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ON THE CONVERGENCE OF

ADAPTIVE ITERATIVE LINEARIZED GALERKIN METHODS

PASCAL HEID AND THOMAS P. WIHLER

Abstract. A wide variety of different (fixed-point) iterative methods for the solution of non-

linear equations exists. In this work we will revisit a unified iteration scheme in Hilbert spaces
from our previous work [12] that covers some prominent procedures (including the Zaran-

tonello, Kačanov and Newton iteration methods). In combination with appropriate discretiza-

tion methods so-called (adaptive) iterative linearized Galerkin (ILG) schemes are obtained.
The main purpose of this paper is the derivation of an abstract convergence theory for the

unified ILG approach (based on general adaptive Galerkin discretization methods) proposed

in [12]. The theoretical results will be tested and compared for the aforementioned three iter-
ative linearization schemes in the context of adaptive finite element discretizations of strongly

monotone stationary conservation laws.

1. Introduction

In this paper we analyze the convergence of adaptive iterative linearized Galerkin (ILG) meth-
ods for nonlinear problems with strongly monotone operators. To set the stage, we consider a
real Hilbert space X with inner product (·, ·)X and induced norm denoted by ‖ · ‖X . Then, given
a nonlinear operator F : X → X?, we focus on the equation

u ∈ X : F(u) = 0 in X?, (1)

where X? denotes the dual space of X. In weak form, this problem reads

u ∈ X : 〈F(u), v〉X?×X = 0 for all v ∈ X, (2)

with 〈·, ·〉X?×X signifying the duality pairing in X?×X. For the purpose of this work, we suppose
that F satisfies the following conditions:

(F1) The operator F is Lipschitz continuous, i.e. it exists a constant LF > 0 such that∣∣〈F(u)− F(v), w〉X?×X
∣∣ ≤ LF ‖u− v‖X ‖w‖X ,

for all u, v, w ∈ X.
(F2) The operator F is strongly monotone, i.e. there is a constant ν > 0 such that

ν ‖u− v‖2X ≤ 〈F(u)− F(v), u− v〉X?×X ,

for all u, v ∈ X.

Given the properties (F1) and (F2), the main theorem of strongly monotone operators states
that (1) has a unique solution u? ∈ X; see, e.g., [16, §3.3] or [18, Theorem 25.B].
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2 CONVERGENCE OF ADAPTIVE ILG METHODS

Iterative linearization. The existence of a solution to the nonlinear equation (1) can be es-
tablished in a constructive way. This can be accomplished, for instance, by transforming (1)
into an appropriate fixed-point form, which, in turn, induces a potentially convergent fixed-point
iteration scheme. To this end, following our approach in [12], for some given v ∈ X, we consider
a linear and invertible preconditioning operator A[v] : X → X?. Then, applying A[v]−1 to (1)
leads to the fixed-point equation

u = u− A[v]−1F(u).

For any suitable initial guess u0 ∈ X, the above identity motivates the iteration scheme

un+1 = un − A[un]−1F(un), n ≥ 0.

Equivalently, we have

un+1 ∈ X : A[un]un+1 = A[un]un − F(un), n ≥ 0. (3)

For given un ∈ X, we emphasize that the above problem of solving for un+1 is linear ; conse-
quently, we call (3) an iterative linearization scheme for (1). Letting

f : X → X?, f(u) := A[u]u− F(u), (4)

we may write

A[un]un+1 = f(un), n ≥ 0. (5)

In order to discuss the weak form of (5), for a prescribed u ∈ X, we introduce the bilinear form

a(u; v, w) := 〈A[u]v, w〉X?×X , v, w ∈ X. (6)

Then, based on un ∈ X, the solution un+1 ∈ X of (5) can be obtained from the weak formulation

a(un;un+1, w) = 〈f(un), w〉X?×X ∀w ∈ X. (7)

Throughout this paper, for any u ∈ X, we assume that the bilinear form a(u; ·, ·) is uniformly
coercive and bounded. The latter two assumptions refer to the fact that there are two con-
stants α, β > 0 independent of u ∈ X, such that

a(u; v, v) ≥ α‖v‖2X ∀v ∈ X, (8)

and
a(u; v, w) ≤ β ‖v‖X ‖w‖X ∀v, w ∈ X, (9)

respectively. In particular, owing to the Lax-Milgram Theorem, these properties imply the well-
posedness of the solution un+1 ∈ X of the linear equation (7), for any given un ∈ X.

Let us briefly review some prominent procedures that can be cast into the framework of the
linearized fixed-point iteration (7): For instance, we point to the Zarantonello iteration given by

(un+1, ·)X = (un, ·)X − δ 〈F(un), ·〉X?×X , n ≥ 0, (10)

with δ > 0 being a sufficiently small parameter; cf. Zarantonello’s original report [17], or the
monographs [16, §3.3] and [18, §25.4]. A further example is the Kačanov scheme which reads

A[un]un+1 = g, n ≥ 0, (11)

in the special case that g = A[u]u− F(u) is independent of u. Finally, we mention the (damped)
Newton method which is defined by

F′(un)un+1 = F′(un)un − δ(un)F(un), n ≥ 0, (12)

for a damping parameter δ(un) > 0. Here F′ signifies the Gâteaux derivative of F (provided that
it exists). For any of the above three iterative procedures, we emphasize that convergence to the
unique solution of (1) can be guaranteed under suitable conditions; see our previous work [12]
for details.
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The ILG approach. Consider a finite dimensional subspace XN ⊂ X. Then, the Galerkin
approximation of (2) in XN reads as follows:

u?N ∈ XN : 〈F(u?N ), v〉X?×X = 0 ∀v ∈ XN . (13)

We note that (13) has a unique solution u?N ∈ XN since the restriction F|XN
still satisfies the

conditions (F1) and (F2) above. The iterative linearized Galerkin (ILG) approach is based on
discretizing the iteration scheme (7). Specifically, a Galerkin approximation un+1

N ∈ XN of u?N ,
based on a prescribed initial guess u0

N ∈ XN , is obtained by solving iteratively the linear discrete
problem

un+1
N ∈ XN : a(unN ;un+1

N , v) = 〈f(unN ), v〉X?×X ∀v ∈ XN , (14)

for n ≥ 0. For the resulting sequence {unN}n≥0 ⊂ XN of discrete solutions it is possible, based
on elliptic reconstruction techniques (cf., e.g., [13, 14]), to obtain general (abstract) a posteriori
estimates for the difference to the exact solution, u? ∈ X, of (1), i.e. for ‖u? − un+1

N ‖X , n ≥ 0,
see [12, §3]. Based on such a posteriori error estimators, an adaptive ILG algorithm that exploits
an efficient interplay of the iterative linearization scheme (14) and automatic Galerkin space
enrichments was proposed in [12, §4]; see also [6]. We refer to some related works in the context
of (inexact) Newton schemes [1, 2, 8, 9], or of the Kačanov iteration [4, 11].

