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ADAPTIVE ITERATIVE LINEARIZATION GALERKIN METHODS

FOR NONLINEAR PROBLEMS

PASCAL HEID AND THOMAS P. WIHLER

Abstract. A wide variety of (fixed-point) iterative methods for the solution of nonlinear equa-

tions (in Hilbert spaces) exists. In many cases, such schemes can be interpreted as iterative
local linearization methods, which, as will be shown, can be obtained by applying a suitable

preconditioning operator to the original (nonlinear) equation. Based on this observation, we will

derive a unified abstract framework which recovers some prominent iterative schemes. In partic-
ular, for Lipschitz continuous and strongly monotone operators, we derive a general convergence

analysis. Furthermore, in the context of numerical solution schemes for nonlinear partial dif-

ferential equations, we propose a combination of the iterative linearization approach and the
classical Galerkin discretization method, thereby giving rise to the so-called iterative lineariza-

tion Galerkin (ILG) methodology. Moreover, still on an abstract level, based on two different

elliptic reconstruction techniques, we derive a posteriori error estimates which separately take
into account the discretization and linearization errors. Furthermore, we propose an adaptive

algorithm, which provides an efficient interplay between these two effects. In addition, the ILG
approach will be applied to the specific context of finite element discretizations of quasilinear

elliptic equations, and some numerical experiments will be performed.

1. Introduction

The aim of this paper is to establish a general (adaptive) iterative linearization Galerkin (ILG)
framework for the numerical solution of nonlinear problems, with application to second-order
partial differential equations (PDE) in divergence form. To set the stage, we consider a real
Hilbert space X with inner product (·, ·)X and induced norm denoted by ‖ · ‖X . We remark that
for most of our work it is sufficient for X to be a reflexive Banach space. Then, given a nonlinear
operator F : X → X ′, we focus on the equation

u ∈ X : F(u) = 0 in X ′, (1)

where X ′ denotes the dual space of X. In weak form, this problem reads

u ∈ X : 〈F(u), v〉 = 0 for all v ∈ X, (2)

with 〈·, ·〉 signifying the duality pairing in X ′ ×X.

Iterative linearization. The development of an iterative linearization scheme for (1) is based on
applying suitable preconditioning operators. More precisely, for given v ∈ X, we introduce a linear
and invertible preconditioning operator

A(v) : X → X ′, (3)

which allows to transform (1) into A(u)−1F(u) = 0. This in turn gives rise to a fixed point iteration

un+1 = un − A(un)−1F(un), n ≥ 0,
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2 P. HEID AND T. P. WIHLER

for an initial guess u0 ∈ X, or equivalently,

un+1 ∈ X : A(un)un+1 = A(un)un − F(un), n ≥ 0. (4)

Letting

f : X → X ′, f(u) := A(u)u− F(u), (5)

the fixed-point iteration (4) takes the form of the following iterative linearization scheme:

A(un)un+1 = f(un), n ≥ 0. (6)

We emphasize that, given un ∈ X, this is a linear problem for un+1 ∈ X.
The general iteration scheme (6) recovers some of the widely used fixed-point iterations oc-

curring in the literature. These include, for instance, the Zarantonello iteration, the Kačanov
scheme, and the Newton method; see Section 2.3 for a detailed discussion. In the context of the
Zarantonello iteration, the interested reader is referred to the original work [30] (cf. also [9] for a
generalization), or the monographs [25, §3.3] and [33, §25.4]. Incidentally, the latter two references
also deal with the Kačanov approach, see [25, §4.5] or [33, §25.14]. For the (damped and adaptive)
Newton method we refer to [12] for an extensive overview, or the recent works on adaptive Newton
schemes [3, 4, 21,26,28].

Iterative linearized Galerkin approach. The iteration (6) generates a sequence {un}n≥0 which
potentially converges to a solution u? ∈ X of (1). In general, however, the computation of this
sequence is not feasible if X is infinite- or high-dimensional. Therefore, in order to cast the iterative
linearization approach described above into a computational framework, we will consider Galerkin
discretizations of (6) in terms of finite-dimensional conforming subspaces XN ⊂ X. Then, a
discrete approximation, un+1

N ∈ XN , based on a starting guess u0
N ∈ XN , is obtained by solving

the linear discrete system

un+1
N ∈ XN :

〈
A(unN )un+1

N , v
〉

= 〈f(unN ), v〉 ∀v ∈ XN , n ≥ 0. (7)

We note that the discretization of the linearized problem (6) coincides with the linearization of
the discretized problem (33), i.e. the discretization and linearization commute; see [14] for a
related discussion. For the resulting sequence {unN}n≥0 ⊂ XN of discrete solutions it is possible,
under certain conditions, to obtain general a posteriori estimates for the difference to the exact
solution, u? ∈ X, i.e. for ‖u? − un+1

N ‖X , n ≥ 0. The emphasis of such bounds is that they enable
the individual identification of different sources of error in the approximation process, such as,
e.g., the linearization and discretization errors (further errors, not to be considered here, may
result, for instance, from a linear solver iteration, see, e.g., [15], or from quadrature). This can be
accomplished by means of two conceptionally different techniques, both of which will be presented
in this work:

(a) The first approach is based on the assumption that a computable bound for the residual
of the linear Galerkin discretization of the form (7) is available. Then, applying an elliptic
reconstruction technique (see, e.g., [22,23]) yields a computable a posteriori error estimate for
the error ‖u? − un+1

N ‖X , which can be expressed in terms of a discretization and linearization
contribution. In fact, these estimators can also be applied to appropriately enrich the space
XN , thereby leading to a new space XN+1. We note that this approach has been applied
previously in [11] in the specific context of the Zarantonello iteration scheme.

(b) Alternatively, we may consider, for n ≥ 0, a nonlinear discrete problem which, on the one
hand, features the nonlinear operator F from (1), and, on the other hand, possesses the same
solution, un+1

N ∈ XN , as the linear Galerkin formulation (7). Assuming that there exists a
computable bound for the residual of the discrete solution to a suitably reconstructed nonlinear
problem, our analysis will show that such a bound can be exploited for the purpose of deriving
an a posteriori error estimator.

A posteriori error estimates as outlined above constitute an essential building block in the
development of adaptive ILG schemes for nonlinear problems (1). Indeed, recalling that such
bounds allow to distinguish the different sources of error in the approximation process, the key
idea of the fully adaptive ILG methodology is to provide an appropriate interplay between the
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fixed-point linearization iteration and possible Galerkin space enrichments (e.g., mesh refinements
for finite elements) depending on whether the discretization error or the linearization error is
dominant. In this way, the goal of the adaptive ILG approach is to keep the number of fixed-point
iterations at a minimum in the sense that no unnecessary iterations are performed if they are not
expected to contribute a substantial reduction of the error on the actual Galerkin space.

The simultaneous control of different sources of error in the context of adaptive finite element
methods for monotone problems has been presented in a number of earlier papers. For instance, in
the work [10], the authors have considered general linearizations of strongly monotone operators,
and have derived computable a posteriori estimators for the total error (consisting of the lin-
earization error and the Galerkin error) with identifiable components for each of the error sources.
For even more sophisticated a posteriori error estimators in the specific context of the Newton
linearization scheme for second-order monotone quasilinear diffusion problems we refer to [14,15].
The a posteriori error analysis derived in those papers includes—in addition to the discretization
and linearization errors—also the algebraic linear solver error; moreover, the authors have pro-
posed an adaptive iterative procedure, which takes into account all components of the numerical
scheme in each refinement step. For a further development of that research in the context of com-
positional two-phase flow with nonlinear complementarity constraints we refer to [7]. Furthermore,
first a posteriori error estimates in the framework of the Kačanov iteration for quasilinear diffusion
problems in divergence form have been presented in [19]. Later on, an adaptive iterative linearized
Galerkin type approach has been introduced and discussed in [18]; indeed, the convergence of the
Kačanov-Galerkin iteration is proved therein. Moreover, for semilinear second-order elliptic prob-
lems, two different linearization schemes of Kačanov type have been analyzed in [8]. Just recently,
based on the ILG approach in [11], the convergence of an adaptive Zarantonello-Galerkin iterative
scheme for monotone elliptic PDE has been proved in [17]. Finally, we point to the fact that
the ILG methodology has been applied also to high-order (so-called hp) [2] and discontinuous
Galerkin [21] finite element discretizations, as well as to nonlinear parabolic problems [5].

Outline of the paper. In Section 2 we state and prove a global convergence result for the unified
iteration scheme (6). In particular, in order to provide a few examples, we apply our result
to the Zarantonello, Kačanov, and (damped) Newton methods, thereby recovering some of the
well-known convergence results from the literature. Furthermore, still on an abstract level, in
Section 3 we discuss conforming Galerkin discretizations of (6), and present general a posteriori
error estimates based on the two approaches outlined in (a) and (b) above. On that account, we
propose in Section 4 a fully adaptive algorithm based on the a posteriori error estimates. More
specifically, in Section 5, we derive computable error bounds for a second-order PDE in divergence
form; finally, in Section 5.3, these theoretical estimates are employed within a series of numerical
experiments in the framework of the fully adaptive ILG approach.

