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Abstract. Proof-theoretic methods are developed for subsystems of Johansson’s logic

obtained by extending the positive fragment of intuitionistic logic with weak negations.

These methods are exploited to establish properties of the logical systems. In particular,

cut-free complete sequent calculi are introduced and used to provide a proof of the fact that

the systems satisfy the Craig interpolation property. Alternative versions of the calculi are

later obtained by means of an appropriate loop-checking history mechanism. Termination

of the new calculi is proved, and used to conclude that the considered logical systems are

PSPACE-complete.
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1. Introduction

Minimal propositional calculus (Minimalkalkül, denoted here as MPC) is the
system obtained from the positive fragment of intuitionistic propositional
calculus (equivalently, positive logic [27]) by adding a unary negation opera-
tor satisfying the so-called principle of contradiction (sometimes referred to
as reductio ad absurdum, e.g., in [24]). This system was introduced in this
form by Johansson in 1937 [21], and goes back to Kolmogorov’s first formal-
ization of intuitionistic logic [22], obtained by discarding ex falso quodlibet
(ex falso, from now on) from the nowadays standard axioms for intuitionistic
logic. A letter from Johansson to Heyting (1935–1936) reads [32]:

[ex falso] says that once ¬a has been proved, b follows from a, even if
this had not been the case before.

This implies that the constructive interpretation of negation (i.e., implica-
tion) characteristic of intuitionism may give rise to doubts concerning the
legitimacy of ex falso as an axiom of intuitionistic logic. More generally, by
rejecting ex falso, one earns the right to study the notion of contradiction
on its own and thereby, the related notion of negation.
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The axiomatization proposed by Johansson preserves the whole posi-
tive fragment and most of the negative fragment of Heyting’s intuitionistic
logic. As a matter of fact, many important properties of negation provable
in Heyting’s system remain provable (in some cases, in a slighlty weakened
form) in minimal logic. The absence of ex falso made Johansson’s system
the focus of interest in the field of paraconsistency, conceived as the study
of those logics which admit inconsistent non-trivial theories. From a stan-
dard paraconsistent view, minimal logic still has unfortunate features [24].
In fact, the provability of what we are going to refer to as ‘negative ex
falso’ (a ∧ ¬a) → ¬b makes negation meaningless in inconsistent theories—
since every negated formula is provable—hence preserving some of the trivial
aspects distinctive of ex falso. Interestingly enough, in the setting of positive
logic, negative ex falso follows already from the assumption that negation is
a functional antitone operator, i.e., that it satisfies the contraposition axiom
(a → b) → (¬b → ¬a) [7,8]. The latter is a theorem of Johansson’s logic
and one of its main ‘sources of explosiveness’.1 The two formulas mentioned
in this paragraph will play a fundamental rôle throughout the paper. These
formulas arose as central principles in the semantic investigations of [7,8].
There, the class of those logics is studied that extend a basic logic of a
unary operator axiomatized by (a ↔ b) → (¬a ↔ ¬b) over positive logic.
The present paper can be seen as a continuation of the study of these log-
ics in a proof-theoretic direction. It is worth mentioning that the system
with contraposition as the only negation axiom (here, CoPC) has been con-
sidered as a theory of subminimal negation before: Hazen [14], following a
personal communication with Humberstone, arrives at this logics by weak-
ening Johansson’s original motivations, avoiding in particular the principle
(a → ¬a) → ¬a. The same logic has also been discussed by Humberstone
himself in [20, Section 8.33].2

Working in a paraconsistent setting and with weaker notions of nega-
tion sounds appealing when dealing with phenomena such as descriptions
of counterfactual situations or fictional objects, information in a computer
data base, negations in natural language, etc. For instance, fragments of
intuitionistic logic have been considered to formalize information flow or
access control, mostly because of their good balance between expressivity

1Logical systems in which all the inconsistent theories are trivial are sometimes said
to be explosive [24]. The fact that negative ex falso is seen as a weak form of explosion
justifies this statement.

2We thank Allen P. Hazen, and consequently Dick de Jongh, for pointing out and
discussing this reference.
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and tractability. A relevant example in this direction can be found looking
at the logic of infons [13], used in Distributed Knowledge Authorization Lan-
guage (DKAL): ‘infons’ are statements viewed as containers of information,
and infon logic turns out to be a conservative extension of the positive and
disjunction-free fragment of intuitionistic logic with certain simple multia-
gent modalities.

A formal study of the properties of (constructive) negation taken individ-
ually has the potential of disclosing unexplored paths in the study of nega-
tion in these more applied contexts. In this respect, we would like to point
out the possibility of exploiting these studies in the setting of inquisitive logic
[5,6,12]. The propositional fragment of inquisitive logic can be regarded as
the disjunctive-negative fragment of intuitionistic logic, and negation plays
a fundamental rôle in inquisitive semantics. Nonetheless, having a univocal
notion of negation does not make it easy to model the many different shades
of negation within natural language. An attempt to extending the inquisi-
tive logic framework by adding a ‘weak’ negation has been already pursued
in [26], where to the persistent negation a weaker non-persistent negation
is added, with the aim of taking care of problems as ‘might’-sentences or
sentences expressing denial of conditionals.

This short introduction is meant to outline where the study of weak nega-
tions and, in particular, our work find their roots and motivations. The
search for a ‘most appropriate’ or ‘significant’ notion of constructive negation
given a fixed positive setting suggests a broad but well-defined realm of pos-
sibility, whose uniform study is typical of algebraic semantics. An algebraic
presentation of the logical systems of our interest is the focus of Section 2.
This section is a condensed presentation of the results of [2,7], and earlier
papers on which these articles are based. After this, the remaining and main
part of the paper is concerned with the development of a proof theory for
the relevant systems. While this proof-theoretic account lacks uniformity, the
sequent calculi that we present happen to be the most natural ones, obtained
via a straightforward translation of equations (or equivalently, Hilbert-style
axioms) into sequent rules. First, cut-free Gentzen systems are presented in
Section 3, and used in Section 4 to argue for fundamental results about the
logical systems, such as Craig’s interpolation, disjunction property, decid-
ability. Later, the non-termination issues affecting the Gentzen systems are
solved by means of a loop-checking history mechanism, presented and justi-
fied in Section 5. The latter concludes the paper, as the termination property
of the modified calculi allows us to improve the decidability result from Sec-
tion 4 to an argument that the considered logical systems are decidable in
PSPACE.
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2. Preliminaries

In this preliminary section we introduce the setting and present the main
technical tools that will be used throughout the paper.

An algebraic semantics for minimal logic is given by the variety of con-
trapositionally complemented lattices. A contrapositionally complemented
lattice is an algebraic structure 〈A,∧,∨,→, 1,¬〉, where 〈A,∧,∨,→, 1〉 is a
relatively pseudo-complemented lattice3 and the unary fundamental opera-
tion ¬ satisfies the identity (p → ¬q) → (q → ¬p) ≈ 1. A first algebraic
account of Johansson’s logic can be found in Rasiowa’s main work on non-
classical logics [27]. The variety presented by Rasiowa is term-equivalent to
the variety of relatively pseudo-complemented lattices with a negation opera-
tor defined by the algebraic formulation of the principle of non-contradiction
(p → q) ∧ (p → ¬q) → ¬p ≈ 1, originally employed in Johansson’s axiom-
atization. Observe that Heyting algebras can be seen as contrapositionally
complemented lattices where ¬1 is a distinguished bottom element 0.

As stated in the introduction, we focus on subsystems of minimal logic
obtained by weakening Johansson’s notion of negation. Algebraically, we
start from a class of algebraic structures 〈A,∧,∨,→, 1,¬〉 that generalize
contrapositionally complemented lattices [27]. Again 〈A,∧,∨,→, 1〉 is a rel-
atively pseudo-complemented lattice and the unary operation ¬ is restricted
only by the identity:

(p ↔ q) → (¬p ↔ ¬q) ≈ 1. (I)

We call these structures N-algebras, and we refer to the equivalent logical
system as N. Note that this class of algebras play a fundamental rôle in the
attempts of defining a connective over positive logic. In fact, the considered
equation states that the function ¬ is a compatible function (or compatible
connective), in the sense that every congruence of 〈A,∧,∨,→, 1〉 is a congru-
ence of 〈A,∧,∨,→, 1,¬〉. This is somehow considered a minimal requirement
when introducing a new connective over a fixed setting. A study of compat-
ible connectives on Heyting algebras can be found in [4], in the attempt of
defining and studying new connectives over intuitionistic logic. In the setting
of positive logic, a similar algebraic approach is carried out in [10].

