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Abstract

This paper proposes a tractable model of a dynamic contest where players have

private information about the contest’s prize. We show that private information

helps to encourage players who have fallen behind, leading to an increase in aggre-

gate incentives. We derive the optimal information design for a designer interested

in the maximization of aggregate effort. Optimal signals turn out to be private

and imperfectly informative and aim to level the playing field at any stage of the

dynamic interaction.

Keywords: Dynamic contests, discouragement effect, information design.

JEL: C72, D72, D82.

∗We are grateful to Mikhail Drugov and Igor Letina for helpful comments and suggestions.
†Department of Economics, University of Bern. Email: juan.beccuti@vwi.unibe.ch
‡Department of Economics, University of Bern. Email: marc.moeller@vwi.unibe.ch

1



“But many that are first shall be last; and the last shall be first.” (Matthew

19:30 King James Bible.)

1 Introduction

Contests are a well-understood and frequently employed method of providing incentives.

There are concerns, however, that in dynamic settings, incentives may become under-

mined by the so-called discouragement effect.1 As for losers of earlier stages, winning

the overall contest requires efforts beyond the ones necessary for catching up, they are

discouraged from fighting on. This in turn allows winners of earlier stages to reduces

their efforts, leading to a deterioration of incentives on aggregate. As a consequence of

the discouragement effect, innovation may be obstructed from successful completion by

an early break through and workers may become demotivated to strive for promotion by

an early success of their colleagues.

In this article, we analyze the effect of private information on players’ incentives to ex-

ert effort in a dynamic contest. Although in many economic settings, private information

has a negative impact, in dynamic contests private information turns out to be beneficial.

Our starting point is the observation that when players are privately informed about the

(common) value of the prize and cannot observe each others efforts, then an early loss

has to be taken as good news about the value of the prize. This is because a loss is more

likely to happen when the opponent exerted a high level of effort which requires that the

opponent attaches a high value to the contest’s prize. For example, an early innovation

break through may be the consequence of a large R&D effort by a rival company whose

private market-research has revealed a prosperous market for the prospective product.

Similarly, a rival’s success in the early stages of a promotion contest can be understood as

the result of his hard work, which was motivated by his positive view about the company’s

1See Konrad and Kovenock (2009); Ryvkin (2011);Dubey (2013); Fu et al. (2018); Aiche et al. (2019);
Fang et al. (2020); Sela and Tsahi (2020);Zhang and Zhou (2016).
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career prospects.

In our model two homogeneous players compete in a best-of-three contest by exerting

costly efforts in three sequential battles. The winner of the overall contest obtains a prize

whose value is uncertain (one or zero) but the same for each player.2 Each player observes

a private imperfect signal (good or bad) that is informative about the prize. Motivated by

the above examples, an important assumption of our model is that players are unable to

observes their rival’s efforts. All they observe is the identity of the winner of each battle.

For most models of dynamic contests, the introduction of imperfect information makes

the analysis intractable. Our model lends its tractability from the simplifying assumption

that one of the signal-realizations is conclusive about the value of the prize. In particular,

assuming that a bad signal can only be received when the prize is zero enables us to

focus our analysis on the efforts players exert after receiving a good signal. An important

variable of our model is the signal’s informativeness, given by the likelihood with which

a bad signal is generated when the prize is zero.

As a benchmark, we consider the case, where signals are observed publicly rather than

privately. Our main result shows that (expected) aggregate effort, that is individual efforts

added across players and battles, is strictly higher under private information than under

public information, except for the limiting case where signals are perfectly informative

or completely uninformative. Interestingly, while under public information, aggregate

effort is independent of the signals’ informativeness, under private information, aggregate

effort is maximized when signals are of intermediate informativeness. Hence, although our

analysis is restricted to a subset of all possible information-structures by our assumption

that one signal is conclusive, our model offers insights about the optimal information

design in dynamic contest settings.