2. Iterative linearization

The goal of this section is to prove a general convergence result for the iterative linearization
iteration (6) under the condition that F in (1) is a Lipschitz continuous and strongly monotone
operator. Furthermore, we will review a few classical examples.

2.1. Abstract framework. For the purpose of this work, we restrict ourselves to Lipschitz con-
tinuous, strongly monotone operators F:

(F1) The operator F is Lipschitz continuous, i.e. there exists a constant LF > 0 such that

|〈F(u)− F(v), w〉| ≤ LF ‖u− v‖X ‖w‖X ,

for all u, v, w ∈ X.
(F2) The operator F is strongly monotone, i.e. there exists a constant ν > 0 such that

ν ‖u− v‖2X ≤ 〈F(u)− F(v), u− v〉 ,

for all u, v ∈ X.
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Under these conditions, the theory of strongly monotone operators implies that (1) possesses a
unique solution u? ∈ X; see, e.g., [25, §3.3] or [33, §25.4].

Furthermore, for given u ∈ X, we introduce the bilinear form

a(u; v, w) := 〈A(u)v, w〉 , v, w ∈ X, (8)

where A(·) is the preconditioning operator from (3). Then, we can write (6) in weak form:
given un ∈ X, find un+1 ∈ X such that

a(un;un+1, w) = 〈f(un), w〉 ∀w ∈ X. (9)

Throughout this paper, for any u ∈ X, we assume that the bilinear form a(u; ·, ·) is uniformly
coercive and bounded. Those assumptions refer to the fact that there are two constants α, β > 0
independent of u ∈ X, such that

a(u; v, v) ≥ α‖v‖2X ∀v ∈ X, (10)

and
a(u; v, w) ≤ β ‖v‖X ‖w‖X ∀v, w ∈ X, (11)

respectively. In particular, owing to the Lax-Milgram Theorem, these properties imply the well-
posedness of the solution un+1 ∈ X of the linear equation (6), for any given un ∈ X.

2.2. A global convergence result. Given the framework introduced in the previous Section 2.1,
the ensuing proposition is an abstract global convergence result for the iteration scheme (6). We
note that it can be extended readily to the case where X is a reflexive Banach space.

Proposition 2.1. Suppose that (F2) (cf. Section 2.1), (10) and (11) are satisfied, and u 7→
a(u;u, ·) and u 7→ F(u) are continuous mappings from X into its dual space X ′ with respect to
the weak topology on X ′. If the sequence {un}n≥0 defined by (6) satisfies ‖un+1 − un‖X → 0
as n→∞, then it converges to the unique solution u? ∈ X of (1).

Proof. We begin by showing that {un}n≥0 is a Cauchy sequence. Indeed, by virtue of (F2) and (5),
for any m ≥ n ≥ 0, it holds that

ν ‖um − un‖2X ≤ 〈F(um)− F(un), um − un〉
= 〈A(um)um − f(um), um − un〉 − 〈A(un)un − f(un), um − un〉 .

Hence, involving (8) and (9) gives

ν ‖um − un‖2X ≤ a(um;um − um+1, um − un)− a(un;un − un+1, um − un).

Furthermore, (11) implies that

‖um − un‖X ≤
β

ν

(∥∥um+1 − um
∥∥
X

+
∥∥un+1 − un

∥∥
X

)
→ 0,

for n,m → ∞. Hence, {un}n≥0 is a Cauchy sequence, and, therefore, converges to some limit
u? ∈ X. Next, we show that u? is the unique solution of (1). Owing to (9), we notice the identity

a(un;un, v)− 〈f(un), v〉+ a(un;un+1 − un, v) = 0 ∀v ∈ X,

for all n ≥ 0. Here, due to (11), and because
∥∥un+1 − un

∥∥
X

is a vanishing sequence, we observe
that

a(un;un, v)− 〈f(un), v〉 → 0 ∀v ∈ X,
for n→∞. Hence, by continuity of a and f , we deduce that

a(u?;u?, v) = 〈f(u?), v〉 ∀v ∈ X,
i.e. u? is a solution of (1); we note that u 7→ f(u) = a(u;u, ·)−F(u) is continuous by the continuity
of a and F. It remains to show that u? is the only solution of (1). In fact, if u� ∈ X is any other
solution, then (F2) leads to

ν
∥∥∥u? − u�∥∥∥2

X
≤
〈
F(u?)− F(u�), u? − u�

〉
= 0,

i.e. u? = u�. �
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2.3. Applications. In the ensuing section we will discuss the general Proposition 2.1 in the
context of the Zarantonello, Kačanov, and Newton iterations.

2.3.1. Zarantonello iteration. A most simple choice for the preconditioning operator from (3)
is A(v)u := (δ−1u, ·)X , where δ > 0 is a fixed constant; in particular, here, A = A(v) is independent
of v. In this case, the iterative linearization scheme (6) turns out to be

(un+1, ·)X = (un, ·)X − δ 〈F(un), ·〉 . (12)

Theorem 2.2 (Convergence of the Zarantonello iteration). Assuming (F1) and (F2) (cf. Sec-
tion 2.1), the Zarantonello iteration (12) converges to the unique solution u? of (1) for any
δ ∈ ]0, 2ν/L2

F [.

Proof. We verify the assumptions required for Proposition 2.1 to hold. For a(u, v) = (δ−1u, v)X ,
u, v ∈ X, we note that (10) and (11) are satisfied with

α = β = δ−1 > 0. (13)

Moreover, both u 7→ a(u, ·) = (δ−1u, ·)X and u 7→ F(u) are continuous on X. It remains to
show that

∥∥un+1 − un
∥∥
X

vanishes. For that purpose, we denote by J : X → X ′ the Riesz-

Fréchet isometry. The iteration (12) can then be written, in strong form, as un+1 = T(un), where
T(u) := u− δJ−1F(u). This leads to∥∥un+1 − un

∥∥2

X
=
∥∥T(un)− T(un−1)

∥∥2

X

=
∥∥un − un−1

∥∥2

X
− 2δ

〈
F(un)− F(un−1), un − un−1

〉
+ δ2

∥∥J−1(F(un)− F(un−1))
∥∥2

X
,

where we have used the linearity of J−1. Invoking (F1) and (F2), together with the fact that J−1

is isometric, we further get∥∥un+1 − un
∥∥2

X
≤
(
1− 2δν + δ2L2

F

) ∥∥un − un−1
∥∥2

X
.

We note that
γ :=

(
1− 2δν + δ2L2

F

)
< 1 (14)

if and only if δ ∈ ]0, 2ν/L2
F [. Hence, by induction,∥∥un+1 − un

∥∥2

X
≤ γn

∥∥u1 − u0
∥∥2

X
,

which shows that ‖un+1 − un‖X → 0 as n→ 0. �

Remark 2.3. We notice that the contraction factor γ from (14) is minimal for the choice δ = ν/L2
F .

2.3.2. Kačanov iteration. Here we assume that the nonlinear operator F from (1) takes the form
F(u) = A(u)u− g, where A(u) : X → X ′ is linear (for given u ∈ X), and g = −F(0) ∈ X ′ is fixed.
Then, the Kačanov iteration is defined by

A(un)un+1 = g, n ≥ 0. (15)

Note that this iteration can be cast into the setting of (6), where A(un) takes the role of the
preconditioning operator, and f(un) = A(un)un−F(un) = g is constant. We make the assumption
that there exists a Gateaux differentiable functional G : X → R which satisfies the following
properties:

(K1) G′(u) = a(u;u, ·) on X, and G′ is continuous and strongly monotone, i.e. there exists a real
number c0 > 0 such that, for any u, v ∈ X, it holds

〈G′(u)− G′(v), u− v〉 ≥ c0 ‖u− v‖2X ; (16)

(K2) For each u, v ∈ X we have the bound G(u)− G(v) ≥ 1/2 (a(u;u, u)− a(u; v, v)).

In order to be able to apply Proposition 2.1, we need an auxiliary result, which will also be
crucial in the analysis of the Newton method in Section 2.3.3 below.

Lemma 2.4. If H : X → R is Gateaux differentiable with H′ continuous and strongly monotone,
then H is bounded from below.
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Proof. For fixed v ∈ X, and t ∈ [0, 1], we define the function ϕ(t) := H(tv). We note that
ϕ′(t) = 〈H′(tv), v〉, and, invoking the fundamental theorem of calculus, we find that

H(v)− H(0) =

∫ 1

0

〈H′(tv), v〉 dt =

∫ 1

0

〈H′(tv)− H′(0), v〉 dt+ 〈H′(0), v〉 . (17)

Since H′ is strongly monotone, there exists a constant γ > 0 such that

〈H′(tv)− H′(0), v〉 =
1

t
〈H′(tv)− H′(0), tv〉 ≥ γt ‖v‖2X ,

for any t ∈]0, 1]. Inserting this bound into (17), integrating with respect to t, and using the
submultiplicativity of the operator norm, yields

H(v) ≥ γ

2
‖v‖2X − ‖H

′(0)‖X′ ‖v‖X + H(0).