Given the variety of N-algebras, we are particularly interested in two of
its subvarieties that were implicitly considered in Section 1, and are defined,
respectively, by the following identities:

3In the sense of [27]; alternatively called Brouwerian algebras (e.g., [1]) or lattices (e.g.,
[3]), generalized Heyting algebras (e.g., [10,11]), implicative lattices (e.g., [24]).
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(p ∧ ¬p) →¬q ≈ 1 (II)

(p → q) → (¬q → ¬p) ≈ 1. (III)

Observe that II and III are algebraic formulations of, respectively, negative
ex falso and the contraposition axiom, and for this reason we shall refer
to the corresponding logics as negative ex falso logic (NeF) and contraposi-
tion logic (CoPC). Here, we also consider contrapositionally complemented
lattices in terms of their term-equivalent variety of N-algebras defined by
(p → q) → (¬q → ¬p) ≈ 1 plus (p → ¬p) → ¬p ≈ 1. It was proved in [2,7,8]
that the following relations hold between the considered logical systems:

N ⊂ NeF ⊂ CoPC ⊂ MPC,

where the strict inclusion L1 ⊂ L2 means that every theorem of L1 is a
theorem of L2, and at least one theorem of L2 is not provable in L1.

In the remainder of this paper we focus on a proof-theoretic study of (the
logics corresponding to) these varieties. We will talk interchangeably about
logical systems and their corresponding algebraic presentation, assuming an
algebraic completeness result that goes beyond the scope of this paper and
is therefore not included here. In order to keep the structure of the paper
as clean as possible, the reader interested in a broader and introductory
account of the topic from an algebraic perspective should refer to [7]. It
is worth mentioning that in [7,8], the presentation and the study of these
logical systems are developed also in a Kripke-style semantical framework.
Finally, [2] is concerned with a deeper algebraic account of these logics, and
a first study of their modal companions.

3. Sequent Calculi

Following the notation of [31], we refer to the Gentzen systems introduced
here as G3-systems. The letters p, q, . . . range over propositional variables,
the Greek letters α, β, . . . , ϕ, . . . range over formulas, and Γ, Δ, . . . range
over finite multisets of formulas. We write Γ, Δ for the multiset obtained
as the union of Γ and Δ. We consider the propositional language L(Prop),
where Prop is a countable set of propositional variables, generated by the
following grammar:

p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ

where p ∈ Prop. We consider � as a constant in the language, while we
omit ⊥. We call a formula positive if it contains only connectives from
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Figure 1. The systems G3

Figure 2. Structural rules

{∧,∨,→,�}, and we refer to the positive fragment of intuitionistic logic
as positive logic. We define the notion of weight (or complexity) w(ϕ) of a
formula ϕ inductively as follows:

• w(p) = w(�) = 1, for every atom p;

• w(ϕ1 ◦ ϕ2) = w(ϕ1) + w(ϕ2) + 1, where ◦ ∈ {∧,∨,→};

• w(¬ϕ) = w(ϕ) + 1.

In Figures 1 and 2, four different sequent systems are presented. Keeping
the rules for the positive connectives and the structural rules fixed, the
rule (n) defines a proof system for N-algebras; by adding the rule (nef)



Proof Theory for Positive Logic with Weak Negation 655

and by substituting the rule (n) with (copc), we obtain systems for the
two proper subvarieties of N-algebras defined, respectively, by II and III.
Finally, by adding the rule (an) to the system obtained with (copc), we
obtain a sequent proof system for contrapositionally complemented lattices.

Sequent proof systems for MPC were already introduced, e.g., in [31],
using a different presentation of MPC. In fact, MPC is often formulated with
the negation ¬ϕ as a defined connective ϕ → f , where f is a distinguished
propositional variable in the language. This formulation naturally suggests
a sequent calculus for MPC obtained by discarding the axiom ruling the
constant ⊥ from the system for intuitionistic propositional logic.

We call the height of a derivation � Γ ⇒ ϕ the number of inference steps
of a maximal branch within a proof tree with root Γ ⇒ ϕ. A rule is said
to be admissible if, whenever its premises are derivable in the system, so is
the conclusion, and height-preserving admissible if, whenever its premises are
derivable via a proof of height (at most) n ∈ N, then so is the conclusion. We
say that an inference rule is invertible if, for every instance of the rule, the
premises are derivable if, and only if, the conclusion is, and height-preserving
invertible if the two derivations have the same height. It can be proved that
all the rules in Figure 1 except (∨r1), (∨r2), (→ l), (n), (nef) and (copc)

are height-preserving invertible.
The arguments for admissibility of weakening (w) and contraction (c)

are standard, and for the positive part of the calculus they can be adopted
directly from a number of sources. Therefore we concentrate on the negative
rules only, and refer the reader to the textbook [31] for the remaining cases.
The full proofs can be found in [7].

Proposition 3.1. The following weakening rule is height-preserving admissi-
ble:

Γ ⇒ ϕ

Γ, α ⇒ ϕ
(w)

Proof. The proof goes by induction on the height of a derivation of the
premise sequent Γ ⇒ ϕ.

Suppose that the derivation (of height n) ends with an application of (n)

Γ,¬β, β ⇒ γ Γ,¬β, γ ⇒ β

Γ,¬β ⇒ ¬γ
(n)

By the induction hypothesis twice, we have derivations

� Γ,¬β, β, α ⇒ γ and � Γ,¬β, γ, α ⇒ β
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of height, respectively, at most m1 and at most m2, where m1 and m2 are
the height of derivations of the corresponding premises. By using (n), we
get a derivation of height at most n of the sequent Γ,¬β, α ⇒ ¬γ.

Suppose that the derivation ends with an application of (nef)

Γ,¬β ⇒ β

Γ,¬β ⇒ ¬γ
(nef)

By the induction hypothesis, we have a derivation

� Γ,¬β, α ⇒ β

of height at most n − 1. By using (nef), we get a derivation of height at
most n of the sequent Γ,¬β, α ⇒ ¬γ.

Suppose that the derivation ends with an application of (copc)

Γ,¬β, γ ⇒ β

Γ,¬β ⇒ ¬γ
(copc)

By the induction hypothesis, we have a derivation

� Γ,¬β, γ, α ⇒ β

of height at most n − 1. By using (copc), we get a derivation of height at
most n of the sequent Γ,¬β, α ⇒ ¬γ.

Finally, suppose that the derivation ends with an application of (an)

Γ, β ⇒ ¬β

Γ ⇒ ¬β
(an)

By the induction hypothesis, we have a derivation

� Γ, β, α ⇒ ¬β

of height at most n−1. By using (an), we get a derivation of height at most
n of the sequent Γ, α ⇒ ¬β.

Proposition 3.2. The following contraction rule is height-preserving admis-
sible:

Γ, α, α ⇒ ϕ

Γ, α ⇒ ϕ
(c)

Proof. The proof goes by induction (with respect to the lexicographic
order) on the pair (n,m), where n = w(α) and m is the height of a derivation
of Γ, α, α ⇒ ϕ.4

4The induction on the ordered pair is needed for the positive rules, e.g., the (∧l)-case
with α principal (see [31]; cf. [7]).
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Suppose that the derivation ends with an application of (n) where α is
not a principal formula:

Γ,¬β, β, α, α ⇒ γ Γ,¬β, γ, α, α ⇒ β

Γ,¬β, α, α ⇒ ¬γ
(n)

By the induction hypothesis twice, we have derivations

� Γ,¬β, β, α ⇒ γ and � Γ,¬β, γ, α ⇒ β

of height, respectively, at most m1 and at most m2, where m1 and m2 are
the height of derivations of the corresponding premises. By using (n), we
get a derivation of height at most n of the sequent Γ,¬β, α ⇒ ¬γ.

