4. Check the residual signs of the observations in JL and JH :

(a) If no bad signs (or the number of bad signs is below the number of
allowed mispredicted signs), β̂ (τj) is the solution.

(b) If less than 0.1 ∙ M bad signs: take the observations with mispredicted
sign out of JL and JH and go back to step 3.

(c) If more than 0.1 ∙ M bad signs: go back to step 2 with a doubled m.

Compared to Algorithm 1, the preliminary estimate does not need to be
computed because we can take the already computed β̂(τj−1). This will nat-
urally provide a good guess of the sign of the residuals only if τj and τj−1 are

6 See e.g. Chernozhukov et al. (2013).
7 It is actually possible to use the estimates from the previous quantile regression as start-

ing values for the next quantile regression. These better starting values allow for reducing
the computing time and are, therefore, used by all our algorithms.

8 In his comment of Portnoy and Koenker (1997), Thisted (1997) suggests this idea, which
has never been implemented to the best of our knowledge.
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close. This can be formalized by assuming that
√

n(τj − τj−1) = Op (1). When
this condition is satisfied, then

√
n(β̂(τj) − β̂(τj−1)) = Op(1) by the stochas-

tic equicontinuity of the quantile regression coefficient process. This justifies
keeping a smaller sample in step 2: while we kept a sample proportional to
n2/3 in Algorithm 1, we can keep a sample proportional to n1/2 in Algorithm
2.

These two differences (no need for a preliminary estimate and smaller sam-
ple size in the final regression) both imply that Algorithm 2 is faster than Al-
gorithm 1 and should be preferred when a large number of quantile regressions
is estimated. Finally, note that step 4 of both algorithms makes sure that the
estimates are numerically equal (or very close if we allow for a few mispre-
dicted signs of the residuals) to the estimates that we would obtain using the
simplex or interior point algorithms. Thus, there is no statistical trade-off to
consider when deciding which algorithm should be used. This decision can be
based purely on the computing time of the algorithms. In the next section,
we will consider an even faster algorithm but it will not provide numerically
identical estimates. This new estimator will be only asymptotically equivalent
to the traditional quantile regression estimator that solves the optimization
problem (5).

4 One-step estimator

One-step estimators were introduced for their asymptotic efficiency by Le Cam
(1956). A textbook treatment of this topic can be found in Section 5.7 of
van der Vaart (1998). The one-step method builds on and improves a prelim-
inary estimator. If this preliminary estimator is already

√
n-consistent, then

the estimator that solves a linear approximation to the estimating equation is
asymptotically equivalent to the estimator that solves the original estimating
equation. In other words, when we start from a

√
n-consistent starting value,

then a single Newton-Raphson iteration is enough. Further iterations do not
improve the first-order asymptotic distribution.

In this section we suggest a new estimator for the quantile regression coef-
ficient process. This estimator is asymptotically equivalent to the estimators
presented in the two preceding sections but may differ in finite samples. The
idea consists in starting from one quantile regression computed using a stan-
dard algorithm and then obtaining sequentially the remaining regression coef-
ficients using a single Newton-Raphson iteration for each quantile regression.9

In other words, this is a one-step estimator that uses a previously estimated
quantile regression for a similar quantile τ as the preliminary estimator.

Assume that we have already obtained β̂ (τ1), a
√

n-consistent estimator of
β(τ1), and we would like to obtain β̂ (τ1 + ε) for a small ε. Formally, we assume
that ε = O(n−1/2) such that β̂ (τ1) is

√
n-consistent for β(τ1 + ε) because, by

9 We start from the median regression in the simulations and application in Sections 6
and 7.
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the triangle inequality,

‖β̂ (τ1) − β(τ1 + ε)‖ ≤ ‖β̂ (τ1) − β(τ1)‖ + sup
τ1≤τ ′≤τ1+ε

∥
∥
∥
∥

dβ(τ ′)
dτ

∥
∥
∥
∥ ε = OP (n−1/2)

where the last equality follows from (1) together with Assumptions 3 and 4.
Then, by Theorem 5.45 in van der Vaart (1998) the one step estimator

β̂ (τ1 + ε) = β̂ (τ1) − Ĵ(τ1)
−1M

(
τ1 + ε, β̂ (τ1)

)

has the same first-order asymptotic distribution as the quantile regression
estimator of β(τ1 + ε). Here we use that

‖Ĵ(τ1) − J(τ1 + ε)‖ ≤ ‖Ĵ(τ1) − J(τ1)‖ + ‖J(τ1) − J(τ1 + ε)‖ →P 0,

by the triangle inequality, Assumptions 2 and 4, standard regularity conditions
for Ĵ(τ1) →P J(τ1), and ε → 0. Note that the previous argument holds for
any τ1, τ1 + ε ∈ T such that ε = O(n−1/2).