It is elementary to verify that the right-hand side is minimal for ‖v‖X = γ−1 ‖H′(0)‖X′ . With this

choice we arrive at H(v) ≥ H(0)− 1/2γ ‖H′(0)‖2X′ for all v ∈ X, i.e. H is bounded from below. �

Theorem 2.5 (Convergence of the Kačanov iteration). Suppose that (K1) and (K2) hold. Fur-
thermore, assume that the bilinear form a(u; ·, ·) induced by A satisfies (10) and (11), and is
symmetric for all u ∈ X. Then the sequence {un}n≥0 defined by (15) converges to the unique
solution u? of (1).

Proof. Because of (K1) it follows that u 7→ a(u;u, ·) = G′(u) is continuous. Moreover, u 7→ f(u) is
constant, and thus continuous. Consequently, u 7→ F(u) = a(u;u, ·) − f(u) is continuous as well.
We show that

∥∥un+1 − un
∥∥
X

, n ≥ 0, is a vanishing sequence. To this end, we follow closely along

the lines of the proof of [33, Theorem 25.L]. Let us introduce the functional H(u) := G(u)−〈g, u〉.
We note that H′(u) = G′(u) − g = A(u)u − g = F(u), i.e. H is the potential of F. Moreover,
by virtue of (K1), the derivative H′ = G′ − g is continuous and strongly monotone, and thus F
satisfies (F2). In particular, with the aid of Lemma 2.4, we deduce that H is bounded from below.
Next, we will verify that {H(un)}n≥0 is a monotone decreasing sequence. Indeed, noticing that

a(un;un+1, un+1 − un) =
〈
g, un+1 − un

〉
, and employing (K2), yields

H(un)− H(un+1) =
〈
g, un+1 − un

〉
+ G(un)− G(un+1)

≥ a(un;un+1, un+1 − un) +
1

2
a(un;un, un)− 1

2
a(un;un+1, un+1)

≥ 1

2
a(un;un, un)− a(un;un+1, un) +

1

2
a(un;un+1, un+1),

for any n ≥ 0. Then, employing the symmetry of a(un; ·, ·), and involving (10), we obtain

H(un)− H(un+1) ≥ 1

2
a(un;un+1 − un, un+1 − un) ≥ α

2

∥∥un+1 − un
∥∥2

X
≥ 0, (18)

which shows that {H(un)}n≥0 is monotone decreasing. Then, recalling the boundedness from
below, we conclude that H(un) − H(un+1) → 0 as n → ∞. Hence, exploiting (18), it follows
that

∥∥un+1 − un
∥∥
X

vanishes, and the proof is complete. �

2.3.3. Newton iteration. For the Newton iteration the preconditioning operator in (4) is selected
to be A(v) = δ(v)−1F′(v), v ∈ X, where δ(v) > 0 is a (damping) parameter, and F′ signifies the
Gateaux derivative of F. Then, the (damped) Newton iteration is given by

F′(un)un+1 = F′(un)un − δ(un)F(un), n ≥ 0. (19)

For the purpose of applying Proposition 2.1, we make the following assumptions:

(N1) The operator F is Gateaux differentiable. Moreover, F′ is coercive and bounded in the sense
that, for any given u ∈ X, it holds

〈F′(u)v, v〉 ≥ αF′ ‖v‖2X ∀v ∈ X, (20)

and

〈F′(u)v, w〉 ≤ βF′ ‖v‖X ‖w‖X ∀v, w ∈ X, (21)
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where αF′ , βF′ > 0 are independent of u.
(N2) It exists a Gateaux differentiable functional G : X → R such that G′(u) = F′(u)u in X ′ for

any u ∈ X, and G′ is continuous when X ′ is endowed with the weak topology.
(N3) It exists a Gateaux differentiable functional H : X → R such that H′ = F.
(N4) There are some constants 0 < δmin ≤ δmax < ∞ such that δ : X → [δmin, δmax] is a

continuous functional.

Theorem 2.6 (Convergence of the damped Newton iteration). Assume (F1) and (F2) (cf. Sec-
tion 2.1), as well as (N1)–(N4). Then, for δmax < 2αF′/LF in (N4) the damped Newton iteration
(19) converges to the unique solution u? ∈ X of (1) .

Proof. We aim at employing Proposition 2.1 as before. By virtue of (20), (21), and (N4), we
obtain

a(u; v, v) ≥ αF′δ
−1
max ‖v‖

2
X , u, v ∈ X,

and

a(u; v, w) ≤ βF′δ−1
min ‖v‖X ‖w‖X , u, v, w ∈ X,

which are the coercivity and boundedness conditions (10) and (11), with

α = αF′/δmax, β = βF′/δmin, (22)

respectively. Next, we remark that the maps u 7→ a(u;u, ·) = δ(u)−1F′(u)u and u 7→ F(u) are
both continuous, when X ′ is endowed with the weak topology, by (N2) and (N4), and by (F1),
respectively. Therefore, by the same arguments as in the proof of Theorem 2.5, it suffices to show
that there exists a constant C > 0 such that

H(un)− H(un+1) ≥ C
∥∥un+1 − un

∥∥2

X
, n ≥ 0. (23)

To this end, we define the function ϕ(t) := H(un + t(un+1 − un)), t ∈ [0, 1], and observe that

ϕ′(t) =
〈
H′(un + t(un+1 − un)), un+1 − un

〉
=
〈
F(un + t(un+1 − un)), un+1 − un

〉
.

Then, the fundamental theorem of calculus implies that

H(un)− H(un+1) = −
∫ 1

0

〈
F(un + t(un+1 − un)), un+1 − un

〉
dt

= −
∫ 1

0

〈
F(un + t(un+1 − un))− F(un), un+1 − un

〉
dt

−
〈
F(un), un+1 − un

〉
.

By the definition of the Newton iteration (19), it holds that F(un) = δ(un)−1F′(un)(un − un+1),
n ≥ 0. Thus, with the aid of (F1) and (20), it follows that

H(un)− H(un+1) ≥ −LF

∫ 1

0

t
∥∥un+1 − un

∥∥2

X
dt+ δ(un)−1

〈
F′(un)(un+1 − un), un+1 − un

〉
≥ −LF

2

∥∥un+1 − un
∥∥2

X
+ αF′δ(u

n)−1
∥∥un+1 − un

∥∥2

X
.

If δ(un) ≤ δmax < 2αF′/LF, then

αF′

δ(un)
− LF

2
≥ αF′

δmax
− LF

2
=: C > 0, n ≥ 0. (24)

We conclude that (23) is satisfied. �

Remark 2.7 (Classical Newton scheme). Recalling (20) with u = u0, and applying [25, Theo-
rem 3.3.23], we deduce the bound

∥∥F′(u0)−1v
∥∥
X
≤ α−1

F′ ‖v‖X′ for all v ∈ X ′. Furthermore, assume

that F is Fréchet differentiable and F′ is Lipschitz continuous, i.e. there exists a constant LF′ > 0
such that

‖F′(v)− F′(w)‖X′ ≤ LF′ ‖v − w‖X ∀v, w ∈ X.
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This leads to ∥∥F′(u0)−1(F′(u)− F′(v))
∥∥
X
≤ LF′

αF′
‖u− v‖X ∀u, v ∈ X.

Moreover, if the initial guess u0 ∈ X in (19) is sufficiently close to the solution u? ∈ X of (1) in
the sense that

∥∥F(u0)
∥∥
X′

< α2
F′/2LF′ , then we infer that∥∥F′(u0)−1F(u0)

∥∥
X
≤ 1

αF′

∥∥F(u0)
∥∥
X′

<
αF′

2LF′
.

Referring to [12, Theorem 2.1], it follows that the classical Newton iteration with δ(un) = 1 in (19)
is well-defined, converges to a solution of (1), and converges quadratically.