Suppose that the derivation ends with an application of (n) where α is
a principal formula ¬α1:

Γ,¬α1,¬α1, α1 ⇒ γ Γ,¬α1,¬α1, γ ⇒ α1

Γ,¬α1,¬α1 ⇒ ¬γ
(n)

By the induction hypothesis twice, we have derivations

� Γ,¬α1, α1 ⇒ γ and � Γ,¬α1, γ ⇒ α1

of height, respectively, at most m1 and at most m2, where m1 and m2 are
the height of derivations of the corresponding premises. By using (n), we
get a derivation of height at most n of the sequent Γ,¬α1 ⇒ ¬γ.

Suppose that the derivation ends with an application of (nef) where α
is not a principal formula:

Γ,¬β, α, α ⇒ β

Γ,¬β, α, α ⇒ ¬γ
(nef)

By the induction hypothesis, we have a derivation

� Γ,¬β, α ⇒ β

of height at most n − 1. By using (nef), we get a derivation of height at
most n of the sequent Γ,¬β, α ⇒ ¬γ.

Suppose that the derivation ends with an application of (nef) where α
is a principal formula ¬α1:

Γ,¬α1,¬α1 ⇒ α1

Γ,¬α1,¬α1 ⇒ ¬γ
(nef)

By the induction hypothesis, we have a derivation

� Γ,¬α1 ⇒ α1
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of height at most n − 1. By using (nef), we get a derivation of height at
most n of the sequent Γ,¬α1 ⇒ ¬γ.

Suppose that the derivation ends with an application of (copc) where α
is not a principal formula:

Γ,¬β, γ, α, α ⇒ β

Γ,¬β, α, α ⇒ ¬γ
(copc)

By the induction hypothesis, we have a derivation

� Γ,¬β, γ, α ⇒ β

of height at most n − 1. By using (copc), we get a derivation of height at
most n of the sequent Γ,¬β, α ⇒ ¬γ.

Suppose that the derivation ends with an application of (copc) where α
is a principal formula ¬α1:

Γ,¬α1,¬α1, γ ⇒ α1

Γ,¬α1,¬α1 ⇒ ¬γ
(copc)

By the induction hypothesis, we have a derivation

� Γ,¬α1, γ ⇒ α1

of height at most n − 1. By using (copc), we get a derivation of height at
most n of the sequent Γ,¬α1 ⇒ ¬γ.

Finally, suppose that the derivation ends with an application of (an)

Γ, β, α, α ⇒ ¬β

Γ, α, α ⇒ ¬β
(an)

By the induction hypothesis, we have a derivation

� Γ, β, α ⇒ ¬β

of height at most n−1. By using (an), we get a derivation of height at most
n of the sequent Γ, α ⇒ ¬β.

A reader used to dealing with the sequent calculus for intuitionistic logic
won’t find it hard to believe the following fundamental result [7].

Theorem 3.3. (Soundness and Completeness) Given a finite multiset of for-
mulas Γ, ϕ, the sequent Γ ⇒ ϕ is derivable in the G3-system if, and only if,∧

Γ → ϕ ≈ 1 is a valid equation in the corresponding variety of N-algebras.
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4. Elimination of Cut

It is often said that finding the right (i.e., sound and complete) set of rules
for a logical system requires a certain amount of ingenuity. In order to carry
out proof search in the sequent system, and to use the calculus to understand
the corresponding logic, we seek to eliminate the cut rule. The family of cal-
culi presented in Section 3 is obtained by translating in the most natural
way equations into sequent rules, and consists of ‘good’ systems, in the sense
that they are cut-free. We don’t go into the details of the proof of cut admis-
sibility, that are somehow standard and can be found in full in [7]. We will
however outline the two interesting cases in the inductive proof—concerning
the negative rules—and later focus on some relevant consequences ensuing
from cut elimination.

Theorem 4.1. The following cut rule is admissible:
Γ ⇒ α Δ, α ⇒ ϕ

Γ, Δ ⇒ ϕ
(cut)

Proof. The proof goes by induction (with respect to the lexicographic
order) on the pair (n,m), where n = w(α) and m is the combined heights
of derivations of the premises, i.e., if �m1 Γ ⇒ α and �m2 Δ, α ⇒ ϕ, then
m = m1 + m2. We focus on the negative rules, and consider two cases: the
case in which (only) the left premise is an axiom, and the case in which
neither of the premises is an axiom and the formula α is principal in both
of them. For the remainig cases, we refer to [7,31].

Consider the case in which the left premise is an axiom.
Suppose that the last step in the derivation of the right premise is (n):

Δ,¬β, β, α ⇒ γ Δ,¬β, γ, α ⇒ β

Δ,¬β, α ⇒ ¬γ
(n)

By the induction hypothesis twice, we have derivations

Γ ⇒ α Δ,¬β, γ, α ⇒ β

Γ, Δ,¬β, γ ⇒ β

and
Γ ⇒ α Δ,¬β, β, α ⇒ γ

Γ, Δ,¬β, β ⇒ γ

By using (n), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
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Suppose that the last step in the derivation of the right premise is (nef):

Δ,¬β, α ⇒ β

Δ,¬β, α ⇒ ¬γ
(nef)

By the induction hypothesis, we have a derivation

Γ ⇒ α Δ,¬β, α ⇒ β

Γ, Δ,¬β ⇒ β

By using (nef), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
Suppose that the derivation ends with an application of (copc):

Δ,¬β, γ, α ⇒ β

Δ,¬β, α ⇒ ¬γ
(copc)

By the induction hypothesis, we have a derivation

Γ ⇒ α Δ,¬β, γ, α ⇒ β

Γ, Δ,¬β, γ ⇒ β

By using (copc), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
Suppose that the last step in the derivation of the right premise is (an):

Δ, β, α ⇒ ¬β

Δ, α ⇒ ¬β
(an)

By the induction hypothesis, we have a derivation

Γ ⇒ α Δ, β, α ⇒ ¬β

Γ, Δ, β ⇒ ¬β

By using (an), we get a derivation of the sequent Γ, Δ ⇒ ¬β.
Consider the case in which neither of the premises is an axiom, and

the formula α is principal in both of them. The left sequent comes as the
conclusion of a negation rule if and only if the right premise sequent does.

Suppose that the last step in the derivation of both premises is (n):

Γ,¬β, β ⇒ α1 Γ,¬β, α1 ⇒ β

Γ,¬β ⇒ ¬α1
(n)

Δ,¬α1, α1 ⇒ γ Δ,¬α1, γ ⇒ α1

Δ,¬α1 ⇒ ¬γ
(n)

By the induction hypothesis twice, we have derivations

Γ,¬β ⇒ ¬α1 Δ,¬α1, α1 ⇒ γ

Γ, Δ,¬β, α1 ⇒ γ
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and
Γ,¬β ⇒ ¬α1 Δ,¬α1, γ ⇒ α1

Γ, Δ,¬β, γ ⇒ α1

Again, by the induction hypothesis twice, and the contraction rule, we get

Γ,¬β, β ⇒ α1 Γ, Δ,¬β, α1 ⇒ γ

Γ, Δ,¬β, β ⇒ γ

and
Γ, Δ,¬β, γ ⇒ α1 Γ,¬β, α1 ⇒ β

Γ, Δ,¬β, γ ⇒ β

Finally, by using (n), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
Suppose that the last step in the derivation of the left premise is (n),

and the right premise comes from an application of (nef):

Γ,¬β, β ⇒ α1 Γ,¬β, α1 ⇒ β

Γ,¬β ⇒ ¬α1
(n)

Δ,¬α1 ⇒ α1

Δ,¬α1 ⇒ ¬γ
(nef)

By the induction hypothesis, we have a derivation

Γ,¬β ⇒ ¬α1 Δ,¬α1 ⇒ α1

Γ, Δ,¬β ⇒ α1

But then, by the induction hypothesis, and the contraction rule, we get

Γ, Δ,¬β ⇒ α1 Γ,¬β, α1 ⇒ β

Γ, Δ,¬β ⇒ β

Finally, by using (nef), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
Suppose that the last step in the derivation of both premises is (copc):