2An alternative but analogue formulation of our model assumes that the contest’s prize is certain but
that players face uncertainty about the (common) value of their marginal costs of effort. For example,
R&D expenditures may depend on a common input (e.g. labor) whose price is uncertain.
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2 Model

We consider two homogeneous players engaged in a dynamic best-of-three contest for a

single prize. The contest consists of three identical, consecutive battles and the prize

is awarded to the first player achieving a total number of two wins. In each battle

t ∈ {1, 2, 3}, each player i ∈ {1, 2} chooses an effort eit ≥ 0 at cost C(eit) = eit and

wins the battle with probability eit
e1t+e2t

when e1t + e2t 6= 0 and with probability 1
2
when

e1t + e2t = 0. An important assumption of our model is that players observe the outcome

of each battle, but not the effort exerted by their opponent.

There is uncertainty about the size of the prize, which can take two values normalized

to V = 0 and V = 1. Both values are assumed to be equally likely. Before the start of

the first battle, each player obtains a private informative signal si ∈ {B,G} about the

value of v. Signals are independent draws from the same conditional probability distri-

bution Pr(si|v) specified by the following matrix: The parameter σ ∈ (0, 1) measures the

Pr(si|v) V = 0 V = 1
si = B σ 0
si = G 1− σ 1

informativeness of the players’ signals. In particular, for σ → 1 players become perfectly

informed about the value of the prize, whereas for σ → 0 signals become completely un-

informative. Note that implicit in this formulation is the assumption that a “bad” signal

si = B is conclusive, as it can only be received when the prize is zero. This assumption

greatly simplifies the analysis because it implies that efforts must be zero after the ob-

servation of a bad signal. Hence, our analysis can concentrate on the players’ behavior

conditional on receiving a “good” signal. In our setting, a symmetric equilibrium can

thus be described by a vector of efforts (e∗1, e
∗
L, e

∗
F , e

∗
3) which players exert after observing

si = G. Here e∗1 and e∗3 denote efforts during the first and the third battle, respectively,

whereas e∗L and e∗F denote a player’s effort in the intermediate battle depending on whether

4



the player has won (leader) or lost (follower) before.3

3 Equlibrium

We determine the equilibrium (e∗1, e
∗
L, e

∗
F , e

∗
3) by backward-induction.

3.1 Battle 3

Suppose that both players have accumulated one win and consider a player’s effort choice

in battle 3. If the player has obtained a bad signal he knows that there is nothing to be

won and will therefore exert zero effort. In contrast, if the player has obtained a good

signal, then he must conclude that his opponent has also observed a good signal, since

otherwise the opponent would not have exerted effort and could not have won any of the

contests before. Hence, conditional on having observed a good signal a player’s expected

value of the prize is given by

VG ≡ E[V |s1 = s2 = G] =
1

1 + (1− σ)2
(1)

and his effort in the third battle must solve

e3 ∈ argmax
e3≥0

e3
e3 + e∗3

VG − e3. (2)

The unique solution to this problem follows from evaluating the corresponding first-order

condition at e3 = e∗3 and is given by

e∗3 =
VG

4
. (3)

The maximized value

U3 ≡
e∗3

e∗3 + e∗3
VG − e∗3 =

VG

4
(4)

represents the players’ continuation value from drawing (one win each) after completion

of the first two battles.
3A player’s effort in the third battle is independent of the sequencing of past-outcomes (win-loss,

loss-win) because in equilibrium the third battle can be reached only when both players have observed a
good signal (and hence exert positive efforts), giving players identical beliefs about the value of the prize.
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3.2 Battle 2

Consider now the second battle and denote by L (leader) and F (follower) the winner

and the loser of the first battle. Conditional on having observed a good signal, player

i ∈ {L, F} must form beliefs about the likelihood with which his opponent j has also

observed a good signal. These beliefs are crucial determinants of a player’s effort because

only when the opponent has observed a good signal there actually exists a prize worth

fighting for (V > 0) and effort is necessary for winning the second battle (ej > 0).