Remark 2.8. The proof of Theorem 2.6 is crucially based on (23). We emphasize that this
bound may be satisfied even if the damping parameter δ(un) in (19) is larger than 2αF′/LF. This
is particularly important when 2αF′/LF ≤ 1, and the choice δ(un) = 1 (leading to local quadratic
convergence, cf. Remark 2.7) is not admissible a priori. In this case, we may fix ε > 0 small, and
aim to a posteriori attain the bound, for n ≥ 0,

H(un)− H(un+1) ≥ ε
∥∥un+1 − un

∥∥2

X
. (25)

To this end, we may pursue, for instance, the adaptive damping parameter selection approach
proposed in [12, §3.1]. More precisely, in each iterative step, we define an initial value for δ(un)
by the following prediction strategy:

δn,0 =

{
min

(
δ(un−1)/κ, 1

)
if δ(un−2) ≤ δ(un−1),

δ(un−1) else.

where 0 < κ < 1 is a fixed (correction) factor. Here, we set δ(u−2) = δ(u−1) = δ0, with δ0 an
initial choice. If un+1 is obtained by the damped Newton method with damping parameter δn,i,
for some i ≥ 0, then we need to verify wether or not (25) is satisfied. If not, then we adjust the
damping parameter according to the correction strategy

δn,i+1 = max
(
αF′(ε+ LF/2)−1, κδn,i

)
, i ≥ 0. (26)

Subsequently, we will compute un+1 for the new choice δn,i+1. This process is repeated until (25) is
true, say after in iterations of (26). At this point, we let δ(un) := δn,i

n

. Evidently, in view of (24),
we remark that (25) will certainly hold once δn,i ≤ αF′(ε + LF/2)−1. Moreover, in the Galerkin
setting, we note that (20) can be verified numerically at the cost of an eigenvalue problem. Finally,
if the values of the constants αF′ and LF are not easily accessible, we can simply use the (possibly
pessimistic) damping parameter δn,i+1 := κδn,i.

Remark 2.9. We emphasize that the proof of Theorem 2.6 works for much more general precon-
ditioning operators A. Assume that F satisfies (F1), (F2), and (N3), the mapping u 7→ A(u)u =
a(u;u, ·) is continuous w.r.t. the weak topology on X ′, and the bilinear form induced by A ful-
fills (10) and (11). If α > LF/2, then the crucial property (23) holds with C := α − LF/2 > 0;
indeed, this can be shown as in the proof of Theorem 2.6, and the convergence of the method
can be proved similarly as before. In particular, our unified iteration scheme does also recover
Newton-like methods, e.g., the case A(u) := δF′(u0) for some initial guess u0 ∈ X, with a small
enough damping parameter δ > 0.

3. Galerkin approach and a posteriori error analysis

The numerical solution of (1) is based on a finite-dimensional subspace XN ⊂ X, and on
the iterative linearization Galerkin (ILG) formulation (7), with a given initial guess u0

N ∈ XN .

Since XN ⊂ X, the assumptions in Section 2.1 guarantee the existence of un+1
N ∈ XN in each

iteration step.
In this section, we will pursue two different strategies for the derivation of a posteriori error

estimates for
∥∥u? − un+1

N

∥∥
X

, where u? ∈ X is the unique solution of (1). In both approaches

an elliptic reconstruction technique, cf. [22, 23], will be employed. In the first method we use an
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elliptic reconstruction for the solution of the linear problem (7), and the second strategy is based
on applying a similar idea for a nonlinear discrete problem equivalent to (7). We will refer to this
methods as the linear and nonlinear elliptic reconstruction, respectively.

3.1. A posteriori error analysis based on a linear elliptic reconstruction. For the sake of
a general a posteriori error analysis, using a linear elliptic reconstruction, we suppose that there
exists a computable bound η(un+1

N , unN ) for the residual

sup
v∈X
‖v‖X=1

{
a(unN ;un+1

N , v)− 〈f(unN ), v〉
}
≤ η(un+1

N , unN ). (27)

We remark that, in the context of finite element methods for linear elliptic problems, there is a
large body of literature focusing on the development of such estimates; see, e.g., [1, 29].

Theorem 3.1. Suppose that (F1) and (F2), cf. Section 2.1, as well as (10) and (11) hold true.
Then, we have the a posteriori error bound∥∥u? − un+1

N

∥∥
X
≤ β

αν
η(un+1

N , unN ) +
β + LF

ν

∥∥un+1
N − unN

∥∥
X
, (28)

where u? is the unique solution of (1).

Proof. Due to (10) and (11) there exists a unique ũn+1 ∈ X such that

a(unN ; ũn+1, v) = 〈f(unN ), v〉 ∀v ∈ X. (29)

We note that ũn+1 is a reconstruction in the sense that un+1
N ∈ XN is the Galerkin projection of

ũn+1. By using the assumption (F2), we find that

ν
∥∥u? − un+1

N

∥∥2

X
≤
〈
F(u?)− F(un+1

N ), u? − un+1
N

〉
= −

〈
F(un+1

N ), u? − un+1
N

〉
,

since u? ∈ X is the solution of (1). Hence,

ν
∥∥u? − un+1

N

∥∥2

X
≤ −a(unN ;un+1

N , u? − un+1
N ) +

〈
f(unN ), u? − un+1

N

〉
+ a(unN ;un+1

N − unN , u? − un+1
N )

+ a(unN ;unN , u
? − un+1

N )−
〈
f(unN ), u? − un+1

N

〉
−
〈
F(un+1

N ), u? − un+1
N

〉
.

Using (29) and (5), this estimate transforms into

ν
∥∥u? − un+1

N

∥∥2

X
≤ a(unN ; ũn+1 − un+1

N , u? − un+1
N ) + a(unN ;un+1

N − unN , u? − un+1
N )

−
〈
F(un+1

N )− F(unN ), u? − un+1
N

〉
.

Applying (11) and (F1), we find that

ν
∥∥u? − un+1

N

∥∥2

X
≤ β

∥∥ũn+1 − un+1
N

∥∥
X

∥∥u? − un+1
N

∥∥
X

+ β
∥∥un+1

N − unN
∥∥
X

∥∥u? − un+1
N

∥∥
X

+ LF

∥∥un+1
N − unN

∥∥
X

∥∥u? − un+1
N

∥∥
X
.

Dividing by
∥∥u? − un+1

N

∥∥
X

yields

ν
∥∥u? − un+1

N

∥∥
X
≤ β

∥∥ũn+1 − un+1
N

∥∥
X

+ (β + LF)
∥∥un+1

N − unN
∥∥
X
. (30)

Moreover, by the coercivity property (10), for un+1
N 6= ũn+1, we note that

α
∥∥un+1

N − ũn+1
∥∥
X
≤
a(unN ;un+1

N − ũn+1, un+1
N − ũn+1)∥∥un+1

N − ũn+1
∥∥
X

≤ sup
v∈X
‖v‖X=1

a(unN ;un+1
N − ũn+1, v).

Involving (29) and (27), we arrive at

α
∥∥un+1

N − ũn+1
∥∥
X
≤ sup

v∈X
‖v‖X=1

(
a(unN ;un+1

N , v)− 〈f(unN ), v〉
)
≤ η(un+1

N , unN ). (31)

Inserting this estimate into (30), finishes the proof. �
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Remark 3.2. We emphasize that the estimator (28) permits to bound the error
∥∥u? − un+1

N

∥∥
X

separately in terms of the discretization error indicator, β/ανη(un+1
N , unN ), and of the linearization

error indicator, (β+LF)/ν
∥∥un+1

N − unN
∥∥
X

. Let us discuss these error contributions in more detail:

First, recall that un+1
N is the Galerkin projection of ũn+1 in the sense of the Galerkin orthogonality

property

a(unN ; ũn+1 − un+1
N , v) = 0 ∀v ∈ XN .

Thus, the quantity
∥∥ũn+1 − un+1

N

∥∥
X

is an indicator for the quality of approximation of the Galerkin

discretization. Here, invoking (31), we see that∥∥ũn+1 − un+1
N

∥∥
X
≤ α−1η(un+1

N , unN ),

wherefore it is reasonable to interpret the η-term as the discretization error contribution in the total
estimator. Secondly, it holds that

∥∥un+1
N − unN

∥∥
X
→ 0 for n→ 0, which underlines the convergence

of the iterative linearization; thereby, this term can be seen to quantify the linearization effect in
the ILG approximation.

Remark 3.3. The constants for the estimator in Theorem 3.1 for the Zarantonello iteration can
be slightly improved. This is due to the fact that the preconditioning operator A is constant in
this case; cf. [11, Proposition 2.2].

3.2. A posteriori error analysis based on a nonlinear elliptic reconstruction. In this
section we devise an a posteriori error estimate for the linear Galerkin iteration (7) based on
applying the reconstruction technique to a nonlinear discrete problem equivalent to (7). We
underline that the nonlinear problem (34), exactly as in the case of the linear elliptic reconstruction
from (29), is of purely theoretical relevance in the derivation of the estimator, and does not need
to be solved in the actual computations.

We define an operator ψN : X → XN , where, for fixed w ∈ X, we let ψN (w) to be the Riesz
representative of F(w) ∈ X ′N with respect to the inner product in X, i.e.