Γ,¬β, α1 ⇒ β

Γ,¬β ⇒ ¬α1
(copc)

Δ,¬α1, γ ⇒ α1

Δ,¬α1 ⇒ ¬γ
(copc)

By the induction hypothesis, we have a derivation

Γ,¬β ⇒ ¬α1 Δ,¬α1, γ ⇒ α1

Γ, Δ,¬β, γ ⇒ α1
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By the induction hypothesis again, and the contraction rule, we also get

Γ, Δ,¬β, γ ⇒ α1 Γ,¬β, α1 ⇒ β

Γ, Δ,¬β, γ ⇒ β

Hence, by using (copc), we get a derivation of the sequent Γ, Δ,¬β ⇒ ¬γ.
Suppose the derivation of the left premise ends with an application of

(an), and the right premise comes from an application of (copc):

Γ, α1 ⇒ ¬α1

Γ ⇒ ¬α1
(an)

Δ,¬α1, γ ⇒ α1

Δ,¬α1 ⇒ ¬γ
(copc)

By the induction hypothesis twice, we have derivations
Γ ⇒ ¬α1 Δ,¬α1, γ ⇒ α1

Γ, Δ, γ ⇒ α1

and
Γ, α1 ⇒ ¬α1 Δ,¬α1 ⇒ ¬γ

Γ, Δ, α1 ⇒ ¬γ

By the induction hypothesis again, and the weakening rule, we also get
Γ, Δ, γ ⇒ α1 Γ, Δ, α1 ⇒ ¬γ

Γ, Δ, γ ⇒ ¬γ

But then, by using (an), we get a derivation of Γ, Δ ⇒ ¬γ.
The remaining cases go similarly, and are left to the reader—who can

also find them in [7].

It is immediate to see that the calculi can be used to give an effective
proof that, if the sequent Γ ⇒ ϕ∨ψ can be proved via a derivation of height
n ∈ N, and Γ does not contain any disjunction, then (at least) one of the
two sequents Γ ⇒ ϕ and Γ ⇒ ψ can be proved via a derivation of height at
most n. The most striking consequence of cut elimination is the possibility of
computable proof search, and hence, of providing a proof-theoretic decision
method for the considered logics. As for complexity results, we cannot say
much with the tools developed in the first part of the paper. In fact, proof
search in the calculi presented in Figure 1 need not terminate, since we
might encounter loops resulting in infinite branches.

Example 1. Consider a proof-search procedure for the sequent ¬¬¬p ⇒ ¬¬p
in the calculus for CoPC. The only possibility is to consider a backward
application of (copc), obtaining the sequent ¬¬¬p,¬p ⇒ ¬¬p. At this
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point, considering a further backward application of (copc), with context
¬p, we get ¬¬¬p,¬p,¬p ⇒ ¬¬p, and we can already see that the bottom-up
proof-search procedure does not necessarily terminate.

Observe that sequents of the form Γ, ϕ ⇒ ϕ can be proved to be derivable
for every formula ϕ. By this and a straightforward induction on the height of
a derivation, we can also prove that we can uniformly substitute formulas in
derivable sequents obtaining derivable sequents. The following result reduces
the number of negated formulas to be considered when dealing with any
system containing the (copc) rule.

Proposition 4.2. Let n ∈ N be an arbitrary natural number such that n ≥ 1.
Then, we have that ¬(2n+1)p → ¬p and ¬(2n)p ↔ ¬¬p are derivable via
the rule (copc), where ¬(m) denotes m nested applications of the negation
operator for any natural number m.

Proof. The proof goes by induction on n ∈ N. The base case consists of
presenting a derivation of the sequent ⇒ ¬¬¬p → ¬p. After an application
of (→ r), it is sufficient to apply to the obtained sequent ¬¬¬p ⇒ ¬p
the rule (copc) three times, with principal formulas respectively the pairs
(¬¬¬p,¬p), (¬¬¬p,¬¬p), and (¬p,¬¬p). This leads to the axiom:

¬¬¬p,¬p,¬p, p ⇒ p (ax)

As for the induction step for n > 1, by the induction hypothesis and the
invertibility of (→ r), we have derivations of the sequents ¬(2n−1)p ⇒ ¬p
and ¬¬¬p ⇒ ¬p. From ¬(2n−1)p ⇒ ¬p, by using (w) and (copc),

¬(2n−1)p ⇒ ¬p

¬¬p,¬(2n−1)p ⇒ ¬p

¬¬p ⇒ ¬(2n)p

and hence, we get ¬¬p → ¬(2n)p. Further, by (w) and (copc),

¬¬p ⇒ ¬(2n)p

¬(2n+1)p,¬¬p ⇒ ¬(2n)p

¬(2n+1)p ⇒ ¬¬¬p

But then, by (cut),

¬(2n+1)p ⇒ ¬¬¬p ¬¬¬p ⇒ ¬p

¬(2n+1)p ⇒ ¬p



664 M. Bı́lková, A. Colacito

to get ¬(2n+1)p → ¬p. Finally, by the induction hypothesis, the formula
¬(2n−1)p → ¬p is a theorem. But then, by uniformly substituting ¬q for p
in it, we obtain the desired ¬(2n)q → ¬¬q.

It is worth mentioning a further application of the calculi, whose details
can be found in [7,8]. If ϕ is a formula in the language L(Prop), the induc-
tively defined ∼ operator that leaves the atoms unchanged, maps ϕ ◦ ψ to
(ϕ∼◦ψ∼) for ◦ ∈ {∧,∨,→}, and ¬ϕ to (ϕ∼ → ¬ϕ∼), soundly and truthfully
translates MPC into the logic CoPC (and, even more, into the logic N).

We conclude this section with a remark. It can be seen by looking at the
rules of the proof systems presented in Figure 1 that none of the theorems
of the logics N, NeF, and CoPC is of the form ¬ϕ (or, similarly, ¬ϕ ∨ ¬ψ).
In fact, there is no way to start the proof search for a sequent of the form
⇒ ¬ϕ, since the only rules for negation that can be applied require the
left-hand side of the sequent to contain a negated formula.

4.1. Craig’s Interpolation

Craig’s interpolation theorem states that for each provable implication φ →
ψ, there exists an interpolant σ in the common language of ψ and φ, with
both φ → σ and σ → ψ being provable. Syntactic proofs of this result for
intuitionistic logic go back to Schütte [29], and Maehara [23] (cf. [31]), and
use the idea of splitting sequents in Gentzen’s calculus. We adopt the same
method here, and prove the result by proof-theoretical means for the logics
we consider in this paper, using the analytical calculi we have at hand.

By common language of two multisets of formulas Γ and Δ we mean the
set of propositional variables {p1, . . . , pn} that appear both in (at least) a
formula from Γ and in (at least) a formula from Δ. It is not necessary to
require the common language to be non-empty. In fact, if this is the case,
the interpolant is given by the constant � (or by a formula obtained from
� via negations).

Theorem 4.3. Let Γ, Δ be finite multisets of formulas and let ϕ be a formula
such that the common language of Γ and Δ, ϕ is not empty. If � Γ, Δ ⇒ ϕ,
there exists a formula σ such that:

1. the language of σ is contained in the common language of Γ and Δ, ϕ,

2. � Γ ⇒ σ and � Δ, σ ⇒ ϕ.

Proof. The proof goes by induction on the height of a derivation � Γ, Δ ⇒
ϕ, where the induction hypothesis states that an interpolant σ exists for
every possible splitting of the considered sequents. Given a sequent Γ, Δ ⇒
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ϕ, we use Γ′ to denote a sub-multiset of Γ and Δ′ for a sub-multiset of Δ.
We focus on the negative rules, and for the positive ones we refer to [31].

