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Box-counting by Hölder’s traveling salesman

Zoltán M. Balogh and Roger Züst

Abstract. We provide a sufficient Dini-type condition for a subset of a
complete, quasiconvex metric space to be covered by a Hölder curve. This
implies in particular that if the upper box-counting dimension is less than
d ≥ 1, then it can be covered by an 1

d
-Hölder curve. On the other hand,

for each 1 ≤ d < 2 we give an example of a compact set in the plane
with lower box-counting dimension equal to zero and upper box-counting
dimension equal to d, just failing the above Dini-type condition, that can
not be covered by a countable collection of 1

d
-Hölder curves.
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1. Introduction. One way to measure the size of a set in a metric space is
its dimension. The concepts of Hausdorff and box-counting dimension are es-
pecially relevant in this respect. We refer to the book of Falconer [7] for an
excellent overview of the subject. On the other hand, we can think of a pla-
nar set being large if the points of the set cannot be visited in finite time by
a salesman traveling with bounded speed. These sets are unrectifiable in the
sense that they cannot be covered by a rectifiable curve. More generally, one
could study the size of a set in terms of its property to be covered by a Hölder
continuous curve.

Jones gave a necessary and sufficient condition for a bounded planar set K
to be covered by a rectifiable curve in terms of the so called β-number β(K)
introduced in [9]. To recall the definition of β(K), let us consider first the
local β-number within a square Q: βK(Q) := ω(Q)

�(Q) , where ω(Q) is the smallest
width of a line strip that covers Q ∩ K. Now the beta-number of K is
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β2(K) :=
∑

Q

β2
K(3Q)�(Q),

where the sum is over all dyadic squares in R
2 and 3Q is the axis-parallel square

with the same center as Q but side length 3�(Q). According to the main result
of [9], a bounded planar set K can be covered by a curve of finite length if and
only if β(K) < ∞. Generalizations of this result in higher dimensions are due
to Okikiolu [11] and in Hilbert spaces to Schul [12].

For connected sets in the plane Bishop and Jones [4] proved that a lower
bound on the local β-numbers βK(Q) of a compact set K ⊂ R

2 at all scales
implies that the Hausdorff dimension of K is strictly larger than 1. A general-
ization of this result to the setting of metric spaces is due to Azzam [1].

Let us observe first that for disconnected sets the situation is very different.
To see this consider the standard 1

4 four corner Cantor set C constructed as
follows. The set C is the intersection of compact sets Ck, where C0 is the unit
square [0, 1] × [0, 1] and for k ≥ 1 the set Ck is composed by a number of 4k

squares of side-length 1
4k . The squares in Ck are obtained by replacing each

square Q in Ck−1 by its four corner squares of side-lengths 1
4 of the side-length

of Q. It is easy to check that if Q is any square with side-length less than 1
such that Q ∩ C �= ∅, then βC(3Q) ≥ c for some c > 0 that does not depend
on Q. The fact that the Hausdorff dimension of C is equal to 1 is in contrast
to the results of [1] and [4].

A naturally related question is to consider Hölder curves instead of Lip-
schitz ones. The problem has been recently studied by Badger and Vellis [3]
and Badger–Naples–Vellis [2]. In this note we consider the relationship between
the property of a set to be covered by a Hölder curve and the box-counting
dimension. To formulate our results we start with some notation.

Let S be a metric space. The t-dimensional Hausdorff measure of S for
t ≥ 0 is defined by H t(S) := limδ↓0 H t

δ (S), where H t
δ (S) is defined for δ > 0

by

H t
δ (S) :=

{ ∞∑

i=1

diam(Si)t : S ⊂
∞⋃

i=1

Si,diam(Si) ≤ δ

}
.

