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Abstract: While Black Sigatoka Leaf Disease (Mycosphaerella fijiensis) has arguably been the most
important pathogen affecting the banana industry over the past 50 years, there are no quantitative
estimates of what risk factors determine its spread across the globe, nor how its spread has affected
banana producing countries. This study empirically models the disease spread across and its impact
within countries using historical spread timelines, biophysical models, local climate data, and country
level agricultural data. To model the global spread a empirical hazard model is employed. The results
show that the most important factor affecting first time infection of a country is the extent of their
agricultural imports, having increased first time disease incidence by 69% points. In contrast,
long distance dispersal due to climatic factors only raised this probability by 0.8% points. The impact
of disease diffusion within countries once they are infected is modelled using a panel regression
estimator. Findings indicate that under the right climate conditions the impact of Black Sigatoka
Leaf Disease can be substantial, currently resulting in an average 3% reduction in global annual
production, i.e., a loss of yearly revenue of about USD 1.6 billion.

Keywords: bananas; Black Sigatoka Leaf Disease; climate; global spread & impact

1. Introduction

While early farming hunter-gatherers were probably aware of the existence of fungal crop diseases
and their potential impact, given that they depended on a local natural, often diverse, population of
plants, the range for gathering was likely easily extended and thus any impact was minimized (Agrios [1]
and Scheffer [2]). However, as the domestication of plants and the development and dissemination of
techniques for raising them productively increased around 8000 years ago, resulting in larger areas of
plantation as well as the reliance on fewer crops, food security became increasingly more vulnerable to
disease outbreaks. As a matter of fact, there are ample references in historical documents that make
reference to such events and their often devastating impacts (Agrios [1]). Modern globalization and
specialization of agricultural production in the 19th century further encouraged the focus on fewer
crop varieties, leading to further susceptibility to crop diseases. In some instances crop disease outbreaks
have even been argued to have changed history, as, for example, through massive migration following
the 1845 potato famine in Ireland (Gráda and O’Rourke [3]), the near downfall of the wine industry
during the Downy Mildew of Grapes outbreak in the Mediterranean for wine in 1865 (Simms [4]), or the
switch from drinking coffee to tea in the British Empire as a result of the coffee leaf rust in the 1890s in
Sri Lanka (Money [5]). Finally, with the agricultural green revolution in the 1960s, which involved
breeding and encouraging specific varieties that had higher yield potential, monocropping became
firmly established across the globe (Hunter et al. [6]).
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The link between crop monoculture systems and crop diseases is straight forward: by focusing on
fewer varieties with higher genetic uniformity, many crops have become substantially more susceptible
to both old and newly arising varieties of fungi (Wolfe [7] and Garrett and Mundt [8]). Moreover,
with increasing globalization and specialization the transmission of diseases has also increased on a
much greater geographical scale (Gergerich et al. [9]). Measures to prevent or dampen crop disease
outbreaks through the increasing use of existing and the development of new pesticides, as well
as strictly controlling the import of plant related products into countries, have only been partially
effective. In terms of the former, many fungi have shown increased resistance to existing pesticides
over time (Lucas et al. [10]) (As a matter of fact, despite a clear increase in pesticide use, crop losses
have not significantly decreased during the last 40 years (Oerke [11])). For the latter, not only are
there arguably inefficiencies in current legislation implementation (Perrings [12]), but for many crop
fungi even strictly enforced physical borders may not be effective as these can still spread through
the atmosphere over long distances (Brown and Hovmøller [13]). As a matter of fact, rough estimates
suggest that currently losses of major crops due to fungal diseases amount to enough to feed 8.5% of the
global population (Fisher et al. [14]), and between 10 to 40% of global production (Savary et al. [15]).
These losses continue to occur despite the fact that many countries have implemented integrated
disease management, including the biological control of many pests and diseases (HE et al. [16]).

Within the context of the important role that fungal diseases play in the evolution of many major
crops, bananas are perhaps the most exemplary. More specifically, 160 years ago few people outside
banana growing countries would have even known the taste of a banana (Marin et al. [17]). However,
after 1870, with the first commercialization of banana exports, the introduction of refrigerated shipping,
the growing taste for the tropical fruit, and the expansion of organized cultivation into Central America,
bananas became one of the most important crops globally (Abbott [18] and Koeppel [19]). Today it
is the most exported fruit, and the fourth most imported crop globally. Bananas earn approximately
US$ 8 billion annually from the production of 114 million tonnes on 5.6 million hectares of land
(Authors’ own calculations using data from FAOSTAT), and are produced in more than 100 countries
in tropical and subtropical regions, including Africa, Asia, the Pacific islands, Latin America and the
Caribbean (Churchill [20]). However, bananas have also been a crop decidedly marked by disease.
More precisely, early exports were dominated by a single banana cultivar, the Gros Michel banana,
but the appearance of Panama fungal disease in Central America, the main global exporting region of
bananas, wiped out vast tracts of plantations (Koeppel [19]). Consequently, most banana exporting
plantations replaced the Gros Michel with the Cavendish cultivar, which is resistant to Panama disease.
However, in the early 1960s a new fungal disease, Black Sigatoka Leaf Disease (BSLD), to which the
Cavendish cultivar is extremely susceptible, started spreading across the banana growing world. It has
now been detected in nearly half of all banana producing countries and is likely to further spread through
natural and human induced channels (Brown and Hovmøller [13]). The disease can reduce yields by up to 90%
and induce early ripening, the latter being an important drawback for a fruit that is usually shipped unripe and
then artificially ripened in transport or industrial greenhouses (de Bellaire et al. [21] and Alamo et al. [22]).
BSLD is now considered one of the world’s main crop diseases, and while chemical treatment can
partially help control it, such measures have increased production costs substantially and fungicide
resistance appears to be increasing(Jones et al. [23]).