Goal of this paper. The convergence of an adaptive Kačanov algorithm, which is based on a
finite element discretization, for the numerical solution of quasi-linear elliptic partial differential
equations has been studied in [11]. Furthermore, more recently, the authors of [10] have proposed
and analyzed an adaptive algorithm for the numerical solution of (1) within the specific context
of a finite element discretization of the Zarantonello iteration (10). The latter paper includes
an analysis of the convergence rate which is related to the work [5] on optimal convergence for
adaptive finite element methods within a more general abstract framework. The purpose of the
current paper is to generalize the adaptive ILG algorithm from [10] to the framework of the unified
iterative linearization scheme (5); furthermore, arbitrary (conforming) Galerkin discretizations
will be considered. In order to provide a convergence analysis for the ILG scheme (14) within
this general abstract setting, we will follow along the lines of [10], however, we emphasize that
some significant modifications in the analysis are required. Indeed, whilst the theory in [10]
relies on a contraction argument for the Zarantonello iteration, this favourable property is not
available for the general iterative linearization scheme (5). To address this difficulty, we derive a
contraction-like property instead. This observation will then suffice to establish the convergence
of the adaptive ILG scheme, and to (uniformly) bound the number of linearization steps on
each (fixed) Galerkin space similar to [10]; we note that the latter property constitutes a crucial
ingredient with regards to the (linear) computational complexity of adaptive iterative linearized
finite element schemes.

Outline. Section 2 contains a convergence analysis of the unified iteration scheme (5). On that
account we will encounter a contraction-like property, which is key for the subsequent analysis of
the convergence rate of the adaptive ILG algorithm in Section 3. Here, in addition, a (uniform)
bound of the iterative linearization steps on each discrete space will be shown. In Section 4,
we will test our ILG algorithm in the context of finite element discretizations of stationary
conservation laws. Finally, we add a few concluding remarks in Section 5.

2. Iterative linearization

In this first section we will address the convergence of the linearized iteration (5). We begin
with the following a posteriori error estimate.
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Lemma 2.1. Consider the sequence {un}n≥0 ⊂ X generated by the iteration (5). If F satis-
fies (F1)–(F2), and a(u; ·, ·), for u ∈ X, fulfils (8)–(9), then it holds the bound

‖u? − un‖X ≤ C15

∥∥un − un−1
∥∥
X
, with C15 := 1 + β/ν, (15)

for any n ≥ 1.

Proof. By invoking (F2), and since u? is the (unique) solution of (1), for n ≥ 1, we find that

ν
∥∥u? − un−1

∥∥2

X
≤
〈
F(u?)− F(un−1), u? − un−1

〉
X?×X =

〈
F(un−1), un−1 − u?

〉
X?×X .

Employing (4), (7), and (9), we further get

ν
∥∥u? − un−1

∥∥2

X
≤ a(un−1;un−1 − un, un−1 − u?) ≤ β

∥∥un − un−1
∥∥
X

∥∥un−1 − u?
∥∥
X
,

and thus ∥∥u? − un−1
∥∥
X
≤ βν−1

∥∥un − un−1
∥∥
X
.

By the triangle inequality, this leads to

‖u? − un‖X ≤
∥∥un − un−1

∥∥
X

+
∥∥u? − un−1

∥∥
X
≤ C15

∥∥un − un−1
∥∥
X
,

which completes the proof. �

Remark 2.2. We note that the above result equally holds if (2) and (5) are restricted to any
closed subspace of X.

2.1. Potentials. In addition to (F1) and (F2), let us make a further assumption on the (non-
linear) operator F from (1), which will play an essential role in the ensuing analysis.

(F3) The operator F possesses a potential, i.e. it exists a Gâteaux differentiable functional
H : X → R such that H′ = F.

We notice the following relation between the norm ‖ · ‖X and the potential H.

Lemma 2.3. Suppose that the operator F satisfies (F1)–(F3), and denote by u? ∈ X the unique
solution of (1). Then, we have the estimate

ν

2
‖u? − u‖2X ≤ H(u)− H(u?) ≤ LF

2
‖u? − u‖2X ∀u ∈ X. (16)

In particular, H takes its minimum at u?.

Proof. For fixed u ∈ X, define the real-valued function ϕ(t) := H(u? + t(u − u?)), for t ∈ [0, 1].
Taking the derivative leads to

ϕ′(t) = 〈H′(u? + t(u− u?)), u− u?〉X?×X = 〈F(u? + t(u− u?)), u− u?〉X?×X .

By invoking the fundamental theorem of calculus and implementing (1), this yields

H(u)− H(u?) =

∫ 1

0

〈F(u? + t(u− u?)), u− u?〉X?×X dt

=

∫ 1

0

〈F(u? + t(u− u?))− F(u?), u− u?〉X?×X dt.

Applying the assumptions (F1) and (F2) we can bound the integrand from above and below,
respectively. Indeed, the strong monotonicity (F2) implies that

H(u)− H(u?) =

∫ 1

0

t−1 〈F(u? + t(u− u?))− F(u?), t(u− u?)〉X?×X dt ≥
∫ 1

0

νt ‖u? − u‖2X dt,

and therefore,

H(u)− H(u?) ≥ ν

2
‖u? − u‖2X .
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Likewise, by invoking (F1) instead of (F2), we find that

H(u)− H(u?) ≤ LF

2
‖u? − u‖2X .

Combining the above bounds leads to (16). �

2.2. Contractivity. In order to state and prove the main result of this section, see Theorem 2.7
below, we impose a monotonicity condition on the sequence generated by the iterative lineariza-
tion scheme (5).