(ψN (w), v)X = 〈F(w), v〉 ∀v ∈ XN . (32)

Note that, if uN is the solution of the nonlinear Galerkin approximation of (2) with respect to
the discrete space XN , i.e.

uN ∈ XN : 〈F(uN ), v〉 = 0 ∀v ∈ XN , (33)

then it holds that ψN (uN ) = 0.
For each n ≥ 0, we define the nonlinear elliptic reconstruction ũn+1 ∈ X of the solution un+1

N ∈
XN of (7) by 〈

F(ũn+1), v
〉

= (ψN (un+1
N ), v)X ∀v ∈ X. (34)

By construction of the operator ψN , it holds that un+1
N is the Galerkin approximation of (34), i.e.〈

F(ũn+1)− F(un+1
N ), v

〉
= 0 ∀v ∈ XN .

Then, with the aid of (F2), we infer that

ν
∥∥ũn+1 − un+1

N

∥∥2

X
≤
〈
F(ũn+1)− F(un+1

N ), ũn+1 − un+1
N

〉
.

Hence,

ν
∥∥ũn+1 − un+1

N

∥∥
X
≤ sup

w∈X
‖w‖X=1

〈
F(ũn+1)− F(un+1

N ), w
〉

≤ sup
w∈X
‖w‖X=1

{
(ψN (un+1

N ), w)X −
〈
F(un+1

N ), w
〉}
.

Now, suppose that there exists a computable bound η(un+1
N ) such that

sup
w∈X
‖w‖X=1

{
(ψN (un+1

N ), w)X −
〈
F(un+1

N ), w
〉}
≤ η(un+1

N ).
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Then, ∥∥ũn+1 − un+1
N

∥∥
X
≤ ν−1η(un+1

N ). (35)

Similarly as in the linear case, in the specific context of the finite element method for elliptic PDE,
such residual bounds can be obtained by standard techniques, see, e.g., [1,29]. This will be carried
out in Section 5.2 for quasilinear elliptic PDE.

Theorem 3.4. Given (F1) and (F2) (cf. Section 2.1), there holds the a posteriori error bound∥∥u? − un+1
N

∥∥
X
≤ 1

ν

(
η(un+1

N ) +
∥∥ψN (un+1

N )
∥∥
X

)
,

where u? is the exact solution of (1).

We note that, in the bound above, ν−1η(un+1
N ) is an indicator for the discretization error by a

similar argument as in Remark 3.2, and ν−1
∥∥ψN (un+1

N )
∥∥
H

controls the linearization error. Indeed,

since ψN (uN ) = 0 and {unN}n≥0 converges to the solution uN of (33) by our analysis in Section 2,

we see that
∥∥ψN (un+1

N )
∥∥
X
→ 0 as n→∞.

Proof. By invoking the triangle inequality and (35), we find that∥∥u? − un+1
N

∥∥
X
≤ ν−1η(un+1

N ) +
∥∥u? − ũn+1

∥∥
X
.

Moreover, due to (F2), we observe that

ν
∥∥u? − ũn+1

∥∥2

X
≤
〈
F(u?)− F(ũn+1), u? − ũn+1

〉
=
〈
F(ũn+1), ũn+1 − u?

〉
.

By using (34), and upon applying the Cauchy-Schwarz inequality, this leads to

ν
∥∥u? − ũn+1

∥∥2

X
≤ (ψN (un+1

N ), ũn+1 − u?)X ≤
∥∥ψN (un+1

N )
∥∥
X

∥∥ũn+1 − u?
∥∥
X
.

This yields the claim. �

Remark 3.5. We compare the a posteriori error estimators from Theorem 3.1 and Theorem 3.4:
The proof of Theorem 3.1—and thus the constants in the bound (28)—strongly depend on the
choice of the preconditioning operator A, i.e. on the specific iterative linearization method. More-
over, the same comment applies for the computable bound η(un+1

N , unN ). In contrast, the estimator
from Theorem 3.4, resulting from the nonlinear elliptic construction, as well as the computable
bound η(unN ) are completely independent of the iteration scheme, and merely relies on the un-
derlying PDE problem. We note further that the a posteriori error estimator from Theorem 3.1
allows for more general reflexive Banach spaces X, whereas Theorem 3.4 requires a Hilbert space
setting.

4. An abstract ILG procedure

The estimates from Theorems 3.1 and 3.4 allow to control the error between the solution of (1)
and the discrete system (7) with respect to two individual terms, one of which expresses the
error of the linearization, and will be denoted by EnLinear,N , and the other, which we signify by
EnGalerkin,N , bounds the Galerkin discretization error. In a finite element context, the latter error
will typically be composed of local contributions for each element; this, in turn, enables to refine
the mesh locally. The algorithm, which will be presented below, uses an adaptive interplay between
those two controlling terms. More precisely, on a given Galerkin space, we iterate as long as the
linearization error dominates and, in addition, until it is, in a certain way, smaller than a given
bound depending on the number of Galerkin space enrichments, N . Once the linearization error
is small enough, and is up to a factor ϑ less than the one arising from the Galerkin method,
we enrich the Galerkin space according to the local error indicators in order to attain a smaller
discretization error. Subsequently, we will perform the linearization on the enriched space. In this
way, the goal of the ILG algorithm is to compute an approximation of the solution of (1) which, on
the one hand, is sufficiently accurate, and, on the other hand, is attained from a minimal number
of iterations.
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4.1. Adaptive ILG algorithm. For the purpose of this section, we assume that our ILG Algo-
rithm 1, to be presented below, generates a sequence of hierarchically enriched Galerkin spaces,
X0 ⊂ X1 ⊂ X2 ⊂ . . . , on each of which we perform at least one iterative step. Furthermore, we
will make use of a prescribed positive function σ : N→ (0,∞) which satisfies

σ(N)→ 0 for N →∞. (36)

Its role is to ensure that the linearization error tends to zero for an increasing number N of
Galerkin space enrichments. For instance, in the context of the finite element method, a sensible
choice is σ(N) = O(|TN |−s), where |TN | signifies the number of elements in the mesh, and s is the
expected convergence rate; cf. Section 5.3 below. Recall that, for any fixed N ≥ 0, our theory in
Section 2 guarantees, under certain conditions, that the difference

∥∥unN − un−1
N

∥∥
X

tends to zero

for increasing n; in particular, it can be made smaller than σ(N) for n large enough.
An adaptive ILG procedure for the interactive reduction of discretization and linearization

errors is proposed in Algorithm 1. We note that this algorithm can be performed with any of the
iterative procedures from Section 2.3, and with either the error estimators obtained from the linear
or nonlinear elliptic reconstructions from Section 3. The input and output arguments as well as
the components of the implemented algorithm may, of course, depend on the error estimator and
the specific iterative linearization scheme applied.

Algorithm 1 Adaptive ILG algorithm

1: Prescribe a tolerance εtol > 0, and an adaptivity parameter ϑ > 0. Set N := 0 and n := 0.
Start with an initial Galerkin space X0 ⊂ X, and an initial guess u0

0 ∈ X0.
2: repeat
3: Set EnLinear,N := 1 and EnGalerkin,N := 0.

4: while EnGalerkin,N ≤ ϑEnLinear,N or
∥∥unN − un−1

N

∥∥
X
> σ(N) do

5: Perform a single iterative linearization step to obtain un+1
N from unN ; cf. (7).

6: Estimate the linearization error En+1
Linear,N and the Galerkin error indicator En+1

Galerkin,N .
7: Update n← n+ 1.
8: end while
9: Let un

?

N := unN ∈ XN , and enrich the Galerkin space XN appropriately based on the error
indicator EnGalerkin,N in order to obtain XN+1.

10: Set Etot := EnLinear,N + EnGalerkin,N .

11: Define u0
N+1 := un

?

N by inclusion XN+1 ←↩ XN .
12: Update N ← N + 1, and set n := 0.
13: until Etot < εtol.
14: return the sequence of discrete solutions un

?

N ∈ XN .

4.2. A remark on convergence. Given a Galerkin space XN , we recall the solution uN ∈ XN

of (33). Furthermore, we let, as in the Algorithm 1, un
?

N ∈ XN be the final approximation on XN

(i.e. before the Galerkin space is enriched). We establish the convergence of un
?

N to the unique
solution u? of (1) under the following assumption:

(AG) The hierarchically enriched Galerkin spaces X0 ⊂ X1 ⊂ X2 ⊂ . . . generated by Algorithm 1
are such that the iterative Galerkin approximations uN ∈ XN from (33) converge to the
exact solution u? ∈ X of (1) for N →∞.

Proposition 4.1. If F from (1) fulfills (F1) and (F2) (cf. Section 2.1), and the Galerkin method
satisfies (AG), then Algorithm 1based on an iterative linearization scheme (7), with a(u; ·, ·) satis-
fying the properties (10) and (11), generates a sequence {un?N }N≥0 which converges to the unique
solution u? ∈ X of (1).