The Hausdorff dimension is defined to be dimH(S) := inf{t ≥ 0 : H t(S) = 0}.
The upper and lower box-counting dimension of S are defined by

dimbox(S) := lim inf
ε↓0

log N(S, ε)
− log ε

and dimbox(S) := lim sup
ε↓0

log N(S, ε)
− log ε

,

where N(S, ε) is the minimal number of balls of radius ε needed to cover S.
Note that in the case S ⊂ R

2 and N ′(S, ε) is the minimal number of squares
with edge length ε needed to cover S, then C−1N(S, ε) ≤ N ′(S, ε) ≤ CN(S, ε)
for some constant C ≥ 1 independent of S. This shows that in the above
definitions we can replace N(S, ε) by N ′(S, ε). For our discussion it also doesn’t
matter if we assume the centers of balls used to cover S to be contained in S
or not. We refer to the book of Falconer [7] for more details.

The following simple result provides information on the behavior of box-
counting dimension under a Hölder map.
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Proposition 1.1. Let 0 < α ≤ 1 and f : X → Y be a surjective α-Hölder map
between metric spaces. Then N(Y,Lεα) ≤ N(X, ε) for some L > 0 and all ε >
0. In particular, dimbox(Y ) ≤ 1

α · dimbox(X) and dimbox(Y ) ≤ 1
α · dimbox(X).

The easy proof is left as an exercise to the reader. Taking X = [0, 1] with
the usual metric, an obvious necessary condition that a metric space Y can be
covered by an α-Hölder path f : [0, 1] → Y is that N(Y, ε)ε

1
α ≤ C for some

C ≥ 0 and all 0 < ε ≤ 1. The following result gives a related sufficient condition
for covering a set in a complete, quasiconvex metric space by a Hölder curve.
Recall that a metric space X is called quasiconvex if there is a constant CX ≥ 1
such that any two points x, y ∈ X can be connected by a path γ : [0, 1] → X
of length �(γ) ≤ CXd(x, y).

Theorem 1.2. Let Y be a subset of a complete, quasiconvex metric space X
and assume that N(Y, ε)εd satisfies a Dini condition for some d ≥ 1, namely,

∑

k≥0

N(Y, ε02−k)2−kd < ∞ (1.1)

for some ε0 > 0. Then Y can be covered by a 1
d -Hölder curve in X.

An immediate consequence of this is the following:

Corollary 1.3. Let X be a complete, quasiconvex metric space and assume that
Y ⊂ X satisfies dimbox(Y ) < d. Then Y can be covered by a 1

d -Hölder curve.

To prove Corollary 1.3 we need to check that condition (1.1) is satisfied if
dimbox(Y ) < d. Indeed, in this case there exists a δ > 0 such that

log(N(Y, ε)) ≤ (d − δ) · log
1
ε

for all ε small enough. This implies that N(Y, ε)εd ≤ Cεδ for some fixed con-
stant C > 0 independent of ε > 0. Hence N(Y, ε)εd indeed satisfies the Dini
condition in the statement of the theorem above.

Let us remark that, although our result works in the general metric setting,
in the Euclidean space R

n a much stronger result is available due to Badger–
Naples–Vellis [2]. Here the authors proved that the condition

∑

k≥0

Ñ(Y, 2−k)2−kd < ∞ (1.2)

is sufficient for Y ⊂ R
n to be covered by an 1

d -Hölder curve. In the above
relation we use the notation

Ñ(Y, 2−k) = 	{Q ∈ Dk : βY (Q) ≥ β0},

where Dk is the collection of dyadic cubes in R
n with side length 2−k and

β0 > 0 is a fixed constant.
The second result of this note is an example showing that a bound on the

lower box-counting dimension does not imply the Hölder covering property.
We prove the existence of a small set of vanishing Hausdorff dimension that
cannot be covered by a countable union of Hölder curves. This is formulated
in the following:
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Theorem 1.4. For any 1 ≤ d < 2 there is a compact set Kd ⊂ R
2 such that

dimH(Kd) = dimbox(K
d) = 0 and

lim
ε↓0

N(Kd, ε)εd = 0 (1.3)

but Kd can not be covered by a countable collection of 1
d -Hölder curves.