(F4) There is a constant CH > 0 such that the sequence defined by (5) fulfils the bound

H(un−1)− H(un) ≥ CH

∥∥un − un−1
∥∥2

X
∀n ≥ 1, (17)

where H is the potential of F introduced in (F3).

Proposition 2.4. Suppose that (F1)–(F4) are satisfied. Furthermore, let the bilinear form
a(·; ·, ·) from (7) be coercive and bounded, cf. (8) and (9), respectively. Then, for any k ≥ 1, the
sequence {un}n≥0 from (5) satisfies the estimate

∞∑
j=k+1

∥∥uj − uj−1
∥∥2

X
≤ C19

∥∥uk − uk−1
∥∥2

X
, (18)

with

C19 :=
LFC

2
15

2CH
. (19)

Moreover, the contraction-like property∥∥un − un−1
∥∥2

X
≤ C19

(
1 + C−1

19

)2−n ∥∥u1 − u0
∥∥2

X
(20)

holds true for any n ≥ 2.

Before turning to the proof of the above proposition, we establish an auxiliary result.

Lemma 2.5. Consider a sequence {aj}∞j=1 ⊂ [0,∞) which satisfies the estimate

c

∞∑
j=k+1

aj ≤ ak ∀k ≥ 1, (21)

for some constant c > 0. Then, it holds the bound aj ≤ c−1(1 + c)2−ja1, for any j ≥ 2.

Proof. Let us define the sequence bk :=
∑∞
j=k aj , k ≥ 1. Using (21), we note that

bk = ak +

∞∑
j=k+1

aj = ak + bk+1 ≥ (c+ 1)bk+1,

for all k ≥ 1. By induction, this implies that b2 ≥ (c + 1)k−2bk for any k ≥ 2. Therefore, we
infer that

a1 ≥ cb2 ≥ c(c+ 1)k−2bk ≥ c(c+ 1)k−2ak ∀k ≥ 2.

Rearranging terms completes the proof. �

Proof of Proposition 2.4. Let n > k ≥ 1 be arbitrary. Then, we note the telescope sum

H(uk)− H(un) =

n−1∑
j=k

(
H(uj)− H(uj+1)

)
.
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Thus, by virtue of (17), we infer that

H(uk)− H(un) ≥ CH

n−1∑
j=k

∥∥uj+1 − uj
∥∥2

X
. (22)

We aim to bound the left-hand side. To this end, we employ Lemma 2.3, which implies that

H(uk)− H(un) ≤ H(uk)− H(u?) ≤ LF

2

∥∥u? − uk∥∥2

X
.

This, together with Lemma 2.1, leads to

H(uk)− H(un) ≤ LF

2
C2

15

∥∥uk − uk−1
∥∥2

X
. (23)

Combining (22) and (23) yields

n−1∑
j=k

∥∥uj+1 − uj
∥∥2

X
≤ C19

∥∥uk − uk−1
∥∥2

X
.

Letting n → ∞, we obtain (18). Moreover, upon setting c := C−1
19 and aj := ‖uj − uj−1‖2X ,

j ≥ 1, the bound (18) takes the form (21). Hence, applying Lemma 2.5, we deduce (20). �

From (20) we immediately obtain the following result.

Corollary 2.6. Under the assumptions of Proposition 2.4, it follows that
∥∥un − un−1

∥∥
X

is a
null sequence as n→∞.

2.3. Convergence. We are now ready to state and prove the main result of this section.

Theorem 2.7. Suppose that (F1)–(F4) as well as (8) and (9) hold true. Then, the sequence
{un}n≥0 obtained from the iterative linearization procedure (5) converges to the unique solution
u? ∈ X of (1).

Proof. Combining Lemma 2.1 and Corollary 2.6 directly implies the convergence of the linearized
iteration scheme (5). �

Remark 2.8. In the proof of Theorem 2.7 the application of Lemma 2.1 can be replaced by
using [12, Proposition 2.1] instead. We note that the latter result does not require property (F1)
to hold. Indeed, assume that (F2), (8) and (9) are satisfied, and that u 7→ a(u;u, ·) and u 7→ f(u)
are continuous mappings from X into its dual space X? with respect to the weak topology on
X?. Then, if the sequence {un}n≥0 defined by (5) satisfies ‖un − un−1‖X → 0 as n → ∞, it
converges to the unique solution u? ∈ X of (1).

2.4. Some remarks on condition (F4). Suppose that the assumptions (F1)–(F3) are satisfied,
and consider the sequence {un}n≥0 generated by the iteration (5). Analogously as in the proof
of Lemma 2.3, for fixed n ≥ 1, we define the real-valued function ϕ(t) := H(un−1 + t(un−un−1)),
for t ∈ [0, 1]. Then, it holds the identity

H(un−1)− H(un) = −
∫ 1

0

〈
F(un−1 + t(un − un−1))− F(un−1), un − un−1

〉
X?×X dt

−
〈
F(un−1), un − un−1

〉
X?×X .

Using (4) and (7), we note that

−
〈
F(un−1), un − un−1

〉
X?×X = a(un−1;un − un−1, un − un−1).
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Hence,

H(un−1)− H(un) = −
∫ 1

0

〈
F(un−1 + t(un − un−1))− F(un−1), un − un−1

〉
X?×X dt

+ a(un−1;un − un−1, un − un−1).

Consequently, if the bilinear form a(u; ·, ·), for any given u ∈ X, is uniformly coercive with
constant α > LF/2, cf. (8), where LF refers to the Lipschitz constant occurring in (F1), then we
obtain that

H(un−1)− H(un) ≥ α
∥∥un − un−1

∥∥2

X
−
∫ 1

0

tLF

∥∥un − un−1
∥∥2

X
dt =

(
α− LF

2

)∥∥un − un−1
∥∥2

X
,

i.e. (17) is satisfied with CH = α− LF/2 > 0.

Proposition 2.9. If F satisfies (F1)–(F3), and the bilinear form a(·; ·, ·) from the unified iteration
scheme (5) is coercive with coercivity constant α > LF/2, cf. (8), then (F4) holds true.

Remark 2.10. For the Zarantonello iteration scheme (10) we note that a(u; v, w) = δ−1(v, w)X ,
for u, v, w ∈ X, in (6). Then, we have that

a(u; v, v) =
1

δ
‖v‖2X ∀u, v ∈ X,

which, upon using Proposition 2.9, shows that (F4) is satisfied for any δ ∈ (0, 2/LF). Under
suitable assumptions, a similar observation can be made for the Newton method (12) provided
that the damping parameter δ(un) is chosen sufficiently small; cf. [12, Theorem 2.6].

