Kaliman, Shulim; Kutzschebauch, Frank; Leuenberger, Matthias (2020). Complete algebraic vector fields on affine surfaces. International journal of mathematics, 31(3), 50 pp. World Scientific 10.1142/S0129167X20500184
|
Text
1411.5484.pdf - Submitted Version Available under License Publisher holds Copyright. Download (554kB) | Preview |
Let $AAut_{hol}(X)$ be the subgroup of the group $Aut_{hol}(X)$ of holomorphic automorphisms of a normal affine algebraic surface X generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces X quasi-homogeneous under $AAut_{hol}(X)$ in terms of the dual graphs of the boundaries X̄ \X of their SNC-completions X̄ .
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Kutzschebauch, Werner Frank |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
0129-167X |
Publisher: |
World Scientific |
Funders: |
[42] Schweizerischer Nationalfonds |
Language: |
English |
Submitter: |
Sebastiano Don |
Date Deposited: |
28 Jan 2021 18:54 |
Last Modified: |
05 Dec 2022 15:45 |
Publisher DOI: |
10.1142/S0129167X20500184 |
ArXiv ID: |
1411.5484 |
Uncontrolled Keywords: |
affine varieties, group actions, one parameter subgroups, transitivity |
BORIS DOI: |
10.48350/151230 |
URI: |
https://boris.unibe.ch/id/eprint/151230 |