Assuming that the follower exerted effort in the first battle, he must conclude from

losing that battle that his opponent has observed a good signal with certainty. Had his

opponent observed a bad signal he would have exerted zero effort and would not have

defeated him. In particular, we have

Pr(sj = G|i = F, si = G) = 1. (5)

In contrast to the follower, the leader does not know whether he won the first battle be-

cause he was more lucky or because his opponent failed to provide effort after observation

of a bad signal. Moreover, the distinction between these two cases depends on the effort

the leader has taken in battle 1. In particular, if the leader chose effort e1 > 0 and the

follower adheres to the equilibrium, then the leader would have won the first contest with

probability e1
e1+e∗

1

in case sj = G and with probability 1 in case sj = B. Bayesian updating

thus implies that from the viewpoint of the leader, the likelihood with which the follower

has observed a good signal is given by

Pr(sj = G|i = L, si = G) =
1 + (1− σ)2

1 + (1− σ)2 +
e1+e∗

1

e1
σ(1− σ)

≡ P2(e1). (6)

It is important to note that

Pr(sj = G|i = F, si = G) > Pr(sj = G|i = L, si = G), (7)

which means that the follower has a stronger belief than the leader that the prize is worth

6



fighting for. It is in this sense, that losing the first battle “encourages” effort in the second

battle.4

In equilibrium, effort choices (e∗L, e
∗
F ) must satisfy:

e∗L ∈ argmax
eL≥0

P ∗
2

[

eL
eL + e∗F

VG + (1− eL
eL + e∗F

)U3

]

− eL (8)

e∗F ∈ argmax
eF≥0

eF
e∗L + eF

U3 − eF , (9)

where we have abbreviated notation by letting

P ∗
2 ≡ P2(e

∗
1) =

1 + (1− σ)2

1 + (1− σ)2 + 2σ(1− σ)
. (10)

The corresponding first-order conditions

P ∗
2 (VG − U3)

e∗F
(e∗L + e∗F )

2
= 1 (11)

U3
e∗L

(e∗L + e∗F )
2

= 1 (12)

have the solution

e∗F =
3

4
VG

P ∗
2

(3P ∗
2 + 1)2

(13)

e∗L =
9

4
VG

(P ∗
2 )

2

(3P ∗
2 + 1)2

. (14)

The probability with which the players draw after the second battle, making the third

battle necessary, is given by

e∗F
e∗F + e∗L

=
1

1 + 3P ∗
2

. (15)

For future reference, note that the probability of a draw is inverse U-shaped with a

maximum at

σdraw ≡ 2−
√
2 ∈ (0, 1). (16)

4The fact that a deviation from e
∗

1
to e1 6= e

∗

1
influences the informativeness of the first battle’s

outcome will have an effect for the determination of the equilibrium effort level e∗1 in Section 3.3.
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Off-equilibrium, that is, after deviating to e1 6= e∗1 during the first battle, the leader will

update his belief to P2(e1) rather than P ∗
2 and hence choose the effort eL that solves (11)

with P ∗
2 substituted by P2(e1). Off-equilibrium, the leader will therefore choose

eL(e1) =
√

P2(e1)(VG − U3)e
∗
F − e∗F (17)

with e∗F given by (13).

For our analysis of battle 1 contained in the subsequent section it is useful to define

the continuation values of entering battle 2 as the leader or the follower, conditional on

the opponent having observed a good or a bad signal. These continuation values are given

by

UG
L (e1) ≡ U3 +

eL(e1)

eL(e1) + e∗F
(VG − U3)− eL(e1) (18)

UB
L (e1) ≡ −eL(e1) (19)

UG
F ≡ e∗F

e∗F + e∗L
U3 − e∗F (20)

UB
F ≡ −e∗F . (21)

3.3 Battle 1

Finally, consider the players’ behavior in battle 1. A player who observes a bad signal will

not exert any effort. A player who observes a good signal will believe that his opponent

also observed a good signal with probability

P1 =
1 + (1− σ)2

2− σ
. (22)

The effort a player chooses in the first battle after observing a good signal must solve:

e∗1 ∈ argmax
e1>0

P1[
e1

e1 + e∗1
UG
L (e1) +

e∗1
e1 + e∗1

UG
F ] + (1− P1)U

B
L (e1)− e1. (23)