Proof. Using (F2) and involving (33), it holds that

ν
∥∥∥uN − un?−1

N

∥∥∥2

X
≤
〈
F(uN )− F(un

?−1
N ), uN − un

?−1
N

〉
=
〈
F(un

?−1
N ), un

?−1
N − uN

〉
.
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Invoking (5), (7), and (11), we obtain

ν
∥∥∥uN − un?−1

N

∥∥∥2

X
≤ a(un

?−1
N ;un

?−1
N − un

?

N , un
?−1
N − uN ) ≤ β

∥∥∥un?N − un?−1
N

∥∥∥
X

∥∥∥un?−1
N − uN

∥∥∥
X
,

and thus ∥∥∥uN − un?−1
N

∥∥∥
X
≤ β

ν

∥∥∥un?N − un?−1
N

∥∥∥
X
.

By the triangle inequality, this leads to∥∥∥uN − un?N ∥∥∥
X
≤
∥∥∥uN − un?−1

N

∥∥∥
X

+
∥∥∥un?N − un?−1

N

∥∥∥
X
≤
(
β

ν
+ 1

)∥∥∥un?N − un?−1
N

∥∥∥
X
. (37)

Notice that the stopping criterion for the while loop in Algorithm 1 implies that∥∥∥un∗N − un∗−1
N

∥∥∥
X
≤ σ(N) ∀N ≥ 0, (38)

with σ satisfying (36). Then, invoking the triangle inequality, as well as (37) and (38), yields∥∥∥u? − un?N ∥∥∥
X
≤ ‖u? − uN‖X +

∥∥∥uN − un?N ∥∥∥
X
≤ ‖u? − uN‖X +

(
β

ν
+ 1

)
σ(N).

The first term on the right-hand side tends to zero for N → ∞ by virtue of (AG), and the same
holds true for the second term due to (36). We deduce that un

?

N → u? as N →∞. �

In our subsequent paper [20] we further analyze the convergence of the adaptive ILG algorithm.
In fact, we establish the linear convergence rate of our algorithm, with a slightly different a
posteriori error estimator, under reasonable assumptions. For instance, in the context of finite
element discretizations of second-order PDE in divergence form, cf. Section 5, we state in [20] an
a posteriori error estimator which guarantees the linear convergence regime.

5. Application to second-order PDE in divergence form

In this section, we will apply our analytical findings to the quasilinear elliptic PDE problem

u ∈ X : F(u) := −∇ ·
{
µ
(
|∇u|2

)
∇u
}
− g = 0 in X ′. (39)

Here, Ω ⊂ Rd, for d ∈ N, is an open and bounded domain with Lipschitz boundary Γ := ∂Ω, and
X := H1

0 (Ω) is the standard Sobolev space ofH1-functions on Ω with zero trace along the boundary
Γ; the inner product and norm on X are defined, respectively, by (u, v)X := (∇u,∇v)L2(Ω)

and ‖u‖X := ‖∇u‖L2(Ω), for u, v ∈ X. Equations of the form (39) are widely used in mathematical
models of physical applications including, for instance, hydro- and gas-dynamics, or plasticity; we
refer to [32, §69.2–69.3] and [6, §1.1] for a discussion of the physical meaning. We suppose that
g ∈ X ′ = H−1(Ω) in (39) is given, and µ ∈ C1([0,∞)) fulfills

mµ(t− s) ≤ µ(t2)t− µ(s2)s ≤Mµ(t− s), t ≥ s ≥ 0, (40)

with constants mµ,Mµ > 0. In particular, upon setting s = 0, we observe that

mµ ≤ µ(t2) ≤Mµ ∀t ≥ 0. (41)

Under condition (40) it can be shown that the nonlinear operator F from (39) satisfies the prop-
erties (F1) and (F2) with

ν = mµ, LF = 3Mµ; (42)

see [33, Proposition 25.26].
We note the weak form of the boundary value problem (39) in X:

u ∈ X :

∫
Ω

µ
(
|∇u|2

)
∇u · ∇v dx = 〈g, v〉 ∀v ∈ X. (43)
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5.1. Convergence of iterative linearizations. In the sequel, we will investigate the conver-
gence of the various iteration schemes from Section 2.3 as applied to the PDE (39). The conver-
gence of the Zarantonello iteration follows immediately from Theorem 2.2.

Proposition 5.1. If µ satisfies (40) and F is given by (39), then the Zarantonello iteration (12),
i.e.

un+1 ∈ X : −∆un+1 = −∆un + δ∇ ·
{
µ
(
|∇un|2

)
∇un

}
+ δg, n ≥ 0,

converges to the unique solution of (39) for any δ ∈ ]0, 2mµ/9M2
µ[.

In order to study the Kačanov iteration method for (39), let us define, for u ∈ X, the linear
preconditioning operator

A(u)v := −∇ ·
{
µ
(
|∇u|2

)
∇v
}
, v ∈ X. (44)

In addition to (40), we assume that µ is monotone decreasing, i.e.

µ′(t) ≤ 0 ∀t ≥ 0. (45)

Proposition 5.2. Let µ satisfy (40) and (45). Then, the Kačanov iteration (15), i.e.

un+1 ∈ X : −∇ ·
{
µ
(
|∇un|2

)
∇un+1

}
= g, n ≥ 0,

converges to the unique solution of (39).

Proof. We will show that the assumptions of Theorem 2.5 are satisfied. To this end, for A from (44),
and any u ∈ X, we define the symmetric bilinear form a(u; v, w) := 〈A(u)v, w〉, for v, w ∈ X. Then,
using (41) in combination with the Cauchy-Schwarz inequality shows the coercivity and continuity
properties (10) and (11) with

α = mµ, β = Mµ, (46)

respectively. Furthermore, we introduce the potential G : X → R by

G(u) :=

∫
Ω

ψ
(
|∇u|2

)
dx, with ψ(s) :=

1

2

∫ s

0

µ(t) dt. (47)

For u ∈ X, taking the Gateaux derivative of G, we find that

〈G′(u), v〉 =

∫
Ω

2ψ′
(
|∇u|2

)
∇u · ∇v dx =

∫
Ω

µ
(
|∇u|2

)
∇u · ∇v dx = a(u;u, v),

for any v ∈ X. Thus, we infer that G′(u) = a(u;u, ·) = F(u) + g. Recalling (F2), this implies
the strong monotonicity property (16) with c0 = mµ, and we conclude that (K1) holds true. In
addition, due to (45), for any t ≥ s ≥ 0, it holds that

ψ(t)− ψ(s) =
1

2

∫ t

s

µ(τ) dτ ≥ 1

2
(t− s)µ(t),

and similarly for s ≥ t ≥ 0,

ψ(t)− ψ(s) = −1

2

∫ s

t

µ(τ) dτ ≥ −1

2
(s− t)µ(t) =

1

2
(t− s)µ(t).

Hence, for any u, v ∈ X, we have

G(u)− G(v) ≥ 1

2

∫
Ω

µ
(
|∇u|2

)(
|∇u|2 − |∇v|2

)
dx =

1

2
(a(u;u, u)− a(u; v, v)) ,

which shows (K2). �

Finally, we turn our attention to the damped Newton iteration.

Proposition 5.3. Let µ satisfy (40) and (45). Moreover, suppose that the damping parameter
δ : X → [δmin, δmax] is a continuous functional, for some constants δmin, δmax, with 0 < δmin ≤
δmax < 2mµ/3Mµ. Then, the damped Newton iteration (19) for the nonlinear PDE (39) converges
to its unique solution in X.
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We will prove this proposition by showing that the assumptions of Theorem 2.6 are satisfied.
For this purpose we require the following auxiliary result.

Lemma 5.4. If µ satisfies (40), then the operator u 7→ F′(u)u is continuous from X to X ′ with
respect to the weak topology on X ′.

Proof. By taking the limit s↗ t in (40), we infer that mµ ≤ d
dt

(
µ(t2)t

)
≤Mµ, and, thereby,

mµ ≤ 2µ′(t2)t2 + µ(t2) ≤Mµ ∀t ≥ 0. (48)

Moreover, a simple but lengthy calculation shows that

〈F′(u)v, w〉 =

∫
Ω

2µ′(|∇u|2)(∇u · ∇v)(∇u · ∇w) dx +

∫
Ω

µ(|∇u|2)∇v · ∇w dx, (49)

for any u, v, w ∈ X. Consider a sequence {uk}k≥0 ⊂ X which converges to a limit u ∈ X, i.e.∥∥u− uk∥∥
X
→ 0, k →∞. (50)

Since X = H1
0 (Ω), we find that ∇uk → ∇u in L2(Ω) for k → ∞. Thus, there is a subsequence

such that
∇uk

′
→ ∇u a.e. in Ω for k′ →∞, (51)

see, e.g., [27, Theorem 3.12]. Hence, defining the function ω(t) := 2µ′(t)t+ µ(t), t ≥ 0, it holds〈
F′(u)u− F′(uk

′
)uk

′
, w
〉

=

∫
Ω

(
ω(|∇u|2)− ω(|∇uk

′
|2)
)
∇u · ∇w dx

+

∫
Ω

ω(|∇uk
′
|2)∇(u− uk

′
) · ∇w dx.