Despite the potential historical importance of fungi diseases for many crops, apart from rough
figures, direct evidence on the actual quantitative impact at a global and long-term scale is virtually
non-existent (For example, Savary et al. [15] conduct a survey among crop health experst in order
to derive their estimates). For example, in terms of the quantitative impact of BSLD on bananas
specifically, there is, as far as we are aware, no existing empirical study, not even at a local scale
(The only two econometric studies related to the topic, Edmeades et al. [24] and Kenneth et al. [25],
both investigate the impact of the perceived risk of black sigatoka and the adaption of resistant
varieties, respectively, on farmers’ banana planting decisions in Uganda). Rather, a few papers have
used simulations to predict the economic impact of the disease and possible preventive measures
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on banana production. For instance, Alamo et al. [22] use an equilibrium displacement model for
Puerto Rico and find that even with import prohibition measures and assistance from the government,
the introduction of the disease would result in loss of yields of 10%. In their partial equilibrium model
for Australia, Cook et al. [26] show that under import restrictions expected damage to the banana
industry due to Black Sigatoka would be around USD 40 million dollars, and would increase to USD
130 million, which is about a third of the gross annual value of production, if all quarantine restrictions
were removed.

In this paper we, to the best of our knowledge for the first time, estimate the historical global
impact of a major crop disease, using the case study of bananas and BSLD. To this end we first
construct the history of first time infections across the globe. We then simulate the long distance
wind dispersal and local diffusion of the disease using gridded (≈50 km) climate data and known
optimal conditions relevant to BSLD. These data allow us to empirically model the risk factors related
to the spread of the disease across countries, as well as the impact on banana production once a
country becomes infected. The fact that we model variations in the disease spread only based on
optimal climatic conditions, while controlling for climatic factors in general, allows us to arguably
identify true causal effects. Our results show that trade in agricultural products has played the main
role in diffusion across countries, while long distance wind dispersal has only played a minor part.
The analysis also demonstrates that once countries are infected, climatic conditions conducive to the
local diffusion of BSLD can cause considerable losses, currently on average about a 2–3% reduction in
global banana production.

2. Black Sigatoka Leaf Disease & Climate

BSLD is caused by the pathogens Myscosphaerella fijiensis in their sexual state, and by
Paracercospora fijiensis in their asexual form. Infection can occur via both ascospores (sexual) and
conida (asexual). The evolution of the disease occurs mainly from the top to the bottom of the banana
plant, where aerospores first affect the stomata and then ultimately the leaves (de Bellaire et al. [21]).
This can lead to the production of conida which further infects the tree. The first symptoms are reddish
brown streaks which grow to form large darker lesions. This leaf spotting has two types of impacts on
banana yield. Firstly, because it affects the photosynthetic area of the leaves and diminishes the leaf
area, which consequently has a strong effect on bunch weight (Ramsey et al. [27]). Secondly, it reduces
the greenlife, i.e., the time between harvest and climacteric rise, of harvested fruits from diseased
plants, and thus the ability to export the fruit over long distances (de Bellaire et al. [21]).

Importantly spore germination of BSLD crucially depends on the micro-climate and it is this
feature that is used in this study to model the aerial dispersion and local diffusion of the disease
(de Bellaire et al. [21] and Bebber [28]). More specifically, in order to germinate and infect the leaf spores
Myscosphaerella fijiensis requires very high relative humidity or a wet leaf surface, and once these conditions
are present the rate of germination and infection will also depend on the temperature. In terms of the
spread of the disease, both conida and ascospores seem to play a role, again subject to the right climatic
conditions. For conida the principal agents of dispersal appear to be rain wash and rain splash. In contrast,
while rainfall still plays a role in the release of ascospores, wind appears to be the primary carrier, where its
speed and degree of turbulence appear to be important drivers (Marin et al. [17], Norros et al. [29]). It is
common to distinguish between gradual local disease spread (LDS) and much rarer, stochastic long
distance dispersal (LDD) (Golan and Pringle [30]).

3. Results

3.1. Descriptive Results

Figure 1 shows the global spatial distribution of areas suitable for banana production that is
used as the basis of allocating climate and modelling disease spread for the analysis. As can be seen,
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these are located in the tropical and sub-tropical regions across Asia, Africa, the South Pacific and
the Americas.

Figure 1. Bananas Growing Suitability Area. Note: This figure depicts banana suitability areas.

Next the percentage of banana producing countries infected with BSLD is depicted in Figure 2
over the sample period of the analysis (1961–2016). Accordingly, at the start BSLD was present in 4.4%
of these, but this rose steadily to over 53% by 2016. The change in geographical distribution of this
spread is shown in Figure 3. Accordingly, in 1961 it was essentially only in the United States (Hawaii)
and small parts of Asia and the South Pacific that BSLD had been detected. By 1980 Black Sigatoka
spread more widely across Asia, and began to additionally appear in Africa. As of 1999, it had further
spread to the South American Continent and the Caribbean, as well as expanded more into Africa.
At the end of the sample period the Caribbean and Africa had been further affected.