Note that here we have made use of the fact that, conditional on the opponent having

observed a bad signal, a player with a good signal cannot become the follower in battle
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2 if he exerts effort (no matter how small) in battle 1. The equilibrium value e∗1 can be

obtained from the first order condition corresponding to (23) evaluated at e1 = e∗1:

P1
UG
L (e

∗
1)− UG

F

4e∗1
+

d

de1

[

P1

2
UG
L (e1) + (1− P1)U

B
L (e1)

]

|e1=e∗
1
= 1. (24)

Note that

P1

2
UG
L (e1) + (1− P1)U

B
L (e1) =

P ∗
2 [

eL(e1)
eL(e1)+e∗

F

VG + (1− eL(e1)
eL(e1)+e∗

F

)U3]− eL(e1)

1
2
P1 + 1− P1

(25)

and that the numerator in (25) is identical to the leader’s objective function in battle 2

when his belief equals the equilibrium value P ∗
2 . It thus follows from the envelope theorem

that

d

de1

[

P1

2
UG
L (e1) + (1− P1)U

B
L (e1)

]

|e1=e∗
1
= 0. (26)

Hence the first order condition (24) simplifies to

P1
UG
L (e

∗
1)− UG

F

4e∗1
= 1 ⇔ P1

e∗
L

e∗
L
+e∗

F

VG − (e∗L − e∗F )

4e∗1
= 1. (27)

The effect of an increase in e1 is to raise a player’s likelihood of winning the first battle by

1
4e∗

1

. This raises the player’s chance of securing an early victory and reduces the risk of an

early victory by the opponent, leading an overall benefit of VG − U3 + U3 = VG. As both

of these events require that the respective leader wins the second battle, VG is multiplied

with the leader’s probability of winning
e∗
L

e∗
L
+e∗

F

. By making a player more likely to become

the leader rather than the follower, an increase in e1 also induces additional effort costs

e∗L − e∗F > 0. As

e∗L
e∗L + e∗F

VG − (e∗L − e∗F ) = VG

3P ∗
2 (9P

∗
2 + 5)

4(3P ∗
2 + 1)2

> 0, (28)

the overall effect is positive and must be balanced by the marginal cost of first stage effort

(the right hand side of (24)) leading to

e∗1 = VG

3P1P
∗
2 (9P

∗
2 + 5)

16(3P ∗
2 + 1)2

. (29)

9



3.4 Aggregate effort

Aggregating efforts across battles and players, we obtain the following expression for

expected aggregate effort:

E∗ = Pr(s1 = s2 = G)(2e∗1 + e∗L + e∗F +
e∗F

e∗F + e∗L
· 2e∗3) + Pr(s1 6= s2)(e

∗
1 + e∗L). (30)

With probability

Pr(s1 = s2 = G) =
1

2
[1 + (1− σ)2] (31)

both players obtain a good signal and therefore exert the corresponding efforts in battles

1 and 2. Efforts in battle 3 are exerted only if it is reached which happens when the

follower wins the second battle, i.e. with probability
e∗F

e∗
F
+e∗

L

. With probability

Pr(s1 6= s2) =
1

2
· 2σ(1− σ) (32)

one player receives a good signal while the other player receives a bad signal. In this case

only the player with the good signal exerts efforts and wins the contest already after two

battles.

In the Appendix we proof the following result:

Proposition 1. Expected aggregate effort E∗(σ) is maximized when information levels

the playing field in the intermediate battle, that is for σ = σdraw ∈ (0, 1).

Proof: See Appendix.

Proposition 1 is depicted in Figure 1. Aggregate effort is inverse U -shaped, with a

maximum at the place where the likelihood that the second battle is one by the follower

rather than by the leader is highest. Aggregate incentives are maximized when the players’

information makes their incentives to compete in the second battle as similar as possible.

For this purpose, the encouraging news contained in a first battle loss is sought to counter

the discouraging effect of a lag in the number of accumulated wins, thereby balancing the

follower’s and the leader’s incentives to fight.
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4 Benchmark: Public signals

In order to understand the effect that private information has on the players’ incentives

to exert effort, this section considers as a benchmark the case where information is public.

In particular, the following analysis assumes that signals (s1, s2) are observed publicly, by

both players, rather than privately.