Note that the restriction d < 2 is necessary because of the existence of
Peano curves in R

2 that are Hölder continuous with exponent 1
2 . The construc-

tion of Kd above can naturally be extended to R
n, where the same statement

is true with 1 ≤ d < n. The properties of Kd in the statement of the theo-
rem in particular imply that dimbox(Kd) = d. Indeed, it is easy to check that
N(Kd, ε) ≤ Cε−d for all small ε > 0 implies that dimbox(Kd) ≤ d. The lower
bound dimbox(Kd) ≥ d follows from Corollary 1.3.

Applying the above theorem for a sequence of dn → 2 and taking the union
of appropriately scaled and translated copies of Kdn , we obtain the following
corollary:

Corollary 1.5. There is a compact set K ⊂ R
2 with dimH(K) = 0 that can not

be covered by a countable collection of α-Hölder curves for any α > 1
2 .

As above we observe that necessarily dimbox(K) = 2. Note that since the
lower box-counting dimension is not stable under countable unions of sets, we
cannot conclude that for this example dimbox(K) = 0. However, a modified
version of the construction provided in the proof of Theorem 1.4 could also
give this property.

The set K1 constructed in Theorem 1.4 also serves as a counterexample
for the equivalence of two definitions of rectifiability. Following the notation of
Federer [8, 3.2.14], a subset S of a metric space X is countably m-rectifiable
if there exist countably many Lipschitz maps fi : Ei → X, i ∈ N, defined
on bounded sets Ei ⊂ R

m such that S =
⋃

i∈N
fi(Ei). More generally, S is

countably (H m,m)-rectifiable if S is H m-measurable and it can be expressed
as a union S = S′ ∪ A of a countably m-rectifiable set S′ and a set A ⊂ X
with H m(A) = 0. At first glance one might think that the set A in the second
definition is small enough so that it can be easily covered by a countably
m-rectifiable set too. Already in the case d = 1 Theorem 1.4 demonstrates
that the two definitions above are different and K1, although it is countably
(H 1, 1)-rectifiable because dimH(K1) = 0, it is not countably 1-rectifiable.
The existence of such sets is also guaranteed by [10] as level sets of a C1-map
f : [0, 1]2 → [0, 1].

2. Proof of Theorem 1.2.

Proof of Theorem 1.2. First note that the covering condition on Y guarantees
that Y is totally bounded, i.e. for any r > 0 there are finitely many balls of
radius r that cover Y . Thus since X is complete, the closure Ȳ of Y is compact.

For each k ≥ 0 let Ck be a minimal cover by closed balls with radius
ε02−k. Without loss of generality we assume that C0 consists of a single ball.
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Otherwise we start our construction by connecting the centers of balls in C0

by a single closed curve of finite length.
For any k ≥ 1 and any ball B ∈ Ck choose a parent ball B′ ∈ Ck−1 with

the property that B′ ∩ B �= ∅. Such a ball exists because of the minimality
of the cover Ck. Note that by this procedure we obtain for each ball a unique
parent, but a given ball can have several or no children.

Let us recall that a metric tree is by definition a geodesic metric space
that does not contain embedded circles. We construct a complete metric tree
T of finite length as follows: T is obtained as a Gromov–Hausdorff limit of
finite metric trees Tk in which the vertices correspond to balls in

⋃
0≤l≤k Cl.

First, T1 consists of 	C1 closed intervals of length 2−d glued together at an
endpoint equipped with the quotient length metric. The other endpoints of
these intervalls form vertices of T1 that are in one-to-one correspondence with
balls in C1. Iteratively, Tk+1 is constructed from Tk by attaching to a vertex
in Tk that corresponds to some B ∈ Ck as many intervals of length 2−kd as B
has children in Ck+1. Due to the fact that

∑
k≥1(	Ck)2−kd < ∞ the sequence

(Tk)k≥1 of compact metric trees has uniformly bounded total length. Thus
this sequence has a limit T with respect to the Gromov–Hausdorff distance by
Gromov’s compactness theorem, see e.g. [6, Theorem 7.4.15]. As such a limit
T is itself a compact metric tree with bounded total length. It is clear that T
contains an isometric copy of each Tk in an obvious way.