We note that both terms on the right-hand side tend to 0 as k′ →∞: Indeed, for the first integral
this follows from the continuity of ω, (51), (48), and the dominated convergence theorem; for
the second integral, we recall (48) and (50). Finally, referring to [31, Proposition 10.13(2)], we
conclude the weak convergence of the entire sequence, i.e. F′(uk)uk ⇀ F′(u)u as k → ∞. This
finishes the proof. �

Proof of Proposition 5.3. For v = w in (49) we have that

〈F′(u)v, v〉 =

∫
Ω

2µ′(|∇u|2)|∇u · ∇v|2 +

∫
Ω

µ(|∇u|2)|∇v|2 dx.

Exploiting (45), and using the Cauchy-Schwarz inequality, we notice that

2µ′(|∇u|2)|∇u · ∇v|2 ≥ 2µ′(|∇u|2)|∇u|2|∇v|2.
It follows that

〈F′(u)v, v〉 ≥
∫

Ω

(
2µ′(|∇u|2)|∇u|2 + µ

(
|∇u|2

))
|∇v|2 dx.

Applying (48) implies that 〈F′(u)v, v〉 ≥ mµ ‖v‖2X for any u, v ∈ X; this shows (20) with

αF′ = mµ. (52)

In addition, in view of (42), we observe that 2αF′/LF = 2mµ/3Mµ > δmax, as required in Theorem 2.6.
Furthermore, application of the Cauchy-Schwarz inequality, and involving (45), yields

〈F′(u)v, w〉 ≤
∫

Ω

(∣∣2µ′(|∇u|2)
∣∣ |∇u|2 + µ

(
|∇u|2

))
|∇v||∇w| dx

= −
∫

Ω

(
2µ′(|∇u|2) |∇u|2 + µ

(
|∇u|2

))
|∇v||∇w| dx

+ 2

∫
Ω

µ
(
|∇u|2

)
|∇v||∇w| dx.

Employing (48) and (41), this leads to

〈F′(u)v, w〉 ≤ (2Mµ −mµ)

∫
Ω

|∇v||∇w| dx ≤ (2Mµ −mµ) ‖v‖X ‖w‖X ,
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which gives (21) with

βF′ = 2Mµ −mµ. (53)

In order to prove (N3), let us define the functional H : X → R by

H(u) :=

∫
Ω

ψ
(
|∇u|2

)
dx− 〈g, u〉 , u ∈ X,

with ψ as in (47). It holds that

〈H′(u), v〉 =

∫
Ω

µ
(
|∇u|2

)
∇u · ∇v dx− 〈g, v〉 = 〈F(u), v〉 ,

for all v ∈ X. Finally, to establish (N2), we introduce the functional G : X → R by G(u) :=
F(u)−H(u), where F(u) := 〈F(u), u〉, u ∈ X. For u ∈ X, the Gateaux derivative of F is given by

〈F ′(u), v〉 = 〈F′(u)u, v〉+ 〈F(u), v〉 ∀v ∈ X.

It follows that G′(u) = F ′(u)−H′(u) = F′(u)u+ F(u)− F(u) = F′(u)u. Finally, due to Lemma 5.4
the mapping u 7→ G′(u) = F′(u)u is continuous with respect to the weak topology on X ′. �

5.2. Iterative linearized FEM. For the sake of discretizing (43), and thereby, of obtaining
an ILG formulation for (39), we will use a conforming finite element framework. To illustrate
our approach we deal with a physical domain Ω ⊂ R2; we remark, however, that the discussion
below can, in principle, be generalized to higher dimensions. We consider regular and shape-
regular meshes Th that partition the domain Ω into open and disjoint triangles K ∈ Th such that
Ω =

⋃
K∈Th K. We denote by hK := diam(K) the diameter of K ∈ Th, and let h := maxK∈Th hK .

Moreover, we consider the finite element space

Xh :=
{
v ∈ H1

0 (Ω) : v|K ∈ Pp(K) ∀K ∈ Th
}
, (54)

where, for fixed p ∈ N, we signify by Pp(K) the space of all polynomials of total degree at most
p ≥ 1 on K ∈ Th.

Within the adaptive ILG framework, we will consider a sequence of meshes {TN}N≥0, whereby
we start with an initial conforming triangulation T0 of Ω. All subsequent meshes are obtained by
refinement, i.e. for N ≥ 0, the mesh TN+1 is a hierarchical refinement of TN . Moreover, we will
denote by XN the finite element space associated to the mesh TN .

For an edge e ⊂ ∂K+ ∩∂K−, which is the intersection of two neighbouring elements K± ∈ TN ,
we signify by JvK |e = v+|e · nK+ + v−|e · nK− the jump of a (vector-valued) function v along e,
where v±|e denote the traces of the function v on the edge e taken from the interior of K±,
respectively, and nK± are the unit outward normal vectors on ∂K±, respectively.

5.2.1. A posteriori error analysis via linear elliptic reconstruction. In this section, we discuss the
a posteriori error estimate from Theorem 3.1 in the specific context of the nonlinear PDE (39)
and the finite element framework presented above. Introducing the residual

R(u; v, w) := a(u; v, w)− 〈f(u), w〉 , u, v ∈ XN , w ∈ X,

it is fairly straightforward to verify that, for all of the three iterative linearization schemes from
Section 5.1, and for g ∈ L2(Ω) in (39), it holds the special form

R(unN ;un+1
N , w) = −

∫
Ω

qnN · ∇w dx +

∫
Ω

pnNw dx ∀w ∈ X,

with some pnN ∈ L2(Ω) and qnN ∈ H1(Ω)2, which can be represented explicitly. Then, recalling (7),
we may conclude that

R(unN ;un+1
N , w) = R(unN ;un+1

N , w − wN ) = −
∫

Ω

qnN · ∇(w − wN ) dx +

∫
Ω

pnN (w − wN ) dx,
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for any wN ∈ XN . Therefore, choosing wN to be a quasi-interpolant of w, and pursuing a standard
residual-based a posteriori error analysis (see, e.g., [29]), we deduce the upper bound

sup
w∈X
‖w‖X=1

R(unN ;un+1
N , w) ≤ CI

( ∑
K∈TN

η2
K

)1/2

,

where CI > 0 is an interpolation constant (only depending on the polynomial degree p and on the
shape-regularity of the mesh), and

η2
K = h2

K ‖∇ · qnN + pnN‖
2
L2(K) +

1

2
hK ‖JqnN K‖2L2(∂K\Γ) , K ∈ TN , (55)

is a computable error indicator.

Theorem 5.5. Let F be defined by (39) with µ fulfilling (40) and (45), and let XN ⊂ H1
0 (Ω) be a

conforming finite element space as in (54) on a mesh TN . If u? is the unique solution of (39), and
{unN}n≥0 is a sequence of ILG solutions obtained by any of the iterative linearization procedures
from Section 5.1 on XN , then it holds the a posteriori estimate

∥∥u? − un+1
N

∥∥
X
≤ βCI

αmµ

( ∑
K∈TN

η2
K

)1/2

+
β + 3Mµ

mµ

∥∥un+1
N − unN

∥∥
X
,

where CI > 0 is a constant, and

(α, β) =


(δ−1, δ−1) for the Zarantonello iteration, cf. (13),

(mµ,Mµ) for the Kačanov iteration, cf. (46),

(mµ/δmax, (2Mµ−mµ)/δmin) for the Newton iteration, cf. (22), (52), and (53),

and ηK , for K ∈ TN , is defined in (55).

Proof. The result follows from Theorem 3.1, whereby we replace the constants ν and LF from (42),
and insert the values of α and β from (10) and (11) for the respective iterative schemes from
Section 5.1. �

5.2.2. Error estimator via nonlinear elliptic reconstruction. Following our abstract analysis in
Section 3.2, we consider the residual

R(un+1
N ) := sup

w∈X
‖w‖X=1

{
(ψN (un+1

N ), w)X −
〈
F(un+1

N ), w
〉}
.

Noticing (32), for any wN ∈ XN , we have

R(un+1
N ) := sup

w∈X
‖w‖X=1

{
(ψN (un+1

N ), w − wN )X −
〈
F(un+1

N ), w − wN
〉}
.