Figure 2. Black Sigatoka Detected-% Countries. Note: This figure shows the percent of banana
producing countries that have been infected.
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(a) 1961 (b) 1980

(c) 1999 (d) 2016

Figure 3. Temporal Spread of Black Sigatoka. Note: (i) This figures shows the distribution of countries
where BSLD has been detected over time. (ii) Detected; Not Detected.

Table 1 provides summary statistics of all the variables used in the analysis. The average annual
country level production of bananas is about 465,000 tons, but with considerable variation. This output
is comes from harvested areas of on average 3000 hectares. In the data sample the mean first time
BSLD infection is 31.7%. The climate optimal for disease diffusion (F) exists about 2.6% of the time,
where this is slightly lower in countries that have already been infected. The potential infection rate
through long distance dispersal is on average very small (4.09 × 10−6), but with a large standard
deviation. One may also want to note that for more than 48% of the time countries did not have the
optimal amount of water available for banana production.

3.2. Regression Results

3.2.1. First Time Infection

For model assessment of Equation (10) the Cox-Snell are plotted against the cumulative Hazard
in Figure 4. These are relatively close to the reference line and thus indicate a satisfactory fit.

The estimates from Equation (10) are given in the first column of Table 2. As can be seen,
agricultural imports have a significant positive impact on a country becoming infected by BSLD.
In contrast, banana imports play no play significant role. One also finds that the long distance dispersal
of the fungus from other infected countries under the right climatic conditions is a positive risk factor
in becoming infected. All other control variables do not constitute significant risk factors for first time
infection. The results of additionally including DWBSLD is included in the last column of Table 2.
The coefficient on this variable is significantly negative and increases the estimated coefficient on LDD
and AIMP.
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Table 1. Summary statistics.

Variable Definition Mean Std. Dev.

PROD Production (tons) 464,628 1,621,986
HAREA Area Harvested (Ha) 3,0087 79,202
BSLD Detection Indicator 0.3169 0.4653
F Disease Diffusion rate 0.0259 0.0526
F (BSLD = 1) F once Infected 0.021 0.039
LDD Long Distance Dispersal Probability 4.09 × 10−6 0.0003
RAIN Rainfall (mm/day) 4.0223 2.5112
EVAPO Evapotranspiration (mm/day) 2.6141 1.1214
HUMID Relative Humidity (%) 74.9114 11.7134
CMOIST Moisture Storage on Canopy 2.2819 2.513
CTEMP Canopy Temperature (◦C ) 24.0699 2.4552
WIND Wind (m/s) 2.9039 1.7498
WSTRESS % Days Soil Water Stressed 0.4804 0.3589
CTEMP8 % Days CTEMP < 8 ◦C 0.0053 0.0188
CTEMP38 % Days CTEMP > 38 ◦C 0.0001 0.0014
HUMID60 % Days HUMID > 60% 0.166 0.219
WIND4 % Days WIND > 4 m/s 0.403 0.3092
BIMPORT Import of Bananas (tons) 24,006 113,401
AIMPORT Import of Agr. Products (tons) 1,720,699 4,777,477
BSUIT Area of Banana Suitability (Ha) 1691 4409
DWBS Distance Weight. Detection 0.037 0.202
DWAEXP Distance Weight. logged Agricultural Exports 0.717 2.544
DWBEXP Distance Weight. logged Bananas Exports 0.406 1.785

Note: This table provides summary statistics for all variables used in the analysis.

Figure 4. Cox-Snell Residuals Model Fit Assessment. Note: This figure provides the Cox-Snell Residual
Model Fit Assessment of the Cox Proportional Hazard Model from Equation (10).
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Converting the estimated coefficients of the Cox model in column 2 to hazard ratios for agricultural
imports indicates that a standard deviation increase in log(AIMP) raises the (relative) hazard of being
infected by over 450%. When the probability of LDD is at its mean value, this would increase the
(relative) risk by 18.3%.

The estimated coefficients of the logit model explicitly estimating the baseline hazard (t) are given
in the last column of Table 2 provide the basis for conducting the counterfactual analysis of setting
LDD and AIMP alternatively to zero and comparing the predicted hazards to using their actual values.
Noteworthy is that the estimated coefficients of this logit specification are very similar to the estimates
of the Cox proportional hazard in terms of all common variables. The coefficients on t and t2 suggest
that the baseline hazard takes on an inverted u-shaped function, where it first increases, then after
reaching an optimum decreases. Calculating marginal effects from the coefficients suggest a turning
point of around 33 years.

Table 2. First-Time Infection.