The one-step estimator corresponds to a single Newton-Raphson iteration.
It is possible to use the resulting value as the new starting value for a second
iteration and so on, but the first-order asymptotic distribution does not change.
If we iterate until convergence, then

J(τ1)
−1M

(
τ1 + ε, β̂ (τ1 + ε)

)
= 0

Since Ĵ(τ1) is asymptotically full rank by Assumption 3, this implies that
the moment condition (6) must be satisfied at τ1 + ε such that we obtain
numerically the same values as the traditional quantile regression estimator of
β(τ1 + ε). This property, together with the fact that the quantile regression
estimate is constant over a small range of quantile indexes, also implies that we
can get numerically identical estimates to the traditional quantile regression
estimator by choosing ε to be small enough. This is, however, not the objective
because the computation time of such a procedure would necessarily be higher
than that of the parametric linear programming algorithm.10

The algorithm is summarized below:

Algorithm 3 (One-step estimator for the quantile regression process)

To initialize the algorithm, β̂ (τ1) is estimated using one of the traditional
algorithms described above. Then, iteratively for j = 2, ..., J :

1. Use β̂ (τj−1) as a preliminary estimate.
2. Estimate the Jacobian matrix with Powell (1991) estimator and Hall and

Sheather (1988) bandwidth and obtain Ĵ(τj−1).

10 Schmidt and Zhu (2016) have suggested a different iterative estimation strategy. They
also start from one quantile regression but they add or subtract sums of nonnegative func-
tions to it to calculate other quantiles. Their procedure has a different objective (monotonic-
ity of the estimated conditional quantile function) and their estimator is not asymptotically
equivalent to the traditional quantile regression estimator.
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3. Update the quantile regression coefficient

β̂ (τj) = β̂ (τj−1) − Ĵ (τj−1)
−1 1

n

n∑

i=1

(
τj − 1

(
yi ≤ xiβ̂ (τj−1)

))
(12)

The one-step estimator is much faster to compute when we do not choose
a too fine grid of quantiles. Our simulations reported in Section 6 show that
a grid with ε = 0.01 works well even for large samples. This result depends
naturally on the data generating process. A fine grid may be needed when the
conditional density of Y is changing quickly (i.e. when the first order approx-
imation error is large). In practice, it is possible to estimate a few quantile
regressions with the traditional estimator and check that the difference be-
tween both estimators is small.

5 Fast algorithms for bootstrap inference

Researchers have often found that the bootstrap is the most reliable method for
both pointwise and uniform inference. Naturally, this method is also the most
demanding computationally. The time needed to compute the estimates can be
a binding constraint when researchers are considering bootstrapping strategies.
Fortunately, the same approaches that we have presented in the preceding
sections (preprocessing and linear approximations) can also fruitfully reduce
the computing time of the bootstrap.

5.1 Preprocessing for the bootstrap

A very simple modification of the preprocessing algorithm of Portnoy and
Koenker (1997) leads to significant improvements. The advantage when we
compute a quantile regression for a bootstrap sample is that we can use the
already computed estimate in the whole sample to guess the sign of the resid-
uals. This means that we can skip step 1 of the preprocessing Algorithm 1. In
addition, this preliminary estimate is more precise because it was computed
using a sample of size n instead of (k ∙ n)2/3 in the original preprocessing algo-
rithm. Thus, we need only to keep a lower number of observations in step 2. We
choose M = m ∙ (k ∙ n)1/2 where m is set by default to 3 but can be modified
by the user. This multiplying constant 3 was chosen because it worked well in
our simulations. We do not have a theoretical justification for this choice and
further improvements should be possible. In particular, it should be possible
to adjust this constant during the process (that is after the estimates in a few
bootstrap samples have been computed) by increasing it when the sign of too
many residuals is mispredicted in step 4 or decreasing it when the sign of the
residuals is almost never mispredicted.11

11 A similar idea could be applied to adjust the constant m in Algorithm 2. The additional
difficulty is that the optimal constant probably depends on the quantile index τ , which is
not the case for the bootstrap.
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We now define formally the algorithm for the empirical bootstrap but a
similar algorithm can be applied to all types of the exchangeable bootstrap.