Suppose that the derivation ends with an application of (n) of the form

Γ′,¬α, α,Δ ⇒ β Γ′,¬α,Δ, β ⇒ α

Γ′,¬α,Δ ⇒ ¬β
(n)

By the induction hypothesis twice, there exist σ1 and σ2 in the common
language of Γ′,¬α and Δ, β such that the sequents

Γ′,¬α, α ⇒ σ1; Δ, σ1 ⇒ β; Γ′,¬α, σ2 ⇒ α; and Δ, β ⇒ σ2

are derivable. We are going to prove that the desired interpolant is of the
form:

(σ1 → σ2) → ((σ2 → σ1) ∧ ¬σ1).

First of all, observe that the considered formula is in the common language
of Γ′,¬α and Δ, β. It remains to find derivations of the sequents

Γ′,¬α ⇒ (σ1 → σ2) → ((σ2 → σ1) ∧ ¬σ1) and

Δ, (σ1 → σ2) → ((σ2 → σ1) ∧ ¬σ1) ⇒ ¬β.

By using (cut) and (c),

Γ′,¬α, σ2 ⇒ α Γ′,¬α, α ⇒ σ1

Γ′,¬α, σ2 ⇒ σ1

But then, by (→ r), we get Γ′,¬α ⇒ σ2 → σ1, and we weaken it to obtain
a derivation of Γ′,¬α, σ1 → σ2 ⇒ σ2 → σ1 (∗). Now, by using (w), (→ l)
and the derivability of the sequent Γ′,¬α, σ1 → σ2, σ1 ⇒ σ1, we obtain

Γ′,¬α, σ1 → σ2, σ1 ⇒ σ1 Γ′,¬α, σ2, σ1 ⇒ α

Γ′,¬α, σ1, σ1 → σ2 ⇒ α
(→ l)

But then, by (w) and (n),

Γ′,¬α, α, σ1 → σ2 ⇒ σ1 Γ′,¬α, σ1, σ1 → σ2 ⇒ α

Γ′,¬α, σ1 → σ2 ⇒ ¬σ1
(n)

From the latter and from (∗), by (∧r) and (→ r),

Γ′,¬α, σ1 → σ2 ⇒ σ2 → σ1 Γ′,¬α, σ1 → σ2 ⇒ ¬σ1

Γ′,¬α, σ1 → σ2 ⇒ ((σ2 → σ1) ∧ ¬σ1)
(∧r)

Γ′,¬α ⇒ (σ1 → σ2) → ((σ2 → σ1) ∧ ¬σ1)
(→ r)

At this point we start again and, by (cut), (c) and (→ r), we get
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Δ, σ1 ⇒ β Δ, β ⇒ σ2

Δ, σ1 ⇒ σ2
(cut)

Δ ⇒ σ1 → σ2
(→ r)

Now, by (w), we obtain a derivation of

Δ, (σ1 → σ2) → ((σ2 → σ1) ∧ ¬σ1) ⇒ σ1 → σ2.

We shall use the obtained sequent as the left premise of an application of
(→ l), and hence, we look for a derivation of Δ, ((σ2 → σ1) ∧ ¬σ1) ⇒ ¬β.
By the induction hypothesis, we get the following derivations:

Δ, σ2 → σ1,¬σ1, β ⇒ σ2 Δ,¬σ1, β, σ1 ⇒ σ1

Δ, σ2 → σ1,¬σ1, β ⇒ σ1
(→ l)

Δ, σ2 → σ1,¬σ1, σ1 ⇒ β Δ, σ2 → σ1,¬σ1, β ⇒ σ1

Δ, σ2 → σ1,¬σ1 ⇒ ¬β
(n)

Δ, ((σ2 → σ1) ∧ ¬σ1) ⇒ ¬β
(∧l)

Suppose now that the derivation ends with an application of (n) of the
form

Γ, Δ′,¬α, α ⇒ β Γ, Δ′,¬α, β ⇒ α

Γ, Δ′,¬α ⇒ ¬β
(n)

By the induction hypothesis twice, there exist σ1 and σ2 in the common
language of Γ and Δ′,¬α, β such that the sequents

Γ ⇒ σ1; Δ′,¬α, α, σ1 ⇒ β; Γ ⇒ σ2; and Δ′,¬α, β, σ2 ⇒ α

are derivable. By (∧r),

Γ ⇒ σ1 Γ ⇒ σ2

Γ ⇒ σ1 ∧ σ2
(∧r)

Now, by (w), (n) and (∧l),
Δ′,¬α, α, σ1, σ2 ⇒ β Δ′,¬α, β, σ1, σ2 ⇒ α

Δ′,¬α, σ1, σ2 ⇒ ¬β
(n)

Δ′,¬α, σ1 ∧ σ2 ⇒ ¬β
(∧l)

But now, given that σ1 ∧ σ2 is in the common language of Γ and Δ′,¬α, β,
it is the desired interpolant.

Now, suppose that the derivation ends with an application of (nef) of
the form

Γ′,¬α,Δ ⇒ α

Γ′,¬α,Δ ⇒ ¬β
(nef)
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By the induction hypothesis, there exists a formula σ1 in the common lan-
guage of Γ′,¬α and Δ such that the sequents

Γ′,¬α, σ1 ⇒ α and Δ ⇒ σ1

are derivable. By (w), (nef) and (→ l),

Δ, σ1 → ¬σ1 ⇒ σ1

Δ,¬σ1 ⇒ σ1

Δ,¬σ1 ⇒ ¬β
(nef)

Δ, σ1 → ¬σ1 ⇒ ¬β
(→ l)

But also, by (nef) and (→ r),

Γ′,¬α, σ1 ⇒ α

Γ′,¬α, σ1 ⇒ ¬σ1
(nef)

Γ′,¬α ⇒ σ1 → ¬σ1
(→ r)

Now it is sufficient to notice that the formula σ1 → ¬σ1 is in fact in the
common language of Γ′,¬α and Δ and hence, is the desired interpolant.

At this point, suppose that the derivation ends with an application of
(nef) of the form

Γ, Δ′,¬α ⇒ α

Γ, Δ′,¬α ⇒ ¬β
(nef)

By the induction hypothesis, there exists σ1 in the common language of Γ
and Δ′,¬α such that the sequents

Γ ⇒ σ1 and Δ′,¬α, σ1 ⇒ α

are derivable. By a straightforward application of (nef), we get a derivation
of Δ′,¬α, σ1 ⇒ ¬β, and we conclude that σ1 is the desired interpolant.

Suppose that the derivation ends with an application of (copc) of the
form

Γ′,¬α, β,Δ ⇒ α

Γ′,¬α,Δ ⇒ ¬β
(copc)

By the induction hypothesis, there exists σ1 in the common language of
Γ′,¬α and Δ, β such that the sequents

Γ′,¬α, σ1 ⇒ α, and Δ, β ⇒ σ1

are derivable. By using (copc) on the first sequent, we get a derivation of
Γ′,¬α ⇒ ¬σ1. Moreover, by (w) and (copc) we derive Δ,¬σ1 ⇒ ¬β.
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Suppose now that the derivation ends with an application of (copc) of
the form

Γ, Δ′,¬α, β ⇒ α

Γ, Δ′,¬α ⇒ ¬β
(copc)

By the induction hypothesis, there exists σ1 in the common language of Γ
and Δ′,¬α, β such that the sequents

Γ ⇒ σ1, and Δ′,¬α, β, σ1 ⇒ α

are derivable. By (copc), we get a derivation of Δ′,¬α, σ1 ⇒ ¬β. Hence,
σ1 is the desired interpolant.

Finally, suppose that the derivation ends with an application of (an)

Γ, Δ, α ⇒ ¬α

Γ, Δ ⇒ ¬α
(an)

By the induction hypothesis, there is a formula σ1 in the common language
of Γ and Δ,¬α such that the sequents

Γ ⇒ σ1, and Δ, α, σ1 ⇒ ¬α

are derivable. By using (an) on the second sequent, we get a derivation of
Δ, σ1 ⇒ ¬α and hence, the desired interpolant is exactly σ1.