(1) (2) (3)

LDD 0.032 * 0.0397 ** 0.0411 **
(0.013) (0.012) (0.0116)

log(AIMP) 0.6039 ** 0.6735 ** 0.6328 **
(0.1666) (0.1684) (0.1554)

log(BIMP) −0.0031 −0.0275 −0.0356
(0.0928) (0.0991) (0.0954)

DWBSLD −1.4895 * −1.0984
(0.6779) (0.7962)

FT −0.2109 −0.3030 −01.0721
(2.5275) (2.5928) (2.6881)

RAIN 0.13 0.1269 0.1619
(0.1384) (0.1399) (0.1499)

EVAPO −0.8477 −0.8978 −0.7071
(0.6737) (0.6778) (0.7295)

HUMID 0.0759 0.0974 0.0327
(0.1153) (0.1116) (0.1347)

CMOIST −0.3582 −0.4000 −0.3787
(0.2181) (0.216) (0.2319)

CTEMP 0.1954 0.2236 0.199
(0.1513) (0.1467) (0.1605)

WIND −0.8690 −01.1943 −0.9247
(1.0180) (1.0125) (0.9748)

WSTRESS −4.9328 −5.2234 −4.3036
(2.8768) (2.8953) (3.1743)

CTEMP8 2.5629 2.7856 2.9621
(13.0638) (12.6117) (12.5182)

CTEMP38 −2968.0320 −2750.2310 −5314.0590
(5605.0180) (5690.3960) (8580.5970)

HUMID60 0.2426 1.3038 −1.8477
(6.6567) (6.5067) (8.0296)
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Table 2. Cont.

(1) (2) (3)

WIND4 2.9073 4.7726 3.4434
(5.8018) (5.8627) (5.6950)

log(HAREA) 0.0598 0.0494 0.0122
(0.1316) (0.1268) (0.1534)

log(BAREA) −0.3020 −0.3588 −0.3106
(0.2067) (0.2156) (0.2671)

t 0.2261 **
(0.073)

t2 −0.0034 **
(0.0011)

MODEL: COX COX LOGIT
Obs. 4137 4137 4137

Notes: (a) This table provides the estimates from the Cox Proportional Hazard model in Equation (10), as well as
the logit model of survival; (b) * and ** indicate 1 and 5 per cent significant levels, respectively; (c) All regressions
include 12 sub-regional indicator variables and measures of the logged area and the logged banana suitable areas.
(d) Standard errors clustered by country in parentheses. (e) COX: Cox Proportional Hazard.

The predicted actual and counterfactual probability of hazard for an average banana producing
country are shown in Figure 5. Accordingly, for LDD there is little difference in the actual and
counterfactual average probability of being infected. As a matter of fact, by 2016 the actual probability
is only about 0.8 per centage points higher than under the counterfactual of no long distance dispersion.
The same counterfactual exercise but setting AIMP to zero is depicted in Figure 6. With no agricultural
imports the average probability of being infected by 2016 is just a little over 2%, compared to 71%
when AIMP takes on its observed values.

Figure 5. Probability of First Time Infection—No Long Distance Dispersal. Note: This figure
provides the counter-factual prediction of the impact assuming of no LDD as estimated from the
Cox Proporational Hazard Model in Equation (10).
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Figure 6. Probability of First Time Infection—No Agricultural Imports. Note: This figure provides the
counter-factual prediction of the impact assuming no agricultural imports as estimated from the Cox
Proporational Hazard Model in Equation (10).

3.2.2. Impact of Disease Diffusion on Banana Production

The results of estimating Equation (11), i.e, the impact on country level banana production once
they become infected, are provided in Table 3. The R2 statistic indicates that the model explains
around 68% of the variation in banana production. The estimated coefficients show that having first
reported BSLD in the past does not per say reduce banana production, as the coefficient on BSLD on
its own is not significant. Rather it is only its interaction with F that produces a significant (negative)
predictor of banana production. Alternatively using (logged) harvested area rather than production
as the dependent variable in Equation (11), as shown in the last column, produces the same findings,
although the model fit is slightly lower (0.66%). In terms of the other control variables, only the
number days that the temperature was below 8 degrees is a significant (negative) predictor of banana
production across all three specifications.

Taking at face value the size of the coefficients in the fourth column of Table 3 suggests that when
a country is already infected and the diffusion probability, i.e., F(BSLD = 1), is at the mean of the
sample (0.021), banana production falls by nearly 3.8%. In Figures 7 and 8 this estimated coefficient on
F× BSLD was used to predict the counterfactual implied losses as a total in tons, and as a percentage
of annual production, respectively, over the sample period. Accordingly, since the year 2000 average
annual losses have been at least 2, and since 2010 close to 3 million tonnes. As a percentage of total
potential productions this translates into annual losses of over 2% since 1998. If one takes the average
level of F over the sample time period for each country and assumes that BSLD = 1, i.e., that all
countries have been at least once infected, then annual expected losses would nearly double to about
4.2% of total global banana production.
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Table 3. Banana Production.

(1) (2)

BS 0.076 0.057
(0.047) (0.041)

F −1.315 −0.732
(1.089) (0.904)

F × BS −1.846 ** −2.717 **
(0.545) (0.611)

RAIN −0.025 −0.012
(0.016) (0.014)

EVAPO −0.061 −0.005
(0.148) (0.108)

HUMID 0.011 0.01
(0.009) (0.008)

CMOIST 0.009 0.008
(0.019) (0.017)

CTEMP −0.051 −0.046
(0.027) (0.025)

WIND −0.005 0.042
(0.043) (0.042)

WSTRESS −0.082 0.101
(0.244) (0.214)

CTEMP8 −4.916 ** −4.845 **
(1.778) (1.458)

CTEMP38 −0.127 1.202
(4.859) (3.754)

HUMID60 0.531 0.718
(0.431) (0.37)

WIND4 −0.471 −0.488
(0.409) (0.293)

Dep. Var: PROD BAREA
Obs. 6793 6793
R2 0.677 0.66

Notes: (a) This table provides the estimates from the linear regression model in Equation (11), as well as the logit
model of survival; (b) ** indicates 1 per cent significant levels, respectively; (c) All regressions yearly indicators as
well as country specific time trends. (d) Driscoll and Kraay [31] standard errors allowing for cross-sectional and
serial correlation in parentheses.