Remark 2.11. The above Proposition 2.9 delivers a sufficient condition for (F4). We note,
however, that it is not necessary. In particular, if the coercivity constant α in (8) is much
smaller than the Lipschitz constant LF from (F1), then the bound on α in Proposition 2.9 is
violated. Nonetheless, in that case, we can still satisfy (17) by imposing alternative assumptions;
cf., e.g., (K2) in [12].

3. Adaptive ILG Discretizations

In this section, following the recent approach [10], we will present an adaptive ILG algorithm
that exploits an interplay of the unified iterative linearization procedure (5) and abstract adaptive
Galerkin discretizations thereof, cf. (14). Moreover, we will establish the (linear) convergence
of the resulting sequence of approximations to the unique solution of (1), and comment on the
uniform boundedness of the iterative linearization steps on each discrete space. We proceed along
the ideas of [10, §4 and §5], and generalize those results to the abstract framework considered in
the current paper. Throughout this section, we will assume that any iterative linearization is of
the form (7), with (8) and (9) being satisfied.

3.1. Abstract error estimators. We generalize the assumptions on the finite element refine-
ment indicator from [10, §4]. Let us consider a sequence of hierarchical finite dimensional Galerkin
subspaces {XN}N≥0 ⊂ X, i.e.

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X. (24)

Suppose that, for any N ≥ 0, there is a computable error estimator

ηN : XN → [0,∞), (25)

which satisfies the following two properties:

(A1) For all u, v ∈ XN it holds that

|ηN (u)− ηN (v)| ≤ C26 ‖u− v‖X . (26)
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(A2) The error of the discrete solution u?N ∈ XN from (13) is controlled by the a posteriori
error bound

‖u? − u?N‖X ≤ C27ηN (u?N ), (27)

where u? ∈ X is the exact solution of (1).

Here, C26, C27 ≥ 1 are two constants.
The following result shows that the two estimators for unN and u?N are equivalent once the

linearization error is small enough.

Lemma 3.1. Suppose that F satisfies (F1)–(F2), and that the a posteriori estimator fulfils (A1).
Furthermore, for some n ≥ 1, assume that∥∥unN − un−1

N

∥∥
X
≤ ληN (unN ), (28)

with a constant λ ∈ (0, C−1
29 ), where

C29 := C15C26. (29)

Then, we have that

‖u?N − unN‖X ≤ λC15 min
{
ηN (unN ), (1− λC29)−1ηN (u?N )

}
. (30)

Moreover, the two error estimators ηN (unN ) and ηN (u?N ) are equivalent in the sense that

(1− λC29)ηN (unN ) ≤ ηN (u?N ) ≤ (1 + λC29)ηN (unN ). (31)

Proof. Owing to Lemma 2.1 and Remark 2.2, and due to (28), it holds that

‖u?N − unN‖X ≤ C15

∥∥unN − un−1
N

∥∥
X
≤ λC15ηN (unN ). (32)

Invoking the Lipschitz continuity (A1), we obtain

‖u?N − unN‖X ≤ λC15 (ηN (u?N ) + C26 ‖u?N − unN‖X) .

Since λ < C−1
29 we have that λC15C26 = λC29 < 1. Hence, manipulating the above inequality

yields

‖u?N − unN‖X ≤
λC15

1− λC29
ηN (u?N ). (33)

Combining the two inequalities (32) and (33) gives the bound (30). Moreover, applying (A1), as
before, and using (32), we infer that

ηN (u?N ) ≤ ηN (unN ) + C26 ‖u?N − unN‖X ≤ (1 + λC29)ηN (unN ).

Similarly, employing (33), it follows that

ηN (unN ) ≤ ηN (u?N ) + C26 ‖u?N − unN‖X ≤
(

1 +
λC29

1− λC29

)
ηN (u?N ) =

1

1− λC29
ηN (u?N ).

This completes the argument. �

3.2. Adaptive ILG algorithm. We focus on the adaptive algorithm from [10], which was
studied in the context of finite element discretizations of the Zarantonello iteration (10). It is
closely related to the general adaptive ILG scheme in [12]. The key idea is the same in both
algorithms: On a given Galerkin space, we iterate the linearization scheme (14) as long as the
linearization error dominates. Once the ratio of the linearization error and the a posteriori error
bound is sufficiently small, we enrich the Galerkin space in a suitable way.

Remark 3.2. We emphasize that we do not know (a priori) if the while loop of Algorithm 1
always terminates after finitely many steps. Moreover, it may happen that ηN (uN ) = 0, for some
N ≥ 0, i.e. the algorithm terminates. Let us provide two comments on this issue:
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Algorithm 1 Adaptive ILG algorithm

1: Prescribe a tolerance εtol > 0, and an adaptivity parameter λ > 0. Moreover, set N := 0
and n := 0. Start with an initial Galerkin space X0 ⊂ X, and an arbitrary initial guess
u0

0 ∈ X0.
2: repeat
3: Set Ξ0

N := 1 and Υ0
N := 0.

4: while ΞnN > λΥn
N do

5: Perform a single iterative linearization step (14) to obtain un+1
N from unN .

6: Update n← n+ 1.
7: Set ΞnN := ‖unN −u

n−1
N ‖X , and compute the error estimator Υn

N := ηN (unN ) from (25).
8: end while
9: Let uN := unN ∈ XN , and enrich the Galerkin space XN appropriately based on the error

estimator ηN (uN ) in order to obtain XN+1.

10: Define u0
N+1 := uN by inclusion XN+1 ←↩ XN .

11: Update N ← N + 1, and set n := 0.
12: until ηN (unN ) < εtol.
13: return the sequence of discrete solutions uN ∈ XN .

(a) Suppose that there is an enrichment XN of X0 generated by the above Algorithm 1 such
that ΞnN > λΥn

N for all n ≥ 0; in this situation, the while loop will never end. Given the
assumptions of Proposition 2.4, it follows from Corollary 2.6 that ΞnN → 0 as n → ∞. In
addition, by virtue of Theorem 2.7 (applied to the discrete setting (13) and (14)), we have
that unN → u?N as n → ∞. Then, invoking the reliability (A2) and the continuity (A1), we
conclude that

‖u? − u?N‖X ≤ C27ηN (u?N ) = C27 lim
n→∞

ηN (unN ) = C27 lim
n→∞

Υn
N ≤ C27 lim

n→∞
λ−1ΞnN = 0.