As a bad signal is conclusive, under public information a player will exert effort only

after observing (s1, s2) = (G,G). The players’ expectations of the contest’s prize is then

given by VG and the analysis of battle 3 is the same as under private information (where

players conclude that their opponent must have observed a good signal since otherwise

the last battle would not have been reached). In particular

ePUB
3 = e∗3 =

VG

4
. (33)

In battle 2, players no longer differ in their beliefs about their opponent’s signal. The

equilibrium efforts under public information can therefore be obtained by setting P2 = 1

in (8)–(14) and are given by

ePUB
F =

3VG

64
(34)

ePUB
L =

9VG

64
. (35)

Under public information the leader wins also the second battle with probability 3
4
. Hence,

the corresponding maximized payoffs of the leader and the follower are given by

UL =
3

4
VG +

1

4

VG

4
− ePUB

L =
43

64
VG (36)

UF =
1

4

VG

4
− ePUB

F =
1

64
VG (37)

Finally, in battle 1, equilibrium effort must solve

ePUB
1 ∈ argmax

e1≥0
UF +

e1
e1 + ePUB

1

(UL − UF )− e1 (38)

11



and is hence given by

ePUB
1 =

UL − UF

4
=

21

128
VG. (39)

Expected aggregate effort under public information is then given by

EPUB = Pr(s1 = s2 = G)(2ePUB
1 + ePUB

L + ePUB
F +

1

4
· 2ePUB

3 ) =
41

128
(40)

Proposition 2. Expected aggregate effort is higher when signals are observed privately

rather than publicly. This result holds independently of the signals’ quality, i.e. E∗(σ) >

EPUB for all σ ∈ (0, 1).

Proof: See Appendix.

Figure 1 depicts aggregate effort in dependence of the informativeness σ of the players’

signals. While aggregate effort is independent of σ when signals are public, under private

information aggregate effort is inverse U-shaped. Proposition 2 emphasizes the important

Figure 1: Aggregate Effort: Comparison of aggregate effort under private (black) and
public information (red), in dependence of the quality σ of the players’ signals. σ = 1 and
σ = 0 correspond to the cases where signals are perfectly informative or not informative
at all.
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role of private information in dynamic battles. In particular, it shows that withholding

information about a contest’s prize can be useful only when players may form differing

beliefs about the prospects of winning.

5 Static contest

In order to understand the origin of Proposition 1 it is useful to consider the static

analogue of our dynamic contest setting. For this purpose, suppose that the contest

consists of only one battle and the prize V is awarded to the winner of that battle. Under

private information equilibrium effort must solve

e∗S ∈ argmax
eS≥0

P1
eS

eS + e∗S
VG − eS (41)

and is therefore given by

e∗S =
P1VG

4
=

1

4

1

2− σ
. (42)

Given that each player receives a good signal with probability

Pr(si = G) = 1− σ

2
, (43)

expected aggregate effort is

E∗
S = 2Pr(si = G)e∗S =

1

4
. (44)

Under public information both signals are observed by both players and players will exert

effort only when both signals are good. Equilibrium effort solves

ePUB
S ∈ argmax

eS≥0

eS
eS + ePUB

S

VG − eS (45)

and is given by

ePUB
S =

VG

4
. (46)
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Expected aggregate effort under public information is

EPUB
S = 2Pr(s1 = s2 = G)ePUB

S =
1

4
(47)

Note that in the static contest, expected aggregate effort under private information is the

same as expected aggregate effort under public information. Whether signals are private

or public has no influence on aggregate incentives in a static setting. Hence it must be

the dynamic nature of our best-of-three contest which explains the increase in aggregate

incentives due to private information. One might have thought that private information

raises aggregate effort because it allows a player to exert effort even when his opponent has

observed a bad signal. However, this reasoning applies equally well in the static and the

dynamic setting, and as aggregate effort in the static setting remains unaffected, cannot

be the reason behind the increase in aggregate effort in the dynamic setting.

In order to understand why private information may increase aggregate incentives in

dynamic contests, we will now have a closer look at the individual efforts in each of the

three battles.