Figure 7. Potential Losses. Note: This figure provides the total predicted losses as estimated from the
linear regression model in Equation (11).
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Figure 8. Potential Losses (%). Note: This figure provides the percentage of predicted losses as
estimated from the linear regression model in Equation (11).

4. Discussion

Global agricultural losses of major crops due to crop disease pathogens are believed by experts
to be considerable (Savary et al. [15]). As a matter of fact, rough estimates suggest that currently
losses of major crops due to fungal diseases amount to enough to feed 8.5% of the global population
(Fisher et al. [14]), and between 10 to 40% of global production (Savary et al. [15]). Yet there is no
quantitative estimate of what risk factors increase their dispersion, nor what their impact is once
regions become infected. Using the case study of Bananas and BSLD-the most important pathogen
affecting the industry—this study models the risk factors associated with the historically observed
global cross-country spread of the disease using hazard models, as well as the impact on country level
banana production once a country is infected using panel linear regression models.

Our results showed that the main driver of first time infection was the import of agricultural
products. While long distance diffusion based on climatic factors also played a role, it was small
compared to the trade channel. One should note that these two findings support the current literature
in that BSLD is likely to have spread over long distances rather than through slow local diffusion.
For instance, such claims have not only been substantiated by the sequence of first reporting within
and across continents (Jones et al. [23]), but also by genetic evidence. More specifically, Robert et al. [32]
showed that the genetic drift between samples across countries and continents was large enough to
serve as evidence that the introduction of BSLD in several locations had been over long distances.
In other words, rather than a steady diffusion of an epidemic frontier, the evidence is consistent with
stochastic spread of the disease [33].

Nevertheless, there is some disagreement as to the exact causes of such spread. Most studies
would agree that human drivers, such as the importation of plant material into a country, are likely
to have played the most important role- see, for instance, Robert et al. [32] and Burt [34]-and this is
certainly supported by our result that the degree of agricultural imports into a country is quantitatively
an important predictor of first time infection. However, there is still considerable disagreement if wind
dispersal on its own could explain some of the stochastic introductions within and across continents.
More specifically, it has been shown that some fungi can be spread over several thousands of kilometers
by wind under the right conditions, as, for example, wheat leaf rust (Aylor [35]). In this regard, Burt [34]
notes that under optimal conditions it would have taken about 37 days for BSLD to have been carried
from Australia to the Caribbean and that perhaps the South Easterly trade winds might have brought
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BSLD from Africa to the Caribbean. However, importantly Myscosphaerella fijiensis ascospores, unlike
many others, are killed by ultraviolet radiation and are thus much less likely to survive being carried
across long distance over long time periods by wind unless they happen to be protected by clouds
(Parnell et al. [36]). As a matter of fact, some studies, such as Rivas et al. [33], have argued that for
BSLD wind dispersal is likely to be limited to just a few hundred of kilometers and thus probably
occurred within rather than across continents. The results of our study indicate that long distance
dispersal through climatic factors might have still played a role, albeit only a very small one.

Local climate, apart from that incorporated in the long distance dispersal probability measures,
was not a significant predictor of first time infection, again pointing to stochastic dispersal as the main
cross-country spread channel. We also find that the import of bananas did not increase a country’s
likelihood of first time infection. This may not be surprising given that banana fruits themselves,
unlike the leaves on their plant, are possibly not infected by the fungus (Robert et al. [32]). Leaves,
typically used as packing material for other goods, are unlikely to be captured in the FAO data of
banana imports, which strictly refers to imports of the fruit. Nevertheless, any more reliable conclusions
in the role of banana imports would require bilateral trade data, so that we would need to be able to
trace imports from infected countries. Such trade data would also allow us to more accurately estimate
the role of agricultural imports in introducing the disease.

The fact that a distance weighted measure of first time infection of other countries (DWBSLD)
had a negative impact on first time infection and that its inclusion as a control variable reduced the
estimates on agricultural imports and LDD suggests that it is indeed possibly capturing the role
that policy may play. More specifically, the presence of BSLD in neighboring countries may have
induced uninfected nations to implement greater preventive measures and legislation. For instance,
in many banana producing countries in the Caribbean agricultural quarantine precautions became
fairly strict after the first outbreaks in the region and may have prevented further spread (Burt [34]).
The possible benefits of such measures, even at the cost of reduced trade, should not be overlooked.
Using an equilibrium displacement model for Puerto Rico, Alamo et al. [22] show that not having
trade restrictions would cause a net loss in welfare. However, in actuality not only are there arguably
inefficiencies in current legislation implementation (Perrings [12]), but for many crop fungi even
strictly enforced physical borders may not be effective as these can still spread through the atmosphere
over long distances (Brown and Hovmøller [13]), as evidence here also indicates. Nevertheless any
accurate assessment on the efficacy of trade restrictions and legislation to reduce infection would
require detailed historical construction of policies implemented across countries and time.