It follows that u? = u?N , and therefore unN → u? as n → ∞. In particular, Algorithm 1 will
generate an approximate solution which, for sufficiently large n, is arbitrarily close to the
exact solution of (1).

(b) If, for some n,N ∈ N, the while loop terminates, then we have the bound ΞnN ≤ λΥn
N . Thus,

in the special situation where Υn
N = ηN (unN ) = 0, we directly obtain that ΞnN = 0. Then,

employing Lemma 2.1 and Remark 2.2, we find that ‖u?N − unN‖X ≤ C15‖unN − u
n−1
N ‖X = 0,

i.e. u?N = unN . Consequently, recalling (A2), we deduce that

‖u? − unN‖X = ‖u? − u?N‖X ≤ C27ηN (u?N ) = C27Υn
N = 0.

We obtain that unN = u?, i.e. the exact solution of (1) is found.

3.3. Perturbed contractivity. We will now turn to the proof of the convergence of Algo-
rithm 1. More precisely, we will show that the sequence uN generated by the above ILG proce-
dure converges, under certain assumptions, to the exact solution u? of (1). In view of Remark 3.2
we may assume that the while loop always terminates after finitely many steps with ηN (uN ) > 0
for all N ≥ 0.

We begin with the following result, which corresponds to [10, Proposition 4.10]. Since we
consider general Galerkin discretizations, an additional assumption, cf. the perturbed contrac-
tion (34) below, is imposed.

Proposition 3.3. Let (F1)–(F2) and (A1) be satisfied, and λ ∈ (0, C−1
29 ) be given. Moreover,

for each N ≥ 0, assume that the while loop of Algorithm 1 terminates after finitely many steps,
thereby yielding an output uN ∈ XN , with ηN (uN ) > 0. Furthermore, suppose that there are
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constants 0 < q34 < 1 and C34 > 0 such that it holds the perturbed contraction bound

ηN+1(u?N+1)2 ≤ q34ηN (u?N )2 + C34

∥∥u?N+1 − u?N
∥∥2

X
∀N ≥ 0, (34)

where u?N ∈ XN is the unique solution of (13). Then, we have that ηN (uN )→ 0 as N →∞.

Proof. Set X∞ :=
⋃
N≥0XN , and denote by u?∞ ∈ X∞ the solution of the weak formulation

u?∞ ∈ X∞ : 〈F(u?∞), v〉X?×X = 0 ∀v ∈ X∞.

For any N ≥ 0, Galerkin orthogonality reads 〈F(u?∞)− F(u?N ), v〉X?×X = 0 for all v ∈ XN . Thus,

by the Lipschitz continuity (F1) and strong monotonicity (F2) we find that

ν ‖u?∞ − u?N‖
2
X ≤ 〈F(u?∞)− F(u?N ), u?∞ − u?N 〉X?×X

= 〈F(u?∞)− F(u?N ), u?∞ − v〉X?×X

≤ LF ‖u?∞ − u?N‖X ‖u
?
∞ − v‖X ,

for any v ∈ XN . This results in the Céa type estimate

‖u?∞ − u?N‖X ≤
LF

ν
min
v∈XN

‖u?∞ − v‖X . (35)

Recalling the nestedness (24) of the Galerkin spaces, and exploiting the definition of X∞, the
above bound (35) directly implies that u?N → u?∞ for N → ∞. Consequently, we deduce that∥∥u?N+1 − u?N

∥∥
X
→ 0 for N →∞. Hence, by (34), the estimator ηN (u?N )2, N ≥ 0, is contractive

up to a non-negative perturbation which tends to 0. This implies that ηN (u?N )→ 0 as N →∞,

see, e.g., [3, Lemma 2.3]. Since uN = unN satisfies
∥∥unN − un−1

N

∥∥
X
≤ ληN (unN ) by construction

of Algorithm 1, Lemma 3.1 yields the equivalence of ηN (u?N ) and ηN (uN ). Hence, we conclude
that ηN (uN )→ 0 as N →∞. �

Remark 3.4. We emphasize that the perturbed contraction property (34) is satisfied, for in-
stance, in the special case of the finite element method; see [10] for details.

Combining the above Proposition 3.3 and Lemma 3.1 leads to the following result.

Corollary 3.5. Given the same assumptions as in Proposition 3.3 and, additionally, (A2), then
uN → u? for N → ∞, where the sequence {uN}N≥0 is generated by the Algorithm 1, and u? is
the unique solution of (1).

Proof. Let uN = unN ∈ XN , n ≥ 1, be the output of Algorithm 1 based on the Galerkin space XN .
Then, by virtue of (30), and due to (A2) and (31), we have

‖u? − uN‖X ≤ ‖u?N − unN‖X + ‖u? − u?N‖X ≤ λC15ηN (unN ) + C27ηN (u?N ) ≤ C37ηN (uN ), (36)

with
C37 := λC15 + C27(1 + λC29). (37)

Applying Proposition 3.3 completes the proof. �

3.4. Linear convergence. In this section we show the linear convergence of the output sequence
{uN}N≥0 generated by Algorithm 1. Our analysis follows closely the work [10, Theorem 5.3].
Again, we formulate and prove the result within a more general setting, and, for this purpose,
under the additional assumption (34) as before.

Letting

γ :=
ν

2C34
> 0, (38)

with ν > 0 from (F2), we introduce the quantity

∆N := H(u?N )− H(u?) + γηN (u?N )2, (39)
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where u? ∈ X and u?N ∈ XN are the (unique) solution of (1) and its Galerkin approximation
from (13), respectively. By virtue of Lemma 2.3, provided that (F1)–(F3) hold, we observe that

∆N ≥
ν

2
‖u?N − u?‖

2
X ≥ 0,

for any N ≥ 0.