Algorithm 4 (Preprocessing for the bootstrap)
For each bootstrap iteration b = 1, ..., B, denote by {y∗b

i , x∗b
i }n

i=1 the bootstrap
sample:

1. Use β̂ (τ) as a preliminary estimate.
2. Calculate the residuals r∗b

i = y∗b
i − x∗b′

i β̂ (τ) and z∗b
i , a quickly computed

conservative estimate of the standard error of r∗b
i . Calculate the τ − M

2n

and τ + M
2n quantiles of r∗b

i

z∗b
i

. The observations below this first quantile are

included in JL; the observations above this second quantile are included in
JH ; the M = m ∙(k ∙ n)1/2 observations between these quantiles are kept for
the next step. m is a parameter that can be chosen by the user; by default
it is set to 3.

3. Solve the modified problem (11) for the sample {y∗b
i , x∗b

i }n
i=1and obtain

β̂∗b (τ).
4. Check the residual signs of the observations in JL and JH :

(a) If no bad signs (or the number of bad signs is below the number of
allowed mispredicted signs), β̂∗b (τ), is the solution.

(b) If less than 0.1 ∙ M bad signs: take the observations with mispredicted
sign out of JL and JH and go back to step 3.

(c) If more than 0.1 ∙ M bad signs: go back to step 2 with a doubled m.

With this algorithm, bootstrapping a single quantile regression becomes
faster than bootstrapping the least squares estimator. The preprocessing strat-
egy does not apply to least squares estimators because of the global nature of
these estimators.

When the whole quantile regression process is bootstrapped, either Algo-
rithm 2 or Algorithm 4 can be applied.12 In our simulations we found that
the computing times were similar for these two algorithms. In our implemen-
tation, Algorithm 4 is used in this case. Even shorter computing times can
be obtained either by using the one-step estimator in each bootstrap sample
or by bootstrapping the linear representation of the estimator, which we will
present in the next subsection. These two algorithms are not numerically iden-
tical to the traditional quantile regression estimator and require the choice of
a smoothing parameter to estimate the Jacobian matrix.

5.2 Score resampling (or one-step bootstrap)

Even with the preprocessing of Algorithm 4, we must recompute the esti-
mates in each bootstrap draw, which is naturally computationally demanding.

12 Algorithm 2 can be slightly improved by using preprocessing with β̂(τ1) as a preliminary

estimate of β̂∗b(τ1) instead of computing it completely from scratch.
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Instead of resampling the covariates and the response to compute the coeffi-
cients, we can resample the asymptotic linear (Bahadur) representation of the
estimators. Belloni et al. (2017) suggest and prove the validity of the multiplier
score bootstrap. For b = 1, ..., B we obtain the corresponding bootstrap draw
of β̂ (τ) via

β̂∗b (τ) = β̂(τ) − Ĵ (u)−1 1
n

n∑

i=1

ξ∗b
i

(
τ − 1

(
yi ≤ x′

iβ̂ (τ)
))

(13)

where
(
ξ∗b
i

)n
i=1

are iid random variables that are independent from the data
and must satisfy the following restrictions:

E
[
ξ∗b
i

]
= 0 and V ar

(
ξxb
i

)
= 1.

We have implemented this score multiplier bootstrap for three different dis-
tributions of ξ∗b

i (i) ξ∗b
i ∼ E − 1 where E is a standard exponential random

variable, which corresponds to the Bayesian bootstrap (see e.g. Hahn (1997)),
(ii) ξ∗b

i ∼ N (0, 1), which corresponds to the Gaussian multiplier bootstrap (see
e.g. Giné et al. (1984)), (iii) ξ∗b

i ∼ N1/
√

2+
(
N2

2 − 1
)
/2 where N1 and N2 are

mutually independent standard normal random variables, which corresponds
to the wild bootstrap (see e.g. Mammen et al. (1993)). In addition to the mul-
tiplier bootstrap, we have also implemented the score bootstrap suggested in
Chernozhukov and Hansen (2006), which corresponds to (13) with multino-
mial weights. Since these different distributions give very similar results, we
report only the performance of the wild score bootstrap in the simulations in
Section 6.

The score resampling procedure can be interpreted as a one-step estimator
of the bootstrap value where we use the sample estimate as the preliminary
value. This interpretation can be seen by comparing equation (12) with equa-
tion (13). Kline and Santos (2012) notice this connection between the score
bootstrap and one-step estimators in their remark 3.1.

While the score bootstrap is much faster to compute than the exchangeable
bootstrap, it requires the preliminary estimation of the matrix J (τ). This
matrix is a function of fY (X ′β(τ)|X), which is relatively difficult to estimate
and necessitates the choice of a smoothing parameter. Thus, the multiplier
bootstrap has no advantage in this respect compared to analytical estimators
of the pointwise standard errors. On the other hand, the score bootstrap can
be used to test functional hypotheses within relatively limited computing time
(see Chernozhukov and Hansen (2006) for many examples).