Our findings from the banana production model revealed that once a country is infected and the
right climatic conditions prevail, losses in banana production due to the disease can be substantial.
Currently these average about 2-3% of total production a year. If we take the average current producer
price of bananas from available FAOSTAT data, i.e., USD 630 per tonne, then this would imply annual
expected losses currently of about USD 1.6 billion. This would more than double if the remaining
banana producing countries become infected. While this arguably demonstrates that the effects of
BSLD on the banana industry are economically important, it is difficult compare this to other major
crops since no other comparable global study exists, rather, as noted above, just qualitative estimates
by experts (Savary et al. [15]).

Climatic conditions were found to be crucial in terms of the impact of BSLD on banana production.
More specifically, even if BSLD has already been reported in a country, it is only when climate is
optimal for diffusion that this will have an impact on aggregate banana production of a country.
This result is echoed in Yonow et al. [37] who find that there is a strong relationship between climate
suitability of BSLD and export ratings for disease pressure. In this regard, Bebber [28], on whose
biophysical model our local disease diffusion framework is heavily based, showed that the risk of a
disease outbreak has increased by a median of 44.2% in Latin America and the Caribbean since the
1960s. Moreover, using different climate dependent predictive factors of BSLD under two climate
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change scenarios, Júnior et al. [38] calculate that while the areas favourable to the disease will decrease,
extensive areas will continue to be favourable to BSLD.

Surprisingly climate stress factors specific to bananas, as taken FAO [39], were not found to
be significant predictors of country level production, except days when the temperature was below
8 ◦C. Assuming that most of them should be, this suggests that there is considerable error in their
measurement, leading to attenuation bias and thus leading to Type II errors in our estimated coefficient
hypothesis testing; see Wooldridge [40]. One obvious reason is that we only know the banana suitability
areas and not actual banana growing areas, so that our climate proxies are not only capturing the
relevant local climate variations. Another explanation is that since banana are potentially grown
year round except for the sub-tropical regions, but we have no information as to the local growing
cycles, this may again introduce some measurement error in our climate variables. Importantly,
such measurement error in our climate variables would also have implications for our ability to
estimate the impact of the probability of long distance and local disease diffusion, which are also based
on climate factors, so that we may be underestimating the true impact these as well.

Although we were not able to investigate this specifically due to data availability, one way to
control the spread of BSLD is through chemical control. In this regard, the high susceptibility of
the Calvendish crop to the disease necessitates the use of both protectant and systemic fungicides at
relatively high frequencies (Marin et al. [17], de Bellaire et al. [21]). However, the costs of such treatment
are substantial, so much so that Cavendish cultivars are among the top global inputs of agricultural
fungicides (Churchill [20]), and thus making this treatment option not feasible for many smaller banana
producers. Moreover, the disease has shown over time to develop increased resistance to the treatment
(Jones et al. [23]. For example, experience in Costa Rica has shown that within 20 years of use the amount
of fungicide needed to control BSLD increased by around two thirds (de Bellaire et al. [21]).

5. Materials and Methods

5.1. Methods

Local Disease Spread (LDS)

The approach in this study follows Bebber [28] closely and employs a local infection diffusion
model based on micro-climate to simulate the spread of BSLD once a country i is infected. Consider a
set of localities m = 1, ..., M in country i during days d = 1, ..., D. It is assumed that the diffusion rate of
spores at locality m during day d, Fimd, follows a probabilistic survival process of spores transitioning to
infections, which depends on the number of days, simd, that passed since the outbreak and temperature,
Timd. Moreover, local diffusion is dependent on the occurrence of a sufficiently wet period, 1Cimd .
Thus Fimd is determined by:

Fimd = (1− e−H(simd ,Timd))× 1Cimd (1)

where H is a Weibull hazard function such that:

Himd = r(Timd)
( simd

α

)γ
(2)

The temperature dependent rate r depends on Timd’s value relative to given thresholds of
minimum (Tmin), optimum (Topt), and maximum (Tmax) temperatures:

r(Timd) =

(
Tmax − Timd
Tmax − Topt

)(
Timd − Tmin
Topt − Tmin

) Topt−Tmin
Tmax−Topt (3)
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The incidence of a sufficiently wet period, 1Cimd , is contingent on minimum wetness (WETthresh)
and humidity (RHthresh) thresholds:

1Cimd =

{
1 (WETimd > WETthresh) ∪ (RHimd > RHthresh)

0 (WETimd ≤WETthresh) ∩ (RHimd ≤ RHthresh)
(4)

As in Bebber [28], in order to parameterize Equations (1)–(4), α = 32.6, β = 37.6, Tmin = 16.6 ◦C,
Topt = 27.2 ◦C, Tmax = 30.3 ◦C, WETthreshold = 0, and RHthreshold = 98%. (These parameters were
estimated by Bebber [28] using Brazilian data on Black Sigatoka and temperature) One should note
when 1Cimd = 0, simd is reset to 0 and will start to sequence again only once 1Cimd = 1.

Since the empirical analysis is at the country level, LDS is measured as the country level annual
average daily diffusion rate:

Fit =
∑M

m ∑D
d Fimd

M× D
(5)

where D is the total amount of banana growing days in year t and M the total number of banana
growing localities in country i.