Theorem 3.6. Let F satisfy (F1)–(F3), and assume (A1)–(A2). Furthermore, suppose that there
are constants 0 < q34 < 1 and C34 > 0 such that (34) holds true. Then, upon setting

q34 < q40 :=
LFC

2
27 + 2γq34

LFC2
27 + 2γ

< 1, (40)

with γ from (38), and with λ ∈ (0, C−1
29 ), the following contraction property holds: If the while

loop of Algorithm 1 terminates after finitely many steps with ηN (uN ) > 0, for all N ≥ 0, then
we have the (linear) contraction property

∆N+1 ≤ q40∆N ∀N ≥ 0. (41)

Moreover, there exists a constant C42 > 0 such that

ηN+K(uN+K)2 ≤ C42q
K
40ηN (uN )2 ∀N,K ≥ 0, (42)

i.e. the error estimators decay at a linear rate.

Proof. Given any integers N ≥ K ≥ 0, and corresponding Galerkin subspaces XK ⊆ XN ⊂ X.
Then, using Lemma 2.3, with X being replaced by XN , we have that

ν

2
‖u?K − u?N‖

2
X ≤ H(u?K)− H(u?N ) ≤ LF

2
‖u?K − u?N‖

2
X . (43)

Furthermore, recalling (39), and using the perturbed contraction assumption (34), we obtain
that

∆N+1 ≤ H(u?N )− H(u?)− (H(u?N )− H(u?N+1)) + γ
(
q34ηN (u?N )2 + C34

∥∥u?N+1 − u?N
∥∥2

X

)
.

Invoking (43), and applying the definition of γ from (38), we arrive at

∆N+1 ≤ H(u?N )− H(u?) +
(
γC34 −

ν

2

)∥∥u?N+1 − u?N
∥∥2

X
+ γq34ηN (u?N )2

= H(u?N )− H(u?) + γq34ηN (u?N )2.

Here, owing to the reliability assumption (A2), and upon implementing (16), we note that

q34ηN (u?N )2 = q40ηN (u?N )2 − (q40 − q34)ηN (u?N )2

≤ q40ηN (u?N )2 − (q40 − q34)C−2
27 ‖u? − u?N‖

2
X

≤ q40ηN (u?N )2 − 2(q40 − q34)L−1
F C−2

27 (H(u?N )− H(u?)).

Thus, it follows that

∆N+1 ≤
(
1− 2γ(q40 − q34)L−1

F C−2
27

)
(H(u?N )− H(u?)) + γq40ηN (u?N )2.

Noticing that 1 − 2γ(q40 − q34)L−1
F C−2

27 = q40, yields (41). Hence, by induction, it holds that
∆N+K ≤ qK40∆N . From this inequality, together with (31) and the fact that H(u?N+K)−H(u?) ≥
0, cf. (16), we conclude that

ηN+K(uN+K)2 ' ηN+K(u?N+K)2 ≤ γ−1∆N+K ≤ γ−1qK40∆N .

Employing again (16) and making use of the reliability condition (A2), this leads to

ηN+K(uN+K)2 . qK40

(
LF

2γ
‖u? − u?N‖

2
X + ηN (u?N )2

)
. qK40ηN (u?N )2.
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Therefore, once again applying (31), we deduce (42). �

3.5. Uniform bound for the number of linearization steps. Given that the while loop of
Algorithm 1 terminates after finitely many steps for all N ≥ 0, we will show that the number of
iterative linearization steps (14) on each Galerkin space XN , which will be denoted by #It(N),
can be (uniformly) bounded. As before we assume that ηN (uN ) > 0 for all N ≥ 0. The following
result is in particular [10, Proposition 4.6], however, we will adapt the proof to the effect that
it applies for the contraction-like property (20) (instead of the contraction of the Zarantonello
iteration exploited in [10]).

Proposition 3.7. Suppose (F1)–(F4) and (A1)–(A2). Let λ ∈ (0, C−1
29 ) be the adaptivity param-

eter from Algorithm 1. Suppose that the while loop of Algorithm 1 terminates after finitely many
steps with ηN (uN ) > 0 for all N ≥ 0. Then, the number of iterative linearization steps #It(N)
on XN satisfies the estimate

#It(N) ≤ 2

log
(
1 + C−1

19

) log

((
Cλ−1 + C ′

) (
1 + C−1

19

)
max

{
1,
ηN−1(uN−1)

ηN (uN )

})
+ 1, (44)

for all N ≥ 1, where

C :=
L

1/2
F C

1/2
19 C37√

2C
1/2
H

and C ′ :=
CC26C

1/2
19

1−
(
1 + C−1

19

)−1/2
.

Proof. We split the proof into two parts.
Part 1: Let

dN :=
ηN−1(uN−1)

ηN (uN )
, N ≥ 1,

and choose n ∈ N, n ≥ 2, minimal such that

0 <
CdN

(
1 + C−1

19

)1−n/2

1− C ′dN
(
1 + C−1

19

)1−n/2
≤ λ.

We denote by k := #It(N) the number of linearization steps on XN , and aim to show that k ≤ n.
To this end, we assume by contradiction that k > n > 1. By definition of Algorithm 1, k ≥ 1 is
the minimal number such that

∥∥ukN − uk−1
N

∥∥
X
≤ ληN (ukN ). Invoking (20), we find that∥∥unN − un−1

N

∥∥2

X
≤ C19

(
1 + C−1

19

)2−n ∥∥u1
N − u0

N

∥∥2

X
.

Let us bound
∥∥u1

N − u0
N

∥∥2

X
. From (F4) and (16) we obtain

CH

∥∥u1
N − u0

N

∥∥2

X
≤ H(u0

N )− H(u1
N ) ≤ H(u0

N )− H(u?) ≤ LF

2

∥∥u? − u0
N

∥∥2

X
.

Hence, we infer the bound∥∥unN − un−1
N

∥∥2

X
≤ LFC19

2CH

(
1 + C−1

19

)2−n ∥∥u? − u0
N

∥∥2

X
.

Since u0
N = uN−1, we apply (36) to deduce that∥∥u? − u0

N

∥∥
X
≤ C37ηN−1(uN−1).

Therefore, we arrive at∥∥unN − un−1
N

∥∥2

X
≤ LFC19C

2
37

2CH

(
1 + C−1

19

)2−n
ηN−1(uN−1)2 = C2

(
1 + C−1

19

)2−n
d2
NηN (uN )2. (45)
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Invoking the stability (A1), we find that

ηN (uN ) = ηN (ukN ) ≤ ηN (unN ) + C26

∥∥ukN − unN∥∥X ≤ ηN (unN ) + C26

k−1∑
j=n

∥∥∥uj+1
N − ujN

∥∥∥
X
.