6 The encouragement effect

So why does private information increase aggregate incentives? In order to shed light on

this question, let us consider each battle in separation. As efforts in battle 3 are identical

under private and public information, we can concentrate our analysis on battles 1 and 2.

Consider battle 2 first. Winning battle 2 is less beneficial for the follower than for

the leader, as the follower is required to exert additional effort to win the overall contest

in battle 3. This fact has become known as the discouragement effect. As we have

seen in Section 3.2 private information makes winning the first battle bad news about the

contest’s prize, thereby dampening the leader’s incentive to exert effort. As a consequence,

the follower becomes encouraged to exert higher effort, bringing efforts levels in battle 2

closer to each other. In particular, we have the following result:

14



Proposition 3 (Encouragement). When signals are observed privately rather than pub-

licly, the effort-differential between the leader and the follower is reduced, i.e. 0 <

e∗L−e∗F < ePUB
L −ePUB

F . As a consequence, the final battle is reached with higher probability

when signals are private.

Proof: See Appendix.

Private information “levels the playing field” in that it endows the disadvantaged

player with a stronger belief in the value of fighting. The downside of this encouragement

effect is that players’ will attach less value to becoming the leader. In particular, we also

have the following result:

Proposition 4. When signals are observed privately rather than publicly, players invest

less effort to become the leader, i.e. e∗1 < ePUB
1 .

Proof: See Appendix.

Figure 2: Battle Efforts: Comparison of efforts e1 (dotted) eL (dashed), and eF (dash-
dotted) under private (black) and public information (red), in dependence of the quality
σ of the players’ signals. σ = 1 and σ = 0 correspond to the cases where signals are
perfectly informative or not informative at all.
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Figure 2 depicts efforts in battles 1 and 2 in dependence of the informativeness σ of

players signals. Private information raises the follower’s effort while reducing the leader’s

effort in battle 2. This raises the likelihood of a draw after battle 2 which reduces efforts

in battle 1.

7 The last shall be first?

In our model, the follower is discouraged by the fact that he has fallen behind but becomes

encouraged by the “good news” contained in his first-battle loss. The overall effect is that

his effort falls short of the leader’s effort, i.e. e∗F < e∗L. We now extend our model, in

order to show, that, more generally, the encouragement effect may be strong enough to

overcome the discouragement effect. In particular, we will show that, in the spirit of

Matthews’s quote, the loser of the first stage is more likely to be the winner of the second

stage, i.e. e∗F > e∗L, if the contest’s outcome is sufficiently noisy.

For this purpose, we assume that in each battle t, player i wins with probability
erit

erit+erjt
.

Following Tullock, the parameter r ∈ (0, 2) measures how sensitive a player’s probability

of winning is with respect to his own effort. Decreasing r makes the battle’s outcome less

sensitive with respect to efforts, or, equivalently, more random.

In the last battle, if it is reached, equilibrium effort must solve

e∗3 ∈ argmax
e3≥0

er3
er3 + (e∗3)

r
VG − e3

and is therefore given by

e∗3(r) =
r

4
VG.

With the continuation value U3(r) = 2−r
4
VG of reaching the last battle, in the second

battle, equilibrium efforts must solve:

e∗L ∈ argmax
eL≥0

P ∗
2

[

erL
erL + (e∗F )

r
VG + (1− erL

erL + (e∗F )
r
)U3(r)

]

− eL (48)

e∗F ∈ argmax
eF≥0

erF
(e∗L)

r + erF
U3(r)− eF . (49)
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From the corresponding first order conditions

P ∗
2

rer−1
L erF

(erL + erF )
2
(1− 2− r

4
)VG = 1 =

rer−1
F erL

(erL + erF )
2

2− r

4
VG.

it follows that

e∗F (r)

e∗L(r)
=

2− r

(2 + r)P ∗
2

.

As this expression is decreasing in r and converges to 1/P ∗
2 > 1 for r → 0, we can state

the following result:

Proposition 5. The encouragement effect overcomes the discouragement effect when bat-

tle outcomes are sufficiently noisy, i.e. e∗F (r) > e∗L(r) for all r ∈ (0, r̄), with 0 < r̄ < 1.