In the next step we successively define for each m ≥ 1 maps ϕ : Tm → X as
follows: First, we define the ϕ on the vertices of Tm. If yB ∈ Tm is the vertex
that corresponds to B ∈ ⋃

0≤k≤m Ck, then ϕ(yB) is defined as the center cB

of B. Let us investigate the metric distortion properties of ϕ. Consider two
vertices yB, yC ∈ Tk such that B ∈ Ck, C ∈ Cl, and C is a descendant of B
(so l < k ≤ m). Then

dX(ϕ(yB), ϕ(yC)) = dX(cB , cC) ≤ ε0

k−1∑

i=l

2−i + 2−i−1 ≤ 2ε0

k∑

i=l

2−i

≤ 4ε02−l = 4ε0(2−ld)
1
d ≤ 4ε0dT (yB , yC)

1
d .

In the first inequality we used that

dX(cBi
, cBi+1) ≤ ε02−i + ε02−i−1

if Bi ∈ Ci is the parent of Bi+1 ∈ Ci+1 because these balls have nonempty
intersection. For the last inequality note that dT (yB , yC) =

∑k−1
i=l 2−id by the

construction of T . Now assume that C is not necessarily a descendant of B. If
A ∈ Cn is the least common ancestor of B and C, the geodesic connecting yB

with yC in Tm goes through yA and therefore

dX(ϕ(yB), ϕ(yC)) = dX(cB , cC) ≤ dX(cB , cA) + dX(cA, cC)

≤ 4ε0
(
dT (yB , yA)

1
d + dT (yA, yC)

1
d

)

≤ 8ε0dT (yB , yC)
1
d .
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In the second step the map ϕ is linearly extended to the segments of Tm:
Let B′ be the parent of B corresponding to vertices in Tm and let γT :
[0, 1] → Tm and γX : [0, 1] → X be paths connecting yB′ with yB and
cB′ with cB respectively such that dT (γT (a), γT (b)) = dT (yB′ , yB)|a − b| and
dX(γX(a), γX(b)) ≤ CXdX(cB′ , cB)|a − b|, where CX is the constant of quasi-
convexity of X. Now on the segment connecting yB′ with yB in T the map ϕ is
defined by ϕ(γT (t)) := γX(t). Similar to the estimates above one checks that
with this extension we obtain a 1

d -Hölder map ϕ : Tm → X with a uniform
bound on the Hölder constant.

Starting with T1 and extending this map successively to Tm for m > 1 we
obtain a Hölder map ϕ : T ′ :=

⋃
m≥1 Tm ⊂ T → X of the same regularity.

Because T ′ is dense in T , ϕ can be extended to a map on T of the same
regularity. Since the image ϕ(T ) contains in particular all the centers of balls
in Ck, it is clear that Y is contained in the closure of ϕ(T ). Because T is
compact this implies Ȳ ⊂ ϕ(T ) and concludes the proof. �

3. Proof of Theorem 1.4. The general idea of the proof of Theorem 1.4 is based
on a modification of the construction of the standard four corner 1

4 Cantor set
C. It is well known that C is not rectifiable and dimH(C) = dimbox(C) =
dimbox(C) = 1. We shall modify the construction of C by pushing down the
lower box-counting dimension to 0 while still retaining the unrectifiability prop-
erty. This is achieved by an iterative construction on two different alternating
collections of scales. For all scales in the first collection the relative size is kept
large to guarantee the unrectifiability property. For the second collection of
scales the relative size is drastically reduced to achieve that dimH(K) = 0.
The proof is carried out in two steps: In the first step we give the construction
for d = 1; in the second step we construct Kd for general d. In this section
we assume that R

2 is equipped with the sup-norm, so that the side length of
squares agrees with their diameter and in the definition of N(K, ε) we use a
cover by squares with side length ε instead of balls with radius ε.