5. Terminating Systems

For the systems considered in the previous section, a naive backward proof
search strategy is clearly not terminating (cf. Example 1). To obtain ter-
minating systems, we adapt a history mechanism developed in [16,19]. We
mention that the method employed here is obtained by modifying what in
[19] is called ‘Swiss history’ (or ‘Bern Approach’). For further literature, see,
e.g., [15,16]. Another variant is given by the so-called ‘Scottish history’ (or
‘St. Andrews Approach’) [17,18].

The original idea of preventing loops in a proof search using history mech-
anisms consists in adding a history to a sequent in order to store information
about all the sequents that have occurred so far on a branch of a proof search
tree. The method employed here is based on the assumption that storing goal
formulas—given a sequent Γ ⇒ ϕ, we refer to the formula ϕ as the goal of
the sequent—is sufficient to avoid possible loops.

We consider modifications of the G3 sequent calculi presented in Sec-
tion 3. We use G3ϕ to denote the modification of the G3 calculi obtained
by considering the goals of the left rules to be restricted to atoms, negations
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Figure 3. Rules for positive connectives in the systems G3Hist

or disjunctions. Here we call a left (respectively, right) rule an inference rule
which introduces a principal formula on the left (respectively, right).

Further, we employ a history mechanism, and obtain the sequent calculi
G3Hist from Figures 3 and 4. The goal formula ϕ in G3Hist is again either
an atom, a negation or a disjunction. Note that reading the G3Hist rules
bottom-up, the context is always non-decreasing; also, the left rules, the rule
(→ r), and the rule (an) have side conditions for the context and/or for
the history. The side conditions make sure that we empty the history set
only if the context is properly extended. If this is not the case, we keep the
history as it is and, if necessary, we enhance it with the new goal formula. If
we meet a sequent whose goal is already in the history, then we know that
we are dealing with a loop. Therefore, having a derivation of the sequent
H | Γ ⇒ ϕ in one of the G3Hist systems amounts to saying that the proof
tree of H | Γ ⇒ ϕ does not contain sequents of the form H′ | Γ ⇒ ψ for
every ψ ∈ H. Note that the rule (∧l) in the terminating system is not purely
G3, but is a G2-type rule with Kleene’s trick of building contraction in. We
define the size of a proof tree as the number of nodes of the tree.



670 M. Bı́lková, A. Colacito

Figure 4. Rules for negation in the systems G3Hist

The first step towards a proof of the equivalence between G3 and G3Hist

is the following.

Lemma 5.1. The weakening rule is admissible in G3ϕ.

Proof. Easy consequence of [19, Lemma 4.1] and of Proposition 3.1.

The following result ensures that we can restrict ourselves to G3ϕ.

Lemma 5.2. The sequent calculi G3 and G3ϕ are equivalent.

Proof. It is trivial that if a sequent is provable in G3ϕ, then is provable
in G3. For the converse, the proof proceeds by induction on the height of a
derivation.

Consider a G3 inference which is not a G3ϕ inference. This must be
an instance of a left rule with an implicational or a conjunctive goal. By
the induction hypothesis, we have G3ϕ derivations of the premises. This
implies the implicational or conjunctive goals to be principal formulas in the
premises. Hence, the result follows from the proof of [19, Proposition 4.1].
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Lemma 5.3. The following contraction rule is admissible in G3Hist

H | Γ, α, α ⇒ ϕ

H | Γ, α ⇒ ϕ

Proof. By induction on the height of a derivation of the premise. We focus
on the induction step, and on the non-intuitionistic rules.

Suppose that the last step in the derivation is an instance of (n1) of the
form

∅ | Γ,¬α,¬α, β ⇒ α ∅ | Γ,¬α,¬α, α ⇒ β

H | Γ,¬α,¬α ⇒ ¬β
(n1)

with β �∈ Γ ∪ {¬α} and α �∈ Γ. By the induction hypothesis twice,

� ∅ | Γ,¬α, β ⇒ α and ∅ | Γ,¬α, α ⇒ β.

But then, by (n1),

� H | Γ,¬α ⇒ ¬β.

Suppose that the last step in the derivation is an instance of (n2) of the
form

∅ | Γ,¬α,¬α, β ⇒ α H | Γ,¬α,¬α ⇒ β

H | Γ,¬α,¬α ⇒ ¬β
(n2)

with β �∈ Γ ∪ {¬α} and α ∈ Γ. By the induction hypothesis twice,

� ∅ | Γ,¬α, β ⇒ α and H | Γ,¬α ⇒ β.

But then, by (n2),

� H | Γ,¬α ⇒ ¬β.

Suppose the last step in the derivation to be an instance of (n3) as follows

(¬β,H) | Γ,¬α,¬α ⇒ α ∅ | Γ,¬α,¬α, α ⇒ β

H | Γ,¬α,¬α ⇒ ¬β
(n3)

with β ∈ Γ ∪ {¬α}, ¬β �∈ H and α �∈ Γ. By the induction hypothesis twice,
we get

� (¬β,H) | Γ,¬α ⇒ α and ∅ | Γ,¬α, α ⇒ β.

Hence, via an application of (n3),

� H | Γ,¬α ⇒ ¬β.
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Suppose the last step in the derivation to be an instance of (n4) as follows

(¬β,H) | Γ,¬α,¬α ⇒ α H | Γ,¬α,¬α ⇒ β

H | Γ,¬α,¬α ⇒ ¬β
(n4)

with β ∈ Γ ∪ {¬α}, ¬β �∈ H and α ∈ Γ. By the induction hypothesis twice,
we get

� (¬β,H) | Γ,¬α ⇒ α and H | Γ,¬α ⇒ β.

Hence, via an application of (n4),

� H | Γ,¬α ⇒ ¬β.

Now, suppose that the last step in the derivation is an instance of (n1) of
the form

∅ | Γ, α, α,¬γ, β ⇒ γ ∅ | Γ, α, α,¬γ, γ ⇒ β

H | Γ, α, α,¬γ ⇒ ¬β
(n1)

where β �∈ Γ∪{α,¬γ} and γ �∈ Γ∪{α}. By applying the induction hypothesis
twice,

� ∅ | Γ, α,¬γ, β ⇒ γ and � ∅ | Γ, α,¬γ, γ ⇒ β.

Therefore,

� H | Γ, α,¬γ ⇒ ¬β.

Now, suppose that the last step in the derivation is an instance of (n2) of
the form

∅ | Γ, α, α,¬γ, β ⇒ γ H | Γ, α, α,¬γ ⇒ β

H | Γ, α, α,¬γ ⇒ ¬β
(n2)

where β �∈ Γ∪{α,¬γ} and γ ∈ Γ∪{α}. By applying the induction hypothesis
twice,

� ∅ | Γ, α,¬γ, β ⇒ γ and � H | Γ, α,¬γ ⇒ β.

Therefore,

� H | Γ, α,¬γ ⇒ ¬β.

Suppose now the last step in the derivation to be an instance of (n3),

(¬β,H) | Γ, α, α,¬γ ⇒ γ ∅ | Γ, α, α,¬γ, γ ⇒ β

H | Γ, α, α,¬γ ⇒ ¬β
(n3)

with β ∈ Γ∪{α,¬γ}, ¬β �∈ H and γ �∈ Γ∪{α}. By the induction hypothesis
twice, we get
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� (¬β,H) | Γ, α,¬γ ⇒ γ and � ∅ | Γ, α,¬γ, γ ⇒ β.

Hence, an application of (n3) leads to the desired conclusion. Suppose now
the last step in the derivation to be an instance of (n4),

(¬β,H) | Γ, α, α,¬γ ⇒ γ H | Γ, α, α,¬γ ⇒ β

H | Γ, α, α,¬γ ⇒ ¬β
(n4)

with β ∈ Γ∪{α,¬γ}, ¬β �∈ H and γ ∈ Γ∪{α}. By the induction hypothesis
twice, we get

� (¬β,H) | Γ, α,¬γ ⇒ γ and � H | Γ, α,¬γ ⇒ β.