To summarize, for bootstrapping the quantile regression process we can
recompute the estimate in each bootstrap draw and each quantile using pre-
processing as introduced in Section 5.1. Alternatively, we can use a first-order
approximation starting from another quantile regression in the same bootstrap
sample (one-step estimator) or we can use a first-order approximation starting
from the sample estimate at the same quantile (score resampling). The simu-
lations in the following section will compare these different approaches both
in term of computing time as in term of the quality of the inference.
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6 Simulations

The results in Sections 6 and 7 were obtained using Stata 14.2. We compare
the official Stata command (qreg), which implements a version of the simplex
algorithm according to the documentation, with our own implementation of
the other algorithms directly in Stata. The codes and the data to replicate
these results are available from the authors. The reference machine used for
all the simulations is an AMD Ryzen Threadripper 1950X with 16 cores at
3.4 GHz and 32 GB of RAM (but for each simulation each algorithm exploits
only one processor, without any parallelism).

6.1 Computation times

We use empirical data to simulate realistic samples. We calibrate the data
generating processes to match many characteristics of a Mincerian wage re-
gression. In particular, we draw covariates (such as education in years and
as a set of indicator variables, a polynomial in experience, regional indica-
tor variables, etc.) from the Current Population Survey data set from 2013.
We consider different sets of regressors with dimensions ranging from 8 to 76.
Then, we simulate the response variable by drawing observations from the
estimated conditional log wage distribution.

Table 1 provides the average computing times (over 200 replications) for
three different cases. In the first panel, we compare different algorithms to
estimate a single quantile regression.13 It appears that the interior point algo-
rithm (denoted by fn in the table) is always faster than the simplex algorithm
as implemented by Stata. Preprocessing (denoted by pfn and pqreg) becomes
an attractive alternative when the number of observations is ‘large enough’,
where ‘large enough’ corresponds to 5, 000 observations when there are 8 re-
gressors but 500, 000 observations when there are 76 regressors. In this last
configuration (n = 500, 000 and k = 76) the computing time needed by the
interior point algorithm with the preprocessing step is 35 times lower than
the computing time of the built-in Stata’s command. The improvement in this
first panel is only due to the implementation of algorithms suggested by Port-
noy and Koenker (1997). All these estimators provide numerically identical
estimates.

The second panel of Table 1 compares the algorithms when the objective
is to estimate 99 different quantile regressions, one at each percentile. For all
sample sizes considered the algorithm with the preprocessing step suggested
in Section 3.2 computes the same estimates at a fraction of the computing
time of the official Stata command. When n = 50, 000, the computing time is
divided by more than 50. The one-step estimator defined in Section 4 further
divides the computing time by a factor of about 4. Since this estimator is only

13 We provide the results for the median regression but the ranking was similar at other
quantile indexes.
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Table 1. Comparison of the algorithms

Number of observations
Algorithm 500 1000 5000 10k 50k 100k 500k

Panel 1: Estimation of a single quantile regression
A. Computing time in seconds for τ = 0.5 and k = 8
qreg (simplex) 0.05 0.06 0.13 0.24 1.35 2.92 16.84
fn 0.02 0.03 0.12 0.21 0.95 1.98 13.04
pqreg 0.02 0.02 0.07 0.12 0.62 1.23 6.36
pfn 0.04 0.06 0.10 0.16 0.61 1.08 5.08
B. Computing time in seconds for τ = 0.5 and k = 76
qreg (simplex) 0.26 0.43 2.14 4.80 37.75 85.69 622.4
fn 0.06 0.08 0.25 0.41 1.93 3.72 20.78
pqreg 0.17 0.23 0.80 2.51 11.36 22.08 89.44
pfn 0.09 0.11 0.30 0.73 2.47 4.30 17.61

Panel 2: Estimation of the whole QR process (99 quantile regressions, k = 20)
Computing time in seconds
qreg (simplex) 5.93 9.01 48.86 119 1,084
preprocessing, qreg 0.64 0.85 2.93 6.96 57.70
preprocessing, fn 2.02 1.90 3.95 6.55 30.67
one-step estimator 0.40 0.45 1.00 1.77 8.29

Panel 3: Bootstrap of the median regression (50 bootstrap replications, k = 20)
Computing time in seconds
bsqreg (simplex) 2.63 3.14 8.19 15.06 99.89 163.3
preprocessing 0.42 0.63 1.89 3.50 13.55 18.52
multiplier 0.08 0.10 0.25 0.60 1.36 1.90

Note: Average computing times over 200 replications.

asymptotically equivalent to the other algorithms, we also measure its perfor-
mance compared to the traditional quantile regression estimator in Subsection
6.2.