Then, for g ∈ L2(Ω) in (39), and wN ∈ XN an appropriate quasi-interpolant of w ∈ H1
0 (Ω), we

employ a standard residual-based a posteriori error analysis (see, e.g., [29]) to infer the upper
bound

R(un+1
N ) ≤ CI

( ∑
K∈TN

η2
K

)1/2

,

where CI is a quasi-interpolation constant, and

η2
K = h2

K

∥∥∥∆ψN (un+1
N ) + g +∇ ·

{
µ
(∣∣∇un+1

N

∣∣2)∇un+1
N

}∥∥∥2

L2(K)

+
1

2
hK

∥∥∥r∇ψN (un+1
N ) + µ

(∣∣∇un+1
N

∣∣2)∇un+1
N

z∥∥∥2

L2(∂K\Γ)
,

(56)

for any K ∈ TN . Then, invoking Theorem 3.4 and recalling (42), we obtain the following result.
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Theorem 5.6. Given the same assumptions as in Theorem 5.5, then it holds the a posteriori
error estimate

∥∥u? − un+1
N

∥∥
X
≤ CI

mµ

( ∑
K∈TN

η2
K

)1/2

+
1

mµ

∥∥ψN (un+1
N )

∥∥
L2(Ω)

,

where u? is the unique solution of (39), CI is a constant, and ηK , for K ∈ TN , is given in (56).

5.3. Numerical Experiments. In this section, we test the adaptive ILG Algorithm 1 in the
context of the iterative linearized FEM for second-order PDE in divergence form discussed in Sec-
tion 5. We perform a series of numerical experiments to compare the various iterative linearization
procedures from Section 2.3 and to validate the a posteriori error estimators from Section 5.2.
For all our experiments, we consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]), and an
initial mesh consisting of 192 uniform triangles. Moreover, we will always choose the initial guess
to be u0 ≡ 0, and run the algorithm until the number of elements exceeds 106. On a given mesh,
we perform at least one iterative linearization step, and continue until the linearization error is at
most half as large as the discretization error, i.e. we let ϑ = 2 in Algorithm 1. Furthermore, for a
given constant Υ > 0, we let

σ(N) := Υ |TN |−
1/2 ∥∥u1

0

∥∥
X
, N ≥ 0,

which relates to the expected convergence rate of O(|TN |−1/2); in our experiments below the
choice Υ = 10 has proved to be a sensible value. Moreover, we set the constant factors for the
discretization and linearization estimators appearing in the right-hand sides of the a posteriori
error bounds to 1 (cf. Theorems 5.5 and 5.6). In the adaptive process, we mark the elements for
refinement by use of the Dörfler marking strategy, see [13], and process them by the newest vertex
bisection method, see [24]. The true error ‖u? − unN‖X and the error estimator will be displayed
each time before a mesh refinement is undertaken. Our implementation is based on the Matlab
package [16], with the necessary modifications.

In the Experiments 5.3.1–5.3.3 below we consider the different iterative procedures discussed in
Section 2.3. For the problems under consideration, our computations consistently indicate that, in
the a posteriori error estimates from Theorem 5.5 and Theorem 5.6, the discretization part clearly
dominantes the linearization contribution. Not surprisingly, after a brief initial mesh refinement
phase, the algorithm only undertakes one iterative linearization step per space enrichment, i.e.
our algorithm is highly efficient for the proposed examples. Moreover, both the discretization
and linearization error indicators generally converge at the expected rate of O(|TN |−1/2). More
precisely, this holds true for any iterative scheme except for the damped Newton method (in
combination with the a posteriori error estimator from Theorem 5.6), where the linearization
error estimator exhibits an even higher convergence rate; this may result from the local quadratic
convergence property of the Newton iteration.

5.3.1. Smooth solution. We consider the nonlinear diffusion coefficient µ(t) = (t + 1)−1 + 1/2, for
t ≥ 0, and select g in (39) such that the analytical solution of (43) is given by the smooth function
u?(x, y) = sin(πx) sin(πy). It is straightforward to verify that µ fulfills the requirements (40) and
(45) from Section 5, so that the convergence of the three iterative procedures from Section 2.3
is guaranteed. The parameter δ in the Zarantonello iteration (12) is chosen to be 0.85 as this
seems to be close to optimal. The initial damping parameter on the initial mesh for the damped
Newton method is chosen to be δ0 = 1 in Remark 2.8; moreover, throughout all our experiments,
the factor κ for the correction and prediction strategy of the damping parameter is set to be 1/2.

In Figure 1, for each of the three iterative linearization schemes presented in Section 5.1,
we plot the error ‖u? − unN‖X and both error estimators from Theorems 5.5 and 5.6 against
the number |TN | of elements in the mesh. In addition, we display the effectivity indices for
each experiment, i.e. the ratio of the error estimator and the true error; we see that they are
roughly bounded between 2 and 4. Furthermore, we notice that (nearly) optimal convergence
rates O

(
|TN |−1/2

)
are achieved in all plots.
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5.3.2. Nonsmooth solution. In our second experiment, we consider the nonlinear diffusion param-
eter µ(t) = 1+e−t, for t ≥ 0. Again, it is easily seen that µ satisfies the assumptions (40) and (45).
We choose g in (39) such that the analytical solution is given by

u?(r, ϕ) = r
2/3 sin (2ϕ/3) (1− r cos(ϕ))(1 + r cos(ϕ))(1− r sin(ϕ))(1 + r sin(ϕ)) cos(ϕ), (57)

where r and ϕ are polar coordinates. This is the prototype singularity for (linear) second-order
elliptic problems with homogeneous Dirichlet boundary conditions in the L-shaped domain; in
particular, we note that the gradient of u? is unbounded at the origin. As before, in Figure 2,
we plot the error ‖u? − unN‖X , the error estimators from Theorems 5.5 and 5.6, as well as the
effectivity indices versus the number |TN | of elements in the mesh for each of the three iterative
linearization schemes from Section 5.2. We let δ = 0.5 for the Zarantonello iteration, and use the
initial damping parameter δ0 = 1 for the Newton method as in Experiment 5.3.1. As before, we
observe that optimal rates of convergence are attained in all six cases.

5.3.3. Nonsmooth solution with monotone increasing diffusion. Finally, we consider the nonlinear
diffusivity function µ(t) = 2− e−t, for t ≥ 0. Again, we choose g in (39) such that the analytical
solution is given by the nonsmooth function (57). Since µ is monotone increasing, it does not
have the property (45), which is needed to guarantee the convergence of the Kačanov iteration
and of the damped Newton method. It still fulfills, however, the assumption (40), which, in turn,
is sufficient to guarantee the convergence of the Zarantonello method. In this experiment, we
choose the damping parameter for the Zarantonello method to be δ = 0.4, and the initial damping
parameter in the Newton method to be δ0 = 1. We see from the plots in Figure 3 that the
Kačanov and damped Newton methods converge, even with optimal order, which indicates that
the property (45) does not seem to be necessary for the current example and the initial setup
chosen here. We emphasize that this observation for the Kačanov method was already made
in [18].
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25. J. Nečas, Introduction to the theory of nonlinear elliptic equations, John Wiley and Sons, 1986.

26. A. Potschka, Backward step control for global newton-type methods, SIAM J. Numer. Anal. 54 (2016), no. 1,

361–387.
27. W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.

28. H. R. Schneebeli and T. P. Wihler, The Newton-Raphson method and adaptive ODE solvers, Fractals. Complex

Geometry, Patterns, and Scaling in Nature and Society 19 (2011), no. 1, 87–99.
29. R. Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and

Scientific Computation, Oxford University Press, Oxford, 2013.
30. E. H. Zarantonello, Solving functional equations by contractive averaging, Tech. Report 160, Mathematics

Research Center, Madison, WI, 1960.

31. E. Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986, Fixed-point
theorems.

32. , Nonlinear functional analysis and its applications. IV, Springer-Verlag, New York, 1988, Applications

to mathematical physics, Translated from the German and with a preface by Juergen Quandt.
33. , Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990.



ADAPTIVE ILG METHODS FOR NONLINEAR PROBLEMS 21

(a) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.5.

(b) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.6.

(c) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.5.

(d) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.6.

(e) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.5.

(f) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.6.

Figure 1. Experiment 5.3.1: Performance data for the error estimators from
Theorem 5.5 (left) and Theorem 5.6 (right) for the Zarantonello, Kačanov and
Newton iterations.
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(a) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.5.

(b) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.6.

(c) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.5.

(d) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.6.

(e) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.5.

(f) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.6.

Figure 2. Experiment 5.3.2: Performance data for the error estimators from
Theorem 5.5 (left) and Theorem 5.6 (right) for the Zarantonello, Kačanov and
Newton iterations.
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(a) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.5.

(b) Zarantonello iteration with the

a posteriori error bound from Theo-

rem 5.6.

(c) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.5.

(d) Kačanov iteration with the a pos-

teriori error bound from Theorem 5.6.

(e) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.5.

(f) Damped Newton iteration with
the a posteriori error bound from The-

orem 5.6.

Figure 3. Experiment 5.3.3: Performance data for the error estimators from
Theorem 5.5 (left) and Theorem 5.6 (right) for the Zarantonello, Kačanov and
Newton iterations.
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