3.1. Construction of K1. We first describe the construction of K := K1 in
Theorem 1.4 depending on a parameter 1

2 < γ < 1 and later we modify this to
obtain Kd. The compact set K ⊂ R

2 is obtained as K =
⋂

k≥0 Kk where Kk is
the union of a collection Ck of 4k disjoint closed squares that are constructed
iteratively. Each square in Ck has side length �k. In order to describe Kk

consider a strictly increasing sequence (kn)n≥0 of nonnegative integers with
k0 = 0. This sequence will be determined later but note that it does not
depend on d. First C0 = {K0} where K0 := [0, 1]2 and hence �0 = 1. In the
case k2n ≤ k < k2n+1 for some n ≥ 0 each square in Ck is replaced by the
4 corner-squares with side length �k+1 = 1

4γ �k. Note that these squares are
disjoint because 1

4γ < 1
2 by the restriction on γ. These new squares compose

Ck+1. In the case k2n−1 ≤ k < k2n for some n ≥ 1 each square in Ck is replaced
by the 4 corner squares of side length �k+1 = 1

4n �k. In the following lemma are
estimates of �k.
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Lemma 3.1. For n ≥ 1 it holds that

4(γ−n+1)k2n−2+(n−γ)k2n−1−nk2n ≤ �k2n
≤ 4(n−γ)k2n−1−nk2n ,

4(n−γ)k2n−1+(γ−n)k2n−γk2n+1 ≥ �k2n+1 ≥ 4(γ−n)k2n−γk2n+1 .

Proof. In order to estimate �k2n
we note that in each step from k2n−1 to k2n

the length of the squares get multiplied by a factor 1
4n and in each step before

k2n−1 the length gets multiplied by a factor of at most 1
4γ . Thus

�k2n
≤ 4−γk2n−14−n(k2n−k2n−1) = 4(n−γ)k2n−1−nk2n .

To obtain the upper bound for �k2n+1 note that

�k2n+1 = �k2n
4−γ(k2n+1−k2n) ≤ 4(n−γ)k2n−1+(γ−n)k2n−γk2n+1 .

Similarly to the upper bound for �k2n
we obtain the lower bound

�k2n+1 ≥ 4−nk2n4−γ(k2n+1−k2n) = 4(γ−n)k2n−γk2n+1 .

This implies the following lower bound for �k2n

�k2n
≥ �k2n−14

−n(k2n−k2n−1) = 4(γ−n+1)k2n−2+(n−γ)k2n−1−nk2n .

This last estimate also holds for n = 1 since k0 = 0. �

We define recursively k0 := 0, k1 := 1, and

k2n :=
⌈

n

1 − γ
k2n−1

⌉
,

k2n+1 :=

⌈
1

1 − γ

(
log4(n + 3) +

2n∑

i=1

(−1)i(� i
2
 − γ)ki

)⌉
,

for n ≥ 1. Here the notation �x
 stands for the smallest integer that is greater
or equal to x.

Note that k2n > k2n−1 since 1 > γ > 0. We also have k2n+1 > k2n: For
n = 1, the estimate k3 > k2 holds because of the term log4(n + 3) = 1 in the
definition of k3. For n > 1,

(1 − γ)k2n+1 ≥ ((� 2n
2 
 − γ)k2n − (� 2n−1

2 
 − γ)k2n−1) + · · ·
+ ((1 − γ)k2 − (1 − γ)k1)

≥ (n − γ)(k2n − k2n−1)

≥ (n − γ)k2n − (1 − γ)k2n

= (n − 1)k2n.

Above we used that (1−γ)k2n ≥ (n−γ)k2n−1. These estimates also show that
kn+1 ≥ cnkn for some c > 0 and all n ≥ 1. Hence

1 − γ = (n − γ)
k2n

k2n+1
+ εn,

where

|εn| � nk2n−1

k2n+1
≤ n

c2(2n − 1)2n
� 1

n
.
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Thus

lim
n→∞

n

2
kn

kn+1
= 1 − γ. (3.1)

We now give a precise estimate for �2n+1. For n ≥ 1 it holds that

�k2n+1 = �k2n−14
−n(k2n−k2n−1)4−γ(k2n+1−k2n)

= �k2n−14
nk2n−1−(n−γ)k2n−γk2n+1 .