In the third panel of Table 1 we compare the computing time needed to
bootstrap 50 times the median regression with the official Stata command,
with the preprocessing step introduced in Section 5.1 and with the score boot-
strap described in Section 5.2. The results show that the preprocessing step
divides the computing time by about 4 for small sample sizes and by 9 for the
largest sample size that we have considered. Using the multiplier bootstrap di-
vides the computing time one more time by a factor of 10. However, this type
of bootstrap is not numerically identical to the previous ones. The simulations
in the subsections 6.3 and 6.4 show that it tends to perform slightly worse in
small samples.

6.2 Performance of the one-step estimator

Table 2 and Figure 1 measure the performance of the one-step estimator.
We use the same data generating process as in the previous subsection with
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k = 20 regressors. We perform 10, 000 replications to get precise results. We
first note that the one-step algorithm sometimes does not converge. The reason
is that Ĵ(τ) is occasionally singular or close to singular in small samples. As a
consequence, the one-step estimate β̂(τ + ε), which is linear in Ĵ(τ)−1, takes
a very large value. Once the estimated quantile regression coefficients at one
quantile index are very far away from the true values, then the Jacobian Ĵ(τ)
and the coefficients at the remaining quantile indices will be very far from
the true values. It would be possible to detect convergence issues by checking
that the moment conditions are approximately satisfied or by estimating a
few quantile regressions with a traditional algorithm and checking that the
estimates are close. We did not yet implement this possibility because the
convergence problem appears only in small samples (when n ≤ 1000) and
traditional algorithms are anyway fast enough for these sample sizes.

Our parameters of interest are the 20 × 1 vectors of quantile regression co-
efficients at the quantile indices τ = 0.01, 0.02, ...0.99. Thus, in principle, there
are 1980 different parameters of interest and we could analyze each of them
separately. Instead, we summarize the results and report averages (over quan-
tile indices and regressors) of several measures of performance in Table 2.14 In
Figure 1 we plot the main measure separately for each quantile (but averaged
over the regressors since the results are similar for different regressors). The
second part of Table 2 reports the standard measures of the performance of
an estimator: squared (mean) bias, variance, and mean squared error (MSE).
Since these measures based on squared errors are very sensitive to outliers, in
the third part of the table, we also report measures based on absolute devi-
ations: the absolute median bias, median absolute deviation (MAD) around
the median, and median absolute error (MAE) around the true value.

The bias of the one-step estimator is slightly larger than the bias of the
traditional estimator in small and moderate sample sizes but it contributes
only marginally to the MSE and MAE because it is small. When n = 500,
the MAE (MSE) of the one-step estimator is on average 3% (8.7%) higher
than the MAE (MSE) of the traditional quantile regression estimator. These
disadvantages converge quickly to 0 when the sample size increases and are
negligible when we have at least 5, 000 observations. Thus, the one-step es-
timator performs well exactly when we need it, i.e. when the sample size is
large and computing the traditional quantile regression estimator may take
too much time.

In the last column of Table 2, we can assess the role of ε, the distance
between quantile indices. In the first 6 columns, we use ε = 0.01 and estimate
99 quantile regressions for τ = 0.01, 0.02, ..., 0.99. To satisfy the conditions

14 To make the estimates comparable across quantiles and regressors, we first normalize
them such that they have unit variance in the specification with n = 50, 000. Then, we
calculate the measures of performance separately for each parameter and average them over
all quantile indices and regressors. The reported relative MSE and MAE are the averaged
relative MSE and MAE. Alternatively, it is possible to calculate the ratio of the averaged
MSE and MAE with the results in Table 2. These ratios of averages and averages of ratios
are very similar.



Fast algorithms for the quantile regression process 19

Table 2. Performance of the one-step estimator

Number of obs. 500 1000 5000 10k 50k 50k
Quantile step ε for the 1-step est. 0.01 0.01 0.01 0.01 0.01 0.001

Convergence of the one-step estimator:
proportion converged 0.581 0.754 0.999 1.000 1.000 1.000

Measures based on squared errors (averages over 99 quantiles and 20 coefficients):

squared bias, QR 0.383 0.174 0.055 0.037 0.020
squared bias, 1-step 0.364 0.178 0.070 0.054 0.040 0.019

variance, QR 141.6 62.68 10.70 5.182 1.000
variance, 1-step 156.9 66.99 10.76 5.119 0.996 0.991

MSE, QR 142.0 62.85 10.76 5.219 1.020
MSE, 1-step 157.2 67.17 10.83 5.173 1.035 1.010
relative MSE of 1-step 1.087 1.052 1.001 0.988 1.015 0.997