Hence, an application of (n4) leads to the desired conclusion.
Suppose that the last step in the derivation is an application of (nef) of

the form
(¬β,H) | Γ,¬α,¬α ⇒ α

H | Γ,¬α,¬α ⇒ ¬β
(nef)

with ¬β �∈ H. By the induction hypothesis,

� (¬β,H) | Γ,¬α ⇒ α,

and hence, by (nef),

� H | Γ,¬α ⇒ ¬β.

Now, suppose that the last step in the derivation is an instance of (nef) as
follows

(¬β,H) | Γ, α, α,¬γ ⇒ γ

H | Γ, α, α,¬γ ⇒ ¬β
(nef)

where ¬β �∈ H. Again, by the induction hypothesis,

� (¬β,H) | Γ, α,¬γ ⇒ γ.

Hence, an appropriate application of (nef) gives us the desired result.
Suppose that the last step in the derivation is an instance of (copc1) of

the form
∅ | Γ,¬α,¬α, β ⇒ α

H | Γ,¬α,¬α ⇒ ¬β
(copc1)

with β �∈ Γ ∪ {¬α}. By the induction hypothesis,

� ∅ | Γ,¬α, β ⇒ α.



674 M. Bı́lková, A. Colacito

But then,

∅ | Γ,¬α, β ⇒ α

H | Γ,¬α,⇒ ¬β
(copc1)

Suppose now that the last step in the derivation is an instance of (copc2)
of the form

(¬β,H) | Γ,¬α,¬α ⇒ α

H | Γ,¬α,¬α ⇒ ¬β
(copc2)

with β ∈ Γ ∪ {¬α} and ¬β �∈ H. By the induction hypothesis,

� (¬β,H) | Γ,¬α ⇒ α

and hence, by (copc2), we can conclude

� H | Γ,¬α ⇒ ¬β.

Now suppose the last step in the derivation to be an instance of (copc1) of
the form

∅ | Γ, α, α,¬γ, β ⇒ γ

H | Γ, α, α,¬γ ⇒ ¬β
(copc1)

with β �∈ Γ ∪ {α,¬γ}. By the induction hypothesis, we get

� ∅ | Γ, α,¬γ, β ⇒ γ.

But then, we can conclude

H | Γ, α,¬γ ⇒ ¬β

Now, suppose that the last step in the derivation is an instance of (copc2)
of the form

(¬β,H) | Γ, α, α,¬γ ⇒ γ

H | Γ, α, α,¬γ ⇒ ¬β
(copc2)

with β ∈ Γ ∪ {α,¬γ} and ¬β �∈ H. By the induction hypothesis,

� (¬β,H) | Γ, α,¬γ ⇒ γ.

Hence, by (copc2),

� H | Γ, α,¬γ ⇒ ¬β.

Finally, suppose the last step in the derivation to be an instance of (an)
of the form

∅ | Γ, α, α, β ⇒ ¬β

H | Γ, α, α ⇒ ¬β
(an)
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where β �∈ Γ ∪ {α}. By the induction hypothesis,

� ∅ | Γ, α, β ⇒ ¬β.

Hence, by (an),

� H | Γ, α ⇒ ¬β.

For the next result, we start from a G3ϕ derivation of a sequent Γ ⇒ ϕ,
and construct a proof tree in G3Hist for the corresponding sequent ∅ | Γ ⇒
ϕ. The proof trees that we are going to use are hybrid, in the sense that we
deal with fragments of G3Hist proof trees combined with G3ϕ proof trees.
Namely, every branch of the G3Hist proof tree that do not have axiom leaves
ends with a G3ϕ proof tree. We work from the root up, and hence we focus
on a uppermost history sequent H | Γ ⇒ ϕ with non-history premises. More
precisely, the argument below shows how the history mechanism allows us to
detect and remove loops. The most interesting cases are the ones concerning
rules with side conditions for the history. If the history side condition is not
satisfied (i.e., ϕ ∈ H), it means that we are dealing with a (non-trivial) loop:
the same sequent H′ | Γ ⇒ ϕ already occurs previously in the proof tree
(with H′ ⊆ H). This has the further consequence that the history has not
been reset at any point in this fragment of the tree, because the context is
stable (i.e., has not been properly extended). At this point, we know how
to remove the loop, by removing the fragment of the tree from, but not
including, the sequent H′ | Γ ⇒ ϕ up to and including H | Γ ⇒ ϕ.

Theorem 5.4. The calculi G3 and G3Hist are equivalent. That is, a sequent
Γ ⇒ ϕ is provable in G3 if, and only if, the sequent ∅ | Γ ⇒ ϕ is provable
in G3Hist.

Proof. From Lemma 5.2 it is enough to show that G3Hist is equivalent to
G3ϕ. It is immediate that any sequent provable in G3Hist is also provable in
G3ϕ, just by dropping the history and, if necessary, using some contractions.
For the other direction, we enhance the proof of [19, Theorem 4.1] by adding
arguments for the negation rules where needed.

Suppose that the last inference rule applied is (→ l). If the side conditions
are satisfied, then we follow the proof in [19]. If not, we have

Γ, α → β ⇒ α Γ, α → β, β ⇒ ϕ

H | Γ, α → β ⇒ ϕ
(→ l)

The only tricky case is when ϕ ∈ H. If the history condition is not met, we
have to consider the additional cases in which ϕ is ¬δ.
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Suppose that below the conclusion the hybrid tree has the form:

Γ, α → β ⇒ α Γ, α → β, β ⇒ ¬δ

H | Γ, α → β ⇒ ¬δ
(→ l)

...
(¬δ, H′) | Γ′, α → β,¬γ ⇒ γ . . .

H′ | Γ′, α → β,¬γ ⇒ ¬δ
(n3)

where ¬δ �∈ H′ ⊆ H and Γ = Γ′ ∪ {¬γ}. The new hybrid tree is obtained by
removing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ′, α → β,¬γ ⇒ ¬δ up to, and including, H | Γ, α → β ⇒ ¬δ.
We can now apply backwards (→ l) to the first of these sequents (we may
need some contractions).

Suppose that below the conclusion the hybrid tree has the form:

Γ, α → β ⇒ α Γ, α → β, β ⇒ ¬δ

H | Γ, α → β ⇒ ¬δ
(→ l)

...
(¬δ, H′) | Γ′, α → β,¬γ ⇒ γ . . .

H′ | Γ′, α → β,¬γ ⇒ ¬δ
(n4)

where ¬δ �∈ H′ ⊆ H and Γ = Γ′ ∪ {¬γ}. The new hybrid tree is obtained by
removing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ′, α → β,¬γ ⇒ ¬δ up to, and including, H | Γ, α → β ⇒ ¬δ.
We can now apply backwards (→ l) to the first of these sequents (we may
need some contractions).

Suppose now that the hybrid tree has the form:

Γ, α → β ⇒ α Γ, α → β, β ⇒ ¬δ

H | Γ, α → β ⇒ ¬δ
(→ l)

...
(¬δ, H′) | Γ′, α → β,¬γ ⇒ γ

H′ | Γ′, α → β,¬γ ⇒ ¬δ
(copc2)

where ¬δ �∈ H′ ⊆ H and Γ = Γ′ ∪ {¬γ}. The new hybrid tree is obtained by
removing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ′, α → β,¬γ ⇒ ¬δ up to, and including, H | Γ, α → β ⇒ ¬δ.
We can now apply backwards (→ l) to the first of these sequents (we may
need some contractions).
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Finally, suppose that the hybrid tree has the following form:

Γ, α → β ⇒ α Γ, α → β, β ⇒ ¬δ

H | Γ, α → β ⇒ ¬δ
(→ l)

...
(¬δ, H′) | Γ′, α → β,¬γ ⇒ γ

H′ | Γ′, α → β,¬γ ⇒ ¬δ
(nef)

where ¬δ �∈ H′ ⊆ H and Γ = Γ′ ∪ {¬γ}. The new hybrid tree is obtained by
removing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ′, α → β,¬γ ⇒ ¬δ up to, and including, H | Γ, α → β ⇒ ¬δ.
We can now apply backwards (→ l) to the first of these sequents (we may
need some contractions).