Restricting (20) to XN and shifting indices, yields that∥∥∥uj+1
N − ujN

∥∥∥
X
≤ C1/2

19

((
1 + C−1

19

)−1/2
)j−n ∥∥unN − un−1

N

∥∥
X
, j ≥ n.

Combining the previous inequalities leads to

ηN (uN ) ≤ ηN (unN ) + C26C
1/2
19

∥∥unN − un−1
N

∥∥
X

k−n−1∑
j=0

((
1 + C−1

19

)−1/2
)j

≤ ηN (unN ) +
C26C

1/2
19

1−
(
1 + C−1

19

)−1/2

∥∥unN − un−1
N

∥∥
X
.

Inserting this inequality into (45) yields∥∥unN − un−1
N

∥∥
X
≤ CdN

(
1 + C−1

19

)1−n/2
ηN (unN ) + C ′dN

(
1 + C−1

19

)1−n/2 ∥∥unN − un−1
N

∥∥
X
.

A straightforward manipulation leads to

∥∥unN − un−1
N

∥∥
X
≤

CdN
(
1 + C−1

19

)1−n/2

1− C ′dN
(
1 + C−1

19

)1−n/2
ηN (unN ) ≤ ληN (unN ),

which contradicts the minimality of k, wherefore it must hold that k ≤ n.
Part 2: Set

M :=
2

log
(
1 + C−1

19

) log
((
Cλ−1 + C ′

) (
1 + C−1

19

)
max {1, dN}

)
.

We show that

0 <
CdN

(
1 + C−1

19

)1−dMe/2
1− C ′dN

(
1 + C−1

19

)1−dMe/2 ≤ λ, (46)

where dMe denotes the smallest integer larger than or equal to M . We verify that(
1 + C−1

19

)dMe/2 ≥ exp
(
M/2 log

(
1 + C−1

19

))
=
(
Cλ−1 + C ′

) (
1 + C−1

19

)
max{1, dN} (47)

> C ′dN
(
1 + C−1

19

)
> 0.

This proves the lower bound in (46). In a similar way, the upper bound is obtained. Indeed,
multiplying (47) by λ, we have that

λ
(
1 + C−1

19

)dMe/2 ≥ λC ′dN (1 + C−1
19

)
+ CdN

(
1 + C−1

19

)
.

Thence, a simple manipulation leads to

λ
(

1− C ′dN
(
1 + C−1

19

)1−dMe/2) ≥ CdN (1 + C−1
19

)1−dMe/2
,

which immediately implies the claim. In summary, using Part 1 of the proof, we conclude that
#It(N) = k ≤ dMe. �
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Remark 3.8. We note that Proposition 3.7 does not assert a uniform bound for the number
of linearization steps since the right-hand side of (44) depends on N . For many sensible error
estimators, however, it holds the contraction property

‖u? − u?N‖X ' q48

∥∥u? − u?N−1

∥∥
X
, (48)

for N large enough, with a contraction constant 0 < q48 < 1. Furthermore, we may assume a
reliability and efficiency estimate:

‖u? − u?N‖X ' C49ηN (u?N ), N ≥ 0. (49)

Then, combining (48), (49), and (31), we obtain ηN (uN ) ' ηN−1(uN−1), and consequently, a
uniform bound on the number of linearization steps on each Galerkin subspace XN is guaranteed.

Remark 3.9. As was mentioned earlier, this result is one of the key parts in the computational
complexity analysis of the ILG Algorithm 1. Indeed, following along the lines of [10, §6] and
replacing [10, Proposition 4.6] by the above Proposition 3.7, the almost optimal computational
work of Algorithm 1, under suitable assumptions, can be established in the context of finite
element method discretizations.

4. Numerical experiments

In this section we test our ILG Algorithm 1 with two numerical experiments in the context of
finite element discretizations of stationary conservation laws.

4.1. Model problem. On an open, bounded and polygonal domain Ω ⊂ R2, with Lipschitz
boundary Γ = ∂Ω, let us consider the second-order elliptic partial differential equation

u ∈ X : F(u) := −∇ ·
[
µ
(
|∇u|2

)
∇u
]
− g = 0 in X?. (50)

Here, we choose X := H1
0 (Ω) to be the standard Sobolev space of H1-functions on Ω with

zero trace along Γ; the inner product and norm on X are defined, respectively, by (u, v)X :=
(∇u,∇v)L2(Ω) and ‖u‖X := ‖∇u‖L2(Ω), for u, v ∈ X. We suppose that g ∈ X? = H−1(Ω) in (50)

is given, and the diffusion parameter µ ∈ C1([0,∞)) fulfils the monotonicity property

mµ(t− s) ≤ µ(t2)t− µ(s2)s ≤Mµ(t− s), t ≥ s ≥ 0, (51)

with constants Mµ ≥ mµ > 0. Under this condition the nonlinear operator F : H1
0 (Ω) →

H−1(Ω) from (50) can be shown to satisfy (F1) and (F2), with ν = mµ and LF = 3Mµ; see [18,
Proposition 25.26]. Moreover, F has a potential H : X → R given by

H(u) :=

∫
Ω

ψ
(
|∇u|2

)
dx− 〈g, u〉X?×X , u ∈ X,

where ψ(s) := 1/2
∫ s

0
µ(t) dt, s ≥ 0. The weak form of the boundary value problem (50) in X

reads:

u ∈ X :

∫
Ω

µ
(
|∇u|2

)
∇u · ∇v dx = 〈g, v〉X?×X ∀v ∈ X. (52)

In [12, Section 5.1] the convergence of the Zarantonello, Kačanov, and Newton iteration for
the nonlinear boundary value problem (50) was examined.
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4.2. Discretization and refinement indicator. For the sake of discretizing (52), and thereby
of obtaining an ILG formulation for (50), we will use a conforming finite element framework. We
consider a sequence of hierarchical, regular and shape-regular meshes {TN}N≥1 that partition

the domain Ω into open and disjoint triangles T ∈ TN such that Ω =
⋃
T∈TN T . Moreover, we

consider the finite element space

XN :=
{
v ∈ H1

0 (Ω) : v|T ∈ P1(T ) ∀T ∈ TN
}
,

where we signify by P1(T ) the space of all affine functions on T ∈ TN . The mesh refinements
in Algorithm 1 are obtained by means of the newest vertex bisection and the Dörfler marking
strategy, see [15] and [7], respectively.