Measures based on absolute errors (averages over 99 quantiles and 20 coefficients):

absolute median bias, QR 0.416 0.281 0.166 0.138 0.100
absolute median bias, 1-step 0.476 0.317 0.201 0.175 0.151 0.100

MAD around the median, QR 7.719 5.190 2.173 1.518 0.666
MAD around the median, 1-step 8.004 5.290 2.161 1.507 0.669 0.665

MAE, QR 7.731 5.197 2.177 1.523 0.672
MAE, 1-step 8.021 5.303 2.172 1.518 0.685 0.671
relative MAE of 1-step 1.030 1.015 0.995 0.996 1.019 1.001

Note: Statistics computed over 10, 000 replications.

required to prove the asymptotic equivalence of the one-step and the tradi-
tional estimators, we should decrease ε when the sample size increases. The
fixed difference between quantile indices does not seem to prevent the relative
MAE and MSE of the one-step estimator to converge to 1 when n = 10, 000.
However, when n = 50, 000 we see a (slight) increase in the relative MSE and
MAE of the one-step estimator. Therefore, in the last column of the table,
we reduce the quantile step to ε = 0.001 and we see that the relative MAE
and MSE go back to 1 as predicted by the theory. Of course, the computing
time increases when the quantile step decreases such that the researcher may
prefer to pay a (small) price in term of efficiency to compute the estimates
more quickly.

Figure 1 plots the relative MAE of the one-step estimator as a function
of the quantile index. Remember that we initialize the algorithm at the me-
dian such that both estimators are numerically identical at that quantile. With
500 or 1, 000 observations, we nevertheless observe the largest relative MAE at
quantile indices close to the median. On the other hand, the one-step estimator
is more efficient than the traditional estimator at the tails of the distribution.
Given that the extreme quantile regressions are notoriously hard to estimate,
we speculate that the one-step estimator may be able to reduce the estimation
error by using implicitly some information from less extreme quantile regres-
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Fig. 1. Relative MAE as a function of the quantile and the number of observations

sions, similar to the extrapolation estimators for extreme quantile regression
of Wang et al. (2012) and He et al. (2016). When the sample size increases, the
curve becomes flatter and the relative MAE is very close to 1 at all quantiles
between the first and ninth decile.

6.3 Pointwise inference

There exist several inference methods for quantile regression with very differ-
ent computational burdens. In this subsection we compare the methods for
pointwise inference and the next subsection the methods for uniform infer-
ence. In both cases we simulate data from the same data generating process
as Hagemann (2017):

yi = xi + (0.1 + x2
i ) ∙ ui (14)

where xi ∼ N(0, 1) and ui ∼ N(0, 1/3). Table 3 provides the empirical rejec-
tion probabilities of a correct and of an incorrect null hypothesis about the
coefficient on x2

i at a single quantile index. The intended statistical level of
the tests is 5%. We consider separately two different quantile indexes τ = 0.5
and τ = 0.85.

We compare the following methods for inference: (i) the kernel estimator
of the pointwise variance (10), which can be computed very quickly, (ii) the
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Table 3. Pointwise inference

Median regression 0.85 quantile regression
# of observations # of observations

Inference method 100 500 1000 5000 100 500 1000 5000

Empirical size (theoretical size 5%)
kernel 0.12 0.08 0.07 0.05 0.13 0.08 0.07 0.05
empirical bootstrap 0.07 0.06 0.06 0.05 0.09 0.07 0.07 0.05
empirical, one-step 0.37 0.07 0.07 0.06
score bootstrap 0.12 0.08 0.08 0.06 0.17 0.09 0.08 0.06
score, one-step 0.34 0.10 0.08 0.06

Empirical power
kernel 0.50 0.98 1.00 1.00 0.34 0.92 1.00 1.00
empirical bootstrap 0.49 0.99 1.00 1.00 0.35 0.94 1.00 1.00
empirical, one-step 0.36 0.93 1.00 1.00
score bootstrap 0.50 0.97 1.00 1.00 0.40 0.94 1.00 1.00
score, one-step 0.34 0.91 1.00 1.00

empirical bootstrap of the quantile regression coefficients that solves the full
optimization problem (5) and is the most demanding in term of computation
time, (iii) the empirical bootstrap of the one-step estimator (3), which uses a
linear approximation in the quantile but not in the bootstrap direction, (iv) the
score multiplier bootstrap based on the quantile regression estimator, which
uses a linear approximation in the bootstrap but not in the quantile direction,
(v) the score multiplier bootstrap based on the one-step estimator, which uses
two linear approximations and is the fastest bootstrap implementation. Note
that we have initialized the one-step estimator at the median such that there
is no difference at the median but there can be a difference at the 0.85 quantile
regression between the one-step and the original quantile regression estimators.