Proof: See Appendix.

Note that, since P2(σ) is U-shaped, r̄(σ) is inverse U-shaped with limσ→0 r̄(σ) =

limσ→1 r̄(σ) = 0, i.e. more noise is required to make the last become first, when signals

are very informative or very uninformative, i.e. when the privacy of information becomes

irrelevant.

8 Conclusion

This paper has identified an encouragement effect in dynamic contests where players have

private information about the contest’s prize. Losers of early stages become encouraged by

the fact that losing conveys good news about their opponent’s effort and hence the value

of the contest’s prize. We have shown that due to the encouragement effect, aggregate

incentives are maximized when information about the contest’s prize is private rather than

public and imperfect rather than perfect. Our model thereby provides insights about the

optimal information design in dynamic contests.
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Appendix: Proofs

Proof of Propositions 1 and 2:

Since VG = 1
1+(1−σ)2

, and P ∗
2 VG = 1

2−σ2 , then, after some algebraic manipulations

E∗(σ) =
1

16(3P ∗
2 + 1)2

{3P1P
∗
2 (9P

∗
2 + 5) + 6P ∗

2 (3P
∗
2 + 1) + 4(3P ∗

2 + 1)+

σ(1− σ)

2− σ2
[3P1(9P

∗
2 + 5) + 36P ∗

2 ]}.

Thus,

E∗(σ) ≥ EPUB =
41

128

⇔ 3P1P
∗
2 (9P

∗
2 + 5) + 6P ∗

2 (3P
∗
2 + 1) + 4(3P ∗

2 + 1)+

+
σ(1− σ)

2− σ2
[3P1(9P

∗
2 + 5) + 36P ∗

2 ] ≥
41

8
(3P ∗

2 + 1)2

Using σ(1−σ)
2−σ2 =

P ∗

2

2

P1

(1− P1), the previous inequality holds iff

3P ∗
2 (9P

∗
2 + 5) + 6P ∗

2 (3P
∗
2 + 1) + 4(3P ∗

2 + 1) + 36
P ∗
2
2

P1
(1− P1) ≥

41

8
(3P ∗

2 + 1)2

⇔ 27P ∗
2 + 3 + 36

P ∗
2
2

P1
≥ 33

8
[9P ∗

2
2 + 6P ∗

2 + 1]

⇔ P ∗
2 [18 + 288

P ∗
2

P1
− 297P ∗

2 ] ≥ 9.

Since P ∗
2 = 1+(1−σ)2

2−σ2 and P1 = 1+(1−σ)2

2−σ
, the left-hand side is inverse U-shape with a

maximum at σ = 2 −
√
2 and a minimum at σ = {0, 1}, in which case the left-hand side

is equal to 9.

Proof Proposition 3:

Using the equations (13), (14), (34), and (35),

e∗L(σ)− e∗F (σ) ≤ ePUB
L − ePUB

F

⇔ 3VGP
∗
2

4

3P ∗
2 − 1

(3P ∗
2 + 1)2

≤ 6VG

64

⇔ 15P ∗
2
2 − 14P ∗

2 ≤ 1,
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which holds for any P ∗
2 ∈ [0, 1].

Proof Proposition 4:

Using equations (29) and (39):

e∗1 ≤ ePUB
1

⇔ P1P
∗
2 (9P

∗
2 + 5)

(3P ∗
2 + 1)2

≤ 7

8

⇔ 9P1 + 5
P1

P ∗
2

≤ 7

8
(3 +

1

P ∗
2

)2

⇔ 9
1 + (1− σ)2

2− σ
+ 5

2− σ2

2− σ
≤ 7

8
(3 +

2− σ2

1 + (1− σ)2
)2.

The left-hand side is U-shaped with maximums at σ = {0, 1} when it gets a value of 14.

The right-hand side is inverse U-shaped with minimums also at σ = {0, 1} when its value

is 14.

Proof Proposition 5:

The expression 2−r
(2+r)P ∗

2

is decreasing and continuous in r, with 1/3P ∗
2 < 1 when r → 1

and 1/P ∗
2 > 1 when r → 0.
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