Because �k1 = 4−γ�k0 = 4−γ and thus �k3 = 4(1−γ)−(1−γ)k2−γk3 it follows that

�k2n+1 = 4
−γk2n+1−

2n∑
i=1

(−1)i(	 i
2 
−γ)ki

� 4−γk2n+1−log4(n+3)−(1−γ)k2n+1

� 1
n4−k2n+1 . (3.2)

In this section we use the notation a � b for a, b ≥ 0 to mean that b ≤ ca for
some c ≥ 0 depending only on γ. Similarly, a � b means that a � b and b � a.

Lemma 3.2. The estimate N(K, ε) ≤ C(ε)1ε holds for some C(ε) ≥ 0 such that
limε↓0 C(ε) = 0.

Proof. Note first that for any k it holds that N(K, �k) = 4k: First, N(K, �k) ≤
4k is clear because of the obvious cover Ck. On the other hand, the corners
of any square in Ck belong to K and there are 4k+1 such corners. A square
in R

2 with side length �k can cover at most 4 such corners and therefore
N(K, �k) ≥ 4k.

We need to compare �k with 4k. If k2n ≤ k ≤ k2n+1 (and k �= 0), then it
follows from (3.2) that

N(K, �k)�k = 4k�k2n+14
γ(k2n+1−k) = 4k2n+1�k2n+14

k−k2n+1+γ(k2n+1−k)

= 4k2n+1�k2n+14
(γ−1)(k2n+1−k)

� 1
n .

Now fix k2n−1 ≤ k ≤ k2n. Similarly to the estimate above

N(K, �k)�k = 4k�k2n−14
−n(k−k2n−1) = 4k2n−1�k2n−14

k−k2n−1−n(k−k2n−1)

≤ 4k2n−1�k2n−1

� 1
n−1 .

As a consequence we note that N(K, �k)�k → 0 as k → ∞.
Next consider a general ε > 0 small. Assume that k is such that �k+1 ≤ ε ≤

�k. Clearly, ε → 0 implies that k → ∞.
It holds N(K, ε) ≤ N(K, �k+1) = 4N(K, �k) and therefore

N(K, ε)ε ≤ 4N(K, �k)�k
ε

�k
≤ 4N(K, �k)�k.

Thus limε↓0 N(K, ε)ε = 0 and this concludes the proof. �
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Lemma 3.3. dimH(K) = dimbox(K) = 0.

Proof. To prove the lemma we shall use the scales �k2n
. Clearly, there are

4k2n squares in Ck2n
with diameter �k2n

. Thus N(K, �k2n
) ≤ 4k2n . With the

estimates in Lemma 3.1 we obtain �k2n
≤ 4(n−γ)k2n−1−nk2n . Thus

log4 N(K, �k2n
)

log4 �−1
k2n

≤ k2n

k2n(n − (n − γ)k2n−1/k2n)
=

1
n − (n − γ)k2n−1/k2n

.

Because (n − γ)k2n−1/k2n is bounded in n by (3.1) it follows that

lim
n→∞

log4 N(K, �k2n
)

log4 �−1
k2n

= 0

and thus dimbox(K) = 0. It is a general fact that dimH(K) ≤ dimbox(K) and
hence also dimH(K) = 0. But this can also be verified by a direct computation:
For any t > 0 and all n ≥ 1

H t
�k2n

(K) ≤ H t
�k2n

(Kk2n
) ≤ 4k2n4tk2n((n−γ)k2n−1/k2n−n)

= 4k2n(1+t(n−γ)k2n−1/k2n−tn),

and this converges to zero because the exponent goes to −∞ for n → ∞. �
Remark 3.4. Using the scales �k2n+1,

one can show that dimbox(K) ≥ 1. By
Lemma 3.2 we obtain that in fact dimbox(K) = 1.