5.2. Long Distance Dispersal (LDD)

To model long distance aerial dispersal of BSLD a simplified version of the LDD model of Aylor [35]
is employed, where it is ’simple’ in the sense that it does not model the time between release of
spores in the source region and target region, but rather simply assumes that the transport happens
within the same year. This is in part because only the first infection date by year is known and the
banana production data is only annual, but also because climatic data to model the waiting time
between release and potential infection is not available. Moreover, there is no data to model the
potentially important impediment of ultra-violet radiation along any transport route, and this aspect is
thus ignored.

It is assumed that the amount of possible spores released from location m on day d in source
country j at time t, Qjt, depends on the local diffusion rate Fjmd, as defined in Equation (5),
and appropriate climate conditions conducive to aerospore release 1Ajmd :

Qjt =
∑M

m ∑D
d Fjmd

M× D
× 1Ajmd (6)

1Ajmd =

{
1 (RAINjmd > 0) ∩ (0.2 ≤ TUjmd ≤ 0.5)
0 (RAINjmd = 0) ∪ (TUjmd ≤ 0.2) ∪ (0.5 ≤ TUjmd)

(7)

where RAIN is the amount of daily local rainfall and TU the local wind turbulence measured as the
ratio of the standard deviation relative to the mean wind speed. These optimum spore release climatic
conditions were chosen since rainfall is necessary for spore release (Burt [34]), and Norros et al. [29] found
that LDD of small spores, like those of Myscosphaerella fijiensis, increased within the wind turbulence
range between 0.2 to 0.5 m/s.

Along the route to possible destinations it is assumed that there are constant and favourable
transport conditions in that the rainfall rate is zero, there is no spores mortality due to ultraviolet
radiation or other reasons. This is done since the necessary data, particularly over water bodies, is not
available for most the time period of the analysis. The concentration of viable spores located at i at a
distance xij downwind from source countries, j = 1, ..., J; j 6= i, can be described by a Gaussian puff as:
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LDDit =
J

∑
j 6=i

Qjt × e−xij × RAINRATEit (8)

where the Equation (8) is made dependent on the RAINRATE, i.e., the amount of rainy days during
the growing season in target country i at time t, since it is well known that the deposition velocity of
spores is dependent on the rate of rainfall (Aylor [35]). In order to measures xij the shortest distance
between banana growing areas between countries is used.

5.3. BSLD Presence

A country level indicator of BSLD presence, BSLDit, takes on the value of zero until the first
infection appears in country i in year t and then from a value of one. A distanced weighted measure of
BSLD presence in neighboring countries j = 1, ..., J; &j 6= i for country i is generated as:

DWBSLDit =
J

∑
j 6=i

exp(−xij)× BSLDjt (9)

where xij is defined as in Equation (8).

5.4. Empirical Modeling

5.4.1. First Time Infection Model

A country’s hazard of becoming infected by BSLD for the first time is modelled using a Cox
Proportional Hazards Model where time varying and time invariant covariates are allowed to influence
a country’s hazard function hi(t) from the disease free state as:

hi(t) = h0(t)exp

(
αLDDLDDit + αAIMPlog(AIMPit)

+αBIMPlog(BIMPit) + αlog(HAREA)log(HAREA)it−1

+αBSUIT log(BSUITi) + αCCit + αCSCSit

) (10)

where BSUIT is the total area suitable for banana growing, C is a vector of the disease spread
optimal climatic conditions (rainfall, evapotranspiration, relative humidity, canopy moisture, canopy
temperature, and wind speed), and the vector CS consists of productivity reducing climatic stress
factor thresholds in terms of water availability, temperature, humidity, and wind. Additionally, twelve
sub-regional dummy indicators are included to capture regional time invariant differences. In order to
make the estimated coefficient on LDD more readable in the estimation output its value is multiplied
by 106. In order to assess model fit we examined the Cox-Snell residuals, as suggested by Grambsch
and Therneau [41].

One should note that the Cox Proportional Hazard model is semi-parametric in that the baseline
hazard h0(t) is estimated non-parametrically and only depends on time t, but the risk factors are
estimated parametrically, where this parametric function takes on an exponential form. The hazard
of country i becoming infected is thus multiplicatively proportional to the baseline hazard h0.
The drawback of this non-parametric flexibility is that the hazard for any country is a fixed proportion
of the hazard for any other country, and thus only the relative, and not the absolute, hazard of countries
can be estimated. Thus, when the estimates from Equation (10) are used to make counterfactual
predictions, as in Zheng and Cai [42] a logit model version of Equation (10) of infection is employed,
where the baseline hazard h0(t) is specified as a linear and quadratic function of time elapsed.
The estimated coefficients from this logit model are then used to construct counterfactual predictions
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by setting alternatively LDD or AIMP equal to zero, but keeping all other controls at their observed
values, and predicting the probability of a representative country being infected. This is then compared
to doing the same prediction but using the observed values of all control variables.

5.4.2. Impact of Disease Diffusion Model

To determine how, once a country is infected, diffusion of BSLD has impacted banana production
is estimated using the following regression equation:

log(BANANASit) = β0 + βBSLDBSLDit + βFFit

+βF×BSLDFit × BSLDit + βCCit + βCSCSit

+βTR4TR4it + trendit + πt + µi + εit

(11)

where trend is a vector of country specific time trends, π is a vector of year specific indicator variables.
In order to purge the vector of country specific effects µ from Equation (11) a panel fixed effects
linear estimator is employed (Wooldridge [40]). To take account of serial correlation due to growing
seasons spanning across calendar years and cross-sectional dependence we calculate standard errors
as recommended by Driscoll and Kraay [31]. Model fit is assessed by examining the R-squared of the
residuals, where a good fit is if these are close to the diagonal intersecting the origin. The estimated
coefficients from Equation (11) are also used to predict what banana production would be if there was
no local disease spread by setting the interaction term of Fit × BSLD to zero, but keeping all other
control variables at their observed values, and calculating out predicted production. This is then
comparing to the predicted banana production when all variables are at their observed values.