In small samples all methods over-reject the correct null hypothesis but
they all perform satisfactorily in large samples with empirical sizes that are
very close to the theoretical size. The empirical bootstrap exhibits the lowest
size distortion, which may warrant its higher computing burden. The ana-
lytic kernel-based method and the score multiplier bootstrap perform very
similarly; this is not a surprise because they should provide the same stan-
dard errors when the number of bootstrap replications goes to infinity. Thus,
there is no reason to use the score bootstrap when the goal is only to perform
pointwise inference. The tests based on the one-step estimator displays a poor
performance in very small samples. This is simply the consequence of the poor
quality of the point estimates in very small samples that was shown in Table
2. Like for the point estimates, the performance improves quickly and becomes
almost as good as the tests based on the original quantile regression estimator.
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Table 4. Uniform inference

Kolmogorov-Smirnov Cramer-von-Mises
# of observations # of observations

Bootstrap method 100 500 1000 5000 100 500 1000 5000

Empirical size
empirical 0.01 0.02 0.03 0.04 0.03 0.04 0.05 0.05
empirical, 1-step 0.29 0.02 0.03 0.05 0.21 0.04 0.05 0.05
multiplier 0.06 0.04 0.04 0.05 0.02 0.03 0.03 0.04
multiplier, 1-step 0.45 0.06 0.05 0.06 0.09 0.03 0.03 0.04

Empirical power
empirical 0.92 1.00 1.00 1.00 0.94 1.00 1.00 1.00
empirical, 1-step 0.58 1.00 1.00 1.00 0.60 1.00 1.00 1.00
multiplier 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
multiplier, 1-step 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00

6.4 Functional inference

In this subsection we evaluate the performance of the implemented procedures
for uniform inference. We consider the same data generating process (14) and
test the null hypotheses that the coefficient on X is uniformly equal to 1
(this is true) and that the coefficient on X2 is uniformly equal to 0 (this is
false). We test these hypotheses with Kolmogorov-Smirnov (supremum of the
deviations from the null hypothesis over the quantile range T ) and Cramer-von
Mises statistics (average deviation from the null hypothesis over the quantile
range T ), both with Anderson-Darling weights. We estimate the critical values
using either the empirical bootstrap or the score bootstrap.15 We estimate the
discretized quantile regression process for τ = 0.1, 0.11, 0.12, ..., 0.9 and we
report the results for a theoretical size of 5%.

Table 4 provides the results. Unsurprisingly, the one-step estimator per-
forms badly with 100 observations. With this exception, all procedures per-
form satisfactorily for both test statistics even for moderate sample sizes. Even
the fastest procedure (multiplier bootstrap based on the one-step estimators)
is reliable when the sample size includes at least 500 observations. This opti-
mistic conclusion may be due to the low number of parameters (k = 3) and to
the smoothness of the conditional distribution of the response variable..

7 An empirical illustration

In this section we update the results obtained by Abrevaya (2001) and Koenker
and Hallock (2001) using data from June 1997. They utilized quantile regres-

15 See Chernozhukov and Fernández-Val (2005), Angrist et al. (2006), Chernozhukov and
Hansen (2006) and Belloni et al. (2017) for more details and proofs of the validity of these
procedures.
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sion to analyze the effect of prenatal care visits, demographic characteristics
and mother behavior on the distribution of birth weights. We use the 2017 Na-
tality Data provided by the National Center for Health Statistics. Like Abre-
vaya (2001) and Koenker and Hallock (2001) we keep only singleton births,
with mothers recorded as either black or white, between the ages of 18 and
45, residing in the United States. We also dropped observations with missing
data for any of the regressors. This procedure results in a sample of 2,194,021
observations.

We regress the newborn birth weights in grams on a constant and 13 co-
variates: gender of the newborn; race, marital status, education (4 categories),
and age (and its square) of the mother; an indicator for whether the mother
smoked during the pregnancy and the average number of cigarettes smoked per
day; and the prenatal medical care of the mother divided in four categories.
We estimate 91 quantile regressions for τ = 0.05, 0.06, ..., 0.95 and perform 100
bootstrap replications.16 Given the large number of observations, regressors,
quantile regressions and bootstrap replications, we use the fastest procedures,
which is the one-step quantile regression estimator combined with the score
multiplier bootstrap. The computation of all these quantile regressions and
bootstrap simulations took about 30 minutes on a 4-cores processor cloked
at 3.7 GHz, i.e. a relatively standard notebook. With the built-in Stata com-
mands the computation of the same quantile regressions and bootstrap should
take more than 2 months. The new algorithms clearly open new opportunities
for quantile regression.