In order to show that K can not be covered by countably many rectifiable
curves we shall use the theorem of Jones [9].

Lemma 3.5. β2(K) = ∞, and therefore K can not be covered by a curve γ :
[0, 1] → R

2 of finite length.

Proof. Let n ≥ 1 and set k′
n := k2n+1 − 1. Let in be the unique integer such

that 2−in ≤ �k′
n

< 2−in+1. Because �k2n+1 = 4−γ�k′
n

and 1
4 < 4−γ < 1

2 it holds
that

2−in−2 ≤ �k2n+1 ≤ 2−in . (3.3)

Let An be the corner set of squares in Ck′
n
. It holds that An ⊂ K, 	A = 4k′

n+1,
and |a − b| ≥ �k′

n
≥ 2−in for different corners a, b ∈ An of the same square

in Ck′
n
. Let us denote by Din

the collection of dyadic squares Q in R
2 with

side length 2−in such that Q ∩ An �= ∅. By the reasoning as in the proof of
Lemma 3.2 a square in Din

can cover at most 4 points of An and thus

	Din
≥ 4k′

n = 4k2n+1−1. (3.4)

Because of (3.3), for any square Q ∈ Din
, the square 3Q contains some Q′ ∈

Ck2n+1 of side length �k2n+1 ≥ 2−in−2. Thus

βK(3Q) =
ω(3Q)
�(3Q)

≥ �(Q′)
3�(Q)

≥ 2−in−2

3 · 2−in
=

1
12

. (3.5)

Therefore with (3.3), (3.4), (3.5), and (3.2)
∑

Q∈Din

β2
K(3Q)�(Q) � (	Din

) · 2−in ≥ 4k2n+1−1�k2n+1 � 1
n .
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Thus

β2(K) �
∑

n≥1

1
n

= ∞. �

We are now ready to prove Theorem 1.4 for d = 1.
Proof of Theorem 1.4 for K1. The statements on the dimension of K are
contained in Lemma 3.3. The condition (1.3) is covered by Lemma 3.2. Due
to Lemma 3.5, the set K can not be covered by a single curve of finite length.

Now assume by contradiction that K can be covered by countably many
curves Γi, i ∈ N, of finite length. Taking the closure, we may assume that the
sets Γi are compact. Since Γ1 can not cover K, there exists a point p1 ∈ K \Γi.
Since p1 has positive distance to Γi, there exists some j1 and a square Q1 ⊂ Cj1

that contains p1 such that Q1 ∩ Γ1 = ∅.
Now we recursively define an increasing sequence j1 < j2 < · · · and Q1 ⊃

Q2 ⊃ · · · with Qi ∈ Cji
and Qi∩(Γ1∪· · ·∪Γi) = ∅. Assume we have constructed

this for the index i−1. Now since K is composed of disjoint copies of Qi−1∩K,
the set K ∩ Qi−1 can not be covered by a curve of finite length (otherwise K
could be covered by a curve of finite length). Thus as for i = 1 we find ji,
Qji

∈ Cji
with Qji

⊂ Qji−1 such that Qi ∩ Γi = ∅. Thus Qi is disjoint from all
the curves up to Γi. Since K is complete, the set

⋂
i≥1(K ∩ Qi) is nonempty

and disjoint from all the curves Γi.
This proves the theorem for K1. �

3.2. Construction of Kd. Let us recall that the construction of K = K1 above
depends on a certain parameter 1

2 < γ < 1. For the construction of Kd = K ′

we will consider another parameter 1
2 < δ ≤ γ and define K ′ ⊂ R

2 as follows.
The compact set K ′ ⊂ R

2 is obtained as K ′ =
⋂

k≥0 K ′
k where Kk is the

union of a collection C ′
k of 4k disjoint closed squares depending on γ, δ, and

the sequence (kn)n already defined above for K. Each square in C ′
k has side

length �′
k. Again C ′

0 = {K ′
0} where K ′

0 := [0, 1]2 and hence �′
0 = 1. In the

case k2n ≤ k < k2n+1 for some n ≥ 0 each square in Ck is replaced by the 4
corner squares with side length �′