For an edge e ⊂ ∂T+ ∩ ∂T−, which is the intersection of (the closures of) two neighbouring
elements T± ∈ TN , we signify by JvK |e = v+|e ·nT+ + v−|e ·nT− the jump of a (vector-valued)
function v along e, where v±|e denote the traces of the function v on the edge e taken from the
interior of T±, respectively, and nT± are the unit outward normal vectors on ∂T±, respectively.
For u ∈ XN we define the local refinement indicator, for each T ∈ TN , and the global error
indicator, respectively, by

ηN (T, u)2 := h2
T ‖g‖

2
L2(T ) + hT

∥∥∥µ(|∇u|2)∇u∥∥∥2

L2(∂T\Γ)
, ηN (u) :=

( ∑
T∈TN

ηN (T, u)2

)1/2

.

This error estimator satisfies the assumptions (A1)–(A2) for the problem under consideration;
we refer to [10, §8.3] for details.

4.3. Experiments. We revisit two experiments from [12], whereby we test the (modified) adap-
tive ILG Algorithm 1. We consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]), and
start the computations with an initial mesh consisting of 192 uniform triangles. The procedure is
run until the number of elements exceeds 106. Moreover, we will always choose the initial guess
u0

0 ≡ 0.

4.3.1. Smooth solution. We consider the nonlinear diffusion coefficient µ(t) = (t + 1)−1 + 1/2,
for t ≥ 0, and select g in (50) such that the analytical solution of (52) is given by the smooth
function u?(x, y) = sin(πx) sin(πy). It is straightforward to verify that µ fulfils the bounds (51)
so that the assumptions (F1)–(F3) are satisfied. In addition, the convergence of the Zaran-
tonello (10), Kačanov (11), and Newton (12) iterative linearization procedures are guaranteed
(with the parameter δ = 0.85 and δ = 1 in case of the Zarantonello and Newton method, re-
spectively); see [12]. A priori, for the Newton method, we remark that choosing the damping
parameter δ = 1 (potentially resulting in quadratic convergence of the iterative linearization
close to the solution) might lead to a divergent iteration for the given boundary value problem;
for this reason, a prediction and correction strategy, which guarantees convergence (and which
does not cause any correction of the damping parameter in the current experiments), is presented
in [12, Remark 2.8].

In Figure 1 we plot the error estimators (solid lines) and true errors (dashed lines) of our three
linearization schemes against the number of elements |TN | in the triangulation. In addition,
the dashed line without any markers is the graph of the function |TN |−1/2. We observe the
optimal convergence rate O(|TN |−1/2) for both (almost) uniform and adaptive mesh refinements
corresponding to the parameters θ∗ = 0 and θ∗ = 0.5, respectively, in the Dörfler marking
strategy, see [7, §4.2, Eq. (M∗)].

In Figure 2 we can observe the uniformly bounded number of linearization steps on a given
mesh for any of the three considered fixed-point methods, and for both choices of the adaptivity
parameter λ = 0.1 and λ = 0.001 in Algorithm 1. For the value λ = 0.1, the number of
linearization steps on a given mesh does not differ essentially between the three considered
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(a) λ = 0.5 and θ∗ = 0.5 (b) λ = 0.5 and θ∗ = 0

Figure 1. Experiment 4.3.1: Convergence rates. Left: Adaptively refined
meshes. Right: (Almost) uniform meshes.

(a) λ = 0.1 and θ∗ = 0.5 (b) λ = 0.001 and θ∗ = 0.5

Figure 2. Experiment 4.3.1: Number of iterations.

iteration schemes. However, there is a remarkable difference for the choice λ = 0.001. The
Newton iteration clearly outperforms the other two fixed-point methods, which is not surprising
because of the local quadratic convergence regime. In addition, we can also observe that the
Kačanov method is superior to the Zarantonello iteration in view of the number of linearization
steps.

4.3.2. Nonsmooth solution. In our second experiment, we consider the nonlinear diffusion pa-
rameter µ(t) = 1 + e−t, for t ≥ 0. Again, it is easily seen that µ satisfies (51). Moreover, it can
be shown that the three linearization schemes under consideration will converge for appropriate
choices of the parameter δ, see [12]. We choose g in (50) such that the analytical solution is
given by

u?(r, ϕ) = r
2/3 sin (2ϕ/3) (1− r cos(ϕ))(1 + r cos(ϕ))(1− r sin(ϕ))(1 + r sin(ϕ)) cos(ϕ),
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(a) λ = 0.5 and θ∗ = 0.5 (b) λ = 0.5 and θ∗ = 0

Figure 3. Experiment 4.3.2: Convergence rates. Left: Adaptively refined
meshes. Right: (Almost) uniform meshes.

(a) λ = 0.1 and θ∗ = 0.5 (b) λ = 0.001 and θ∗ = 0.5

Figure 4. Experiment 4.3.2: Number of iterations.

where r and ϕ are polar coordinates. This is the prototype singularity for (linear) second-order
elliptic problems with homogeneous Dirichlet boundary conditions in the L-shaped domain; in
particular, we note that the gradient of u? is unbounded at the origin. We let δ = 0.5 for the
Zarantonello iteration, and use the damping parameter δ = 1 for the Newton method as in the
experiment before.

For the choice θ∗ = 0.5 in Dörfler’s marking procedure we retain the (almost) optimal con-
vergence rate for both the error and the estimator. Due to the singularity, however, the con-
vergence rate is reduced when the mesh is (almost) uniformly refined (i.e. corresponding to the
value θ∗ = 0). For the number of linearization steps on each Galerkin space, we can make the
same observations as for the smooth case from before.
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5. Conclusions

We have established a contraction-like property of the unified iteration scheme (5), which is
key for the convergence analysis of the adaptive ILG Algorithm 1. In particular, we were able
to generalize some of the results from [10] including the linear convergence of the general ILG
procedure and the (uniform) boundedness of the number of linearization steps on each Galerkin
space. We underline that the latter property constitutes an important stepping stone for the
analysis of optimal computational complexity, cf. [10, §6 and §7].
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