5.5. Data

5.5.1. BSLD Presence Data

To construct the history of the BSLD spread across the countries and time a number of sources
were resorted to, most prominently Stover et al. [43], Pasberg-Gauhl et al. [44], Jones et al. [23],
Jacome [45], Jones et al. [23], Rivas et al. [33], de Bellaire et al. [21], and Blomme et al. [46]. Additionally,
the list of first infection reports provided by the European and Mediterranean Plant Protection
Organization (EPPO) disease database and the CABI International’s Invasive Species Compendium
were consulted. For all banana producing countries that were not on these lists the internet was
extensively searched for any information on first time outbreaks and the years of these, if any.

5.5.2. Climatic Data

To construct climatic variables the Japanese 55-year Reanalysis (JRA55) climate reanalysis data
set from the National Center for Atmospheric Research (NCAR) Research Data Archive was used,
which consists of griddded data with a spatial resolution of TL319 (about 55 km). Unfortunately
there is no data set that allows one to know the exact location of banana growing areas within a
country at any point in time. In order to nevertheless capture the climate likely to be relevant to
local production of bananas, the local banana growing areas are proxied by the local areas suitable
for banana production, as given in the FAO’s Global Agro-Ecological Zones (GAEZ) database at
the 0.5 degree resolution. This set of cells provides set of (potentially) banana growing localities
m = 1, ..., M and thus for which climate data from the JRA55 is extact. To this end 6-hourly data
over the time period 00:00 h UTC on 1/1/1960 to 21:00 h UTC on 31 December 2016 on measures
of canopy moisture (CMOIST), canopy temperature (CTEMP), relative humidity at 2m (HUMID),
rainfall (RAIN), temperature (T), and the u- and v-wind components, which are used to calculate wind
speed (WIND), were downloaded. Daily mean values were then calculated for those pixels that fell
within the banana growing suitability areas, as derived from the GAEZ map described above. Since the
banana growing season may be throughout the year for tropical areas, all daily values within a year for
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this region where used, while for the sub-tropical region (deliminated by being outside the −34◦ and
42◦ latitude zone) we restrict the climatic data to fall within the March to December window. While all
the derived climatic variables are employed as potential climatic factors for banana production, canopy
moisture and canopy temperature are specifically used to measure WET and T in order to construct F
in Equation (1). The v- and w-wind component data to generate wind turbulence (TURB).

The climatic stress indicators that are likely to retard banana growth for inclusion in
Equations (10) and (11) were also constructed, following FAO [39]. More specifically, these were
the percentage of days in a year (or the 10 month growing period for sub-tropical regions) that mean
wind speed was above 4 m/s (WIND4), canopy temperature was below 8 ◦C (CTEMP8), canopy
temperature was above 38 ◦C (CTEMP38), and relative humidity was above 60% (HUMID60). In order
to estimate the incidence of water stress, following Allen et al. [47], the daily soil water balance using
the appropriate parameters for bananas, and calculated as the percentage of days that the water balance
was below absolute optimum level (WSTRESS).

5.5.3. Banana and Agricultural Products Data

Data on banana production, area harvested, exports, and imports are taken from the FAOSTAT
database. More specifically, these data provide annual country level banana production in tons
(BANANAS), area harvested area in Ha (HAREA), exports in tons (BEXP), and imports in tons
(BIMP) from 1961 to 2016 for all 129 major banana producing countries. Additionally information
on total agricultural (plant based) imports (AIMP) and exports (AEXP) was used. Combining those
countries that changed name over the period, and summing production and area harvested for those
that split into several territories, left a total sample of 129 nations that produce bananas.

6. Conclusions

Our study of the global spread and impact of Bananas’s Black Sigatoka Leaf Disease highlights
the danger and potential cost of relying on just a few varieties with genetic uniformity for production
of a specific crop on a global scale. In particular the results show that agricultural trade may play an
important role in spreading the disease across countries. In this regard, while strict import restrictions
and securities measures may be hypothetically able to prevent the influx of crop diseases across
countries due to the transfer of diseased material by humans, there is still nevertheless the chance
that the disease is transmitted over long distances from elsewhere under the right climatic conditions.
Countries should thus plan for the likely arrival of a debilitating disease at some stage. Of course,
once such a disease arrives chemical treatment may be able to keep it partially under control, although
costs of such treatments may be prohibitive for some farmers and their effectiveness is likely to fade
over time. Hence, international efforts to look for disease resistant crop varieties, such as FAO’s
Technical Cooperation program (The Technical Cooperation Programme (TCP) was created to enable
FAO to make its know-how and technical expertise available to member countries upon request),
should be continuously supported. Nevertheless, if anything, the history of banana crop diseases has
shown that, while disease resistant varieties or treatments are eventually likely to be discovered or
developed, new or mutations of existing fungi also continuously emerge, thus potentially restarting
the vicious circle.
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