k+1 = 1
4δ �′

k. Again these squares are disjoint
because 1

4δ < 1
2 by the restriction on δ. These new squares compose C ′

k+1. In
the case k2n−1 ≤ k < k2n for some n ≥ 1 each square in C ′

k is replaced by the
4 corner squares of side length �′

k+1 = 1
4nδ/γ �′

k (note that nδ/γ > 1
2 ). From

this construction and the fact that �0 = �′
0 it is clear that �′

k = �
δ/γ
k for each k.

Consider the map F : K ′ → K defined as follows: There is an obvious
correspondence between squares in C ′

k and Ck for all k and let Fk : K ′
k →

Kk be the map that sends each square in C ′
k to its corresponding square in

Ck by an affine map. We claim that Fk converges uniformly to a map F on
K ′. To see this we shall check that the sequence (Fm(x))m is a uniformly
Cauchy sequence for x ∈ K ′. Indeed, pick a point x ∈ Q′ for some square
Q′ ∈ C ′

k with corresponding square Q ∈ Ck, then Fl(x) ∈ Q for all l ≥ k. So
|Fl(x) − Fm(x)| ≤ diam(Q) = �k for all l,m ≥ k.

Fix x, y ∈ K ′ and let k be the largest integer such that x, y ∈ Q′ for
some Q′ ∈ C ′

k but x and y are in different squares Q′
x and Q′

y of C ′
k+1. The
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corresponding squares are denoted by Q, Qx, and Qy respectively. There is a
constant c ≥ 1 depending only on γ and δ such that

cdist(Q′
x, Q′

y) ≥ �′
k and cdist(Qx, Qy) ≥ �k.

Thus

|F (x) − F (y)| ≤ diam(Q) = �k = �
′γ/δ
k ≤ cγ/δ dist(Q′

x, Q′
y)γ/δ

≤ cγ/δ|x − y|γ/δ.

Notice also that F : K ′ → K is a bijection. By a similar consideration as
above we obtain that |F−1(x) − F−1(x)| ≤ cδ/γ |x − y|δ/γ . Thus we get for all
x, y ∈ K ′ that

L−1|x − y|γ/δ ≤ |F (x) − F (y)| ≤ Lδ/γ |x − y|γ/δ (3.6)

for some constant L ≥ 1 depending only on γ and δ. This implies as in Propo-
sition 1.1 that for 0 < ε < 1

L−1N(K ′, ε) ≤ N(K, εγ/δ) ≤ LN(K ′, ε) (3.7)

for a constant L independent of ε.

Proof of Theorem 1.4. Using the corresponding results for K, Proposition 1.1
and (3.6), we obtain

0 ≤ dimH(K ′) ≤ dimbox(K
′) ≤ γ

δ dimbox(K) = 0 .

Now (3.7) implies

lim sup
ε↓0

N(K ′, ε)εγ/δ ≤ lim sup
ε↓0

N(K, εγ/δ)εγ/δ = 0 .

The fact that K ′ cannot be covered by countably many δ
γ -Hölder curves will be

deduced from the fact that K cannot be covered by countably many Lipschitz
curves.

In order to see this assume first that there is a δ
γ -Hölder curve σ : [0, 1] → R

2

that covers K ′ and set A := σ−1(K ′). Then (F ◦ σ)|A : A → K is a Lipschitz
cover of K. This map can be extended as a Lipschitz map to the whole interval
[0, 1]. But this is not possible by our previous result.

So there is no such curve that covers K ′. The analogous argument as for K
now shows that K ′ can’t be covered by countably many δ

γ -Hölder curves. Note
that by Corollary 1.3 we have that dimbox(K ′) ≥ γ

δ and by construction the
fraction γ

δ can take any value in [1, 2). This finishes the proof of Theorem 1.4.
�
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