Figures 2 and 3 present the results for this example. For each coefficient,
the line shows the point estimates, the dark grey area shows the 95% pointwise
confidence intervals and the light grey area shows the 95% uniform confidence
bands, which are wider by construction.17 Any functional null hypothesis that
lies outside of the uniform confidence band even at a single quantile can be
rejected at the 5% level. For instance, it is obvious that none of the bands
contains the value 0 at all quantiles. We can, therefore, reject the null hypoth-
esis that the regressor is irrelevant in explaining birth weight for all included
covariates. For all variables we can also reject the null hypothesis that the
quantile regression coefficient function is constant (location-shift model) be-
cause there is no value that is inside of the uniform bands at all quantiles.18 On
the other hand, we cannot reject the location-scale null hypothesis for some
covariates because there exists a linear function of the quantile index that is
covered by the band. This is the case for instance for all variables measuring
the education of the mother.

16 Due to computational limitations, Abrevaya (2001) and Koenker and Hallock (2001)
used only the June subsample to estimate 5, respectively 15, different quantile regressions
and they avoided bootstrapping the results. Of course, computers have become more pow-
erful in the meantime.
17 See the supplementary appendix SA to Chernozhukov et al. (2013) for the construction

and the validity of the uniform bands.
18 The largest p-value is 0.02 for high school.
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Fig. 2. Quantile regression estimates of the birth weight model
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Fig. 3. Quantile regression estimates of the birth weight model (cont.)

Birth weight is often used as a measure of infant health outcomes at birth.
Clearly, a low birth weight is associated in the short-run with higher one-year
mortality rates and in the longer run with worse educational attainment and
earnings, see, e.g., Black et al. (2007). On the other hand, the goal of pol-
icy makers is clearly not to maximize birth weights. In a systematic review,
Baidal et al. (2016) find that higher birth weight was consistently associated
with higher risk of childhood obesity. Thus, we do not want to report the aver-
age effects of potential determinants of the birth weight but we need to analyze
separately their effects on both tails of the conditional birth weight distribu-
tion. In the location-shift model, the effect of the covariates is restricted to be
the same over the whole distribution and it can be estimated by least-squares
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methods. But the homogeneity of the effects is rejected for all regressors such
that we need quantile regression.

In light of this discussion, it is interesting to see that the effect of a higher
mother education (especially of a college degree) is much higher at the lower
end of the distribution where we want to increase the birth weight. Similarly,
not seeing a doctor during the whole pregnancy has dramatic effect at the
lower end of the distribution. While not recommended, not seeing a doctor
has only mild effect at the top of the distribution. In general, the results are
surprisingly similar to the results reported by Koenker and Hallock (2001) in
their Figure 4. Twenty years later, the shape, the sign and even the magnitude
of most coefficients are still similar.

8 Prospects

The advance of technology is leading to the collection of such a large amount of
data that they cannot be saved or processed on a single computer. When this
is the case, Volgushev et al. (2019) suggest estimating separately J quantile
regressions on each computer and averaging these estimates. In a second step,
they obtain the whole quantile process by using a B-spline interpolation of the
estimated quantile regressions. We think that the new algorithms, in partic-
ular the one-step estimator, can be useful for the distributed computation of
the quantile regression process. The computation of the one-step estimator re-
quires only the communication of a k × 1 vector and a k × k matrix of sample
means, which can be averaged by the master computer. Thus, the one-step
estimator can be implemented even when the data set must be distributed on
several computers.

The optimization problem that defines the linear quantile regression esti-
mator is actually easy to solve because it is convex. The optimization prob-
lems defining, for instance, censored quantile regression, instrumental variable
quantile regression, binary quantile regression are more difficult to solve by
several orders of magnitude because they are not convex.19 Estimating the
whole quantile process for these models may not be computationally feasible
for the moment. It should be possible to adapt the suggested preprocessing and
one-step algorithms to estimate the quantile processes also in these models.

Acknowledgements We would like to thank the associate editor Roger Koenker, two
annomynous referees, and the participants to the conference “Economic Applications of
Quantile Regressions 2.0” that took place at the Nova School of Business and Economics
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19 See Powell (1987) for the censored quantile regression estimator, Chernozhukov and
Hansen (2006) for the instrumental variable quantile regression estimator and Kordas (2006)
for the binary quantile regression estimator, which is a generalization of Manski (1975)
maximum score estimator.
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