Suppose now that the last step in the derivation is an application of (n).
If one among the side conditions of the history rules (n1), (n2), (n3), (n4) is
satisfied, we simply add the appropriate history to the premises and possibly
apply contraction. Otherwise, we have the following situation:

...
Γ,¬α, β ⇒ α Γ,¬α, α ⇒ β

H | Γ,¬α ⇒ ¬β
(n)

with β ∈ Γ ∪ {¬α} and ¬β ∈ H. Suppose that below the conclusion the
hybrid tree has the form

Γ,¬α, β ⇒ α Γ,¬α, α ⇒ β

H | Γ,¬α ⇒ ¬β
(n)

...
(¬β,H′) | Γ′, γ → δ, ¬α ⇒ γ . . .

H′ | Γ′, γ → δ, ¬α ⇒ ¬β
(→ l)

where ¬β �∈ H′ ⊆ H, Γ = Γ′ ∪ {γ → δ}. The new hybrid tree is obtained by
removing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ′, γ → δ, ¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β.
We can now apply backwards one between (n3) and (n4) to the first of these
sequents, depending on which of the side conditions are satisfied (we may
need some contractions).

Suppose that below the conclusion the hybrid tree has the form
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Γ,¬α, β ⇒ α Γ,¬α, α ⇒ β

H | Γ,¬α ⇒ ¬β
(n)

...
(¬β,H′) | Γ,¬α ⇒ α . . .

H′ | Γ,¬α ⇒ ¬β
(n3)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by remov-
ing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can
now apply backwards (n3) to the first of these sequents (we may need some
contractions).

Suppose that below the conclusion the hybrid tree has the form

Γ,¬α, β ⇒ α Γ,¬α, α ⇒ β

H | Γ,¬α ⇒ ¬β
(n)

...
(¬β,H′) | Γ,¬α ⇒ α . . .

H′ | Γ,¬α ⇒ ¬β
(n4)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by remov-
ing from the hybrid tree described above all the sequents from, and not
including, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can
now apply backwards (n4) to the first of these sequents (we may need some
contractions).

Suppose that below the conclusion the hybrid tree has the form

Γ,¬α, β ⇒ α Γ,¬α, α ⇒ β

H | Γ,¬α ⇒ ¬β
(n)

...
(¬β,H′) | Γ,¬α ⇒ α

H′ | Γ,¬α ⇒ ¬β
(nef)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by removing
from the hybrid tree described above all the sequents from, and not includ-
ing, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can now
apply backwards one between (n3) and (n4) to the first of these sequents
(we may need some contractions).

Suppose now that the last step in the derivation is an application of
(nef). If the side condition of the history rule (nef) is satisfied, we simply
add the appropriate history to the premises and possibly apply contraction.
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Otherwise, we have the following situation:
...

Γ,¬α ⇒ α

H | Γ,¬α ⇒ ¬β
(nef)

with ¬β ∈ H. Suppose that below the conclusion the hybrid tree has the
form

Γ,¬α ⇒ α

H | Γ,¬α ⇒ ¬β
(nef)

...
(¬β,H′) | Γ′, γ → δ, ¬α ⇒ γ . . .

H′ | Γ′, γ → δ, ¬α ⇒ ¬β
(→ l)

where ¬β �∈ H′ ⊆ H and Γ = Γ′ ∪ {γ → δ}. The new hybrid tree is
obtained by removing from the hybrid tree described above all the sequents
from, and not including, H′ | Γ′, γ → δ, ¬α ⇒ ¬β up to, and including,
H | Γ,¬α ⇒ ¬β. We can now apply backwards (nef) to the first of these
sequents (we may need some contractions).

Suppose that below the conclusion the hybrid tree has the form
Γ,¬α ⇒ α

H | Γ,¬α ⇒ ¬β
(nef)

...
(¬β,H′) | Γ,¬α ⇒ α . . .

H′ | Γ,¬α ⇒ ¬β
(n3)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by removing
from the hybrid tree described above all the sequents from, and not includ-
ing, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can now
apply backwards (nef) to the first of these sequents (we may need some
contractions).

Suppose that below the conclusion the hybrid tree has the form
Γ,¬α ⇒ α

H | Γ,¬α ⇒ ¬β
(nef)

...
(¬β,H′) | Γ,¬α ⇒ α . . .

H′ | Γ,¬α ⇒ ¬β
(n4)
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where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by removing
from the hybrid tree described above all the sequents from, and not includ-
ing, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can now
apply backwards (nef) to the first of these sequents (we may need some
contractions).

Suppose that below the conclusion the hybrid tree has the form
Γ,¬α ⇒ α

H | Γ,¬α ⇒ ¬β
(nef)

...
(¬β,H′) | Γ,¬α ⇒ α

H′ | Γ,¬α ⇒ ¬β
(nef)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree is obtained by removing
from the hybrid tree described above all the sequents from, and not includ-
ing, H′ | Γ,¬α ⇒ ¬β up to, and including, H | Γ,¬α ⇒ ¬β. We can now
apply backwards (nef) to the first of these sequents (we may need some
contractions).

Suppose now that the last inference rule is (copc). If the side condition of
the history rule (copc1) is satisfied, we simply add the appropriate history
to the premise. Else, we have

...
Γ,¬α, β ⇒ α

H | Γ,¬α ⇒ ¬β
(copc)

where β ∈ Γ ∪ {¬α}. If ¬β �∈ H, we simply apply (copc2) backwards and
add the appropriate history (we may need an application of contraction). If
¬β ∈ H, we need to consider two possibilities.

Suppose that below the conclusion the hybrid tree has the form

Γ,¬α, β ⇒ α

H | Γ,¬α ⇒ ¬β
(copc)

...
(¬β,H′) | Γ′, γ → δ, ¬α ⇒ γ . . .

H′ | Γ′, γ → δ, ¬α ⇒ ¬β
(→ l)

where ¬β �∈ H′ ⊆ H and Γ = Γ′ ∪ {γ → δ}. Similarly to the previous case,
the new hybrid tree is obtained by removing from the hybrid tree described
above all the sequents from, and not including, H′ | Γ′, γ → δ, ¬α ⇒ ¬β up
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to, and including, H | Γ,¬α ⇒ ¬β. We can now apply (copc2) backwards
to the first of these sequents (we may need some contractions).

Suppose now that below the conclusion the hybrid tree has the form

Γ,¬α, β ⇒ α

H | Γ,¬α ⇒ ¬β
(copc)

...
(¬β,H′) | Γ,¬α ⇒ α

H′ | Γ,¬α ⇒ ¬β
(copc2)

where ¬β �∈ H′ and H′ ⊆ H. The new hybrid tree can be obtained now
by removing from the old hybrid tree all the sequents from, and including,
(¬β,H′) | Γ,¬α ⇒ α up to, and including, H | Γ,¬α ⇒ ¬β. We can
again proceed with an application of (copc2) backwards to the first newly
obtained sequent (we may need some contractions).

Finally, suppose that the last inference rule is (an). If the side condition
of the history rule (an) is satisfied, we simply add the appropriate history to
the premise. Otherwise, from the point of view of looping, both the premise
and the conclusion are the same and we are in the presence of a trivial loop.
The new hybrid tree is simply the old one with the premise obtained by
contraction.

Theorem 5.5. Backwards proof search in the calculus G3Hist is terminating.

Proof. Consider the weight of a sequent defined as a triple

(k − n, k − m,w)

of natural numbers, where k is the number of subformulas of Γ ∪ {ϕ} com-
puted as a set, n is the number of formulas of Γ computed as a set, m is the
number of formulas of H, and w is the weight of ϕ. It is easy to check that
all the rules are such that the weight for the premises is lower than the one
for the conclusion.

We exploit now the termination property of our sequent calculus and
establish a bound on the complexity of the decision problem for the consid-
ered logical systems.

Theorem 5.6. There exists an algorithm for backwards proof search in the
calculus G3Hist that terminates in polynomial space.

Proof. Given a formula ϕ, we want to search for a proof of the sequent
∅ | ∅ ⇒ ϕ. We use a standard argument, inspecting the proof-search tree.
If the weight of ϕ is w, the size of ∅ | ∅ ⇒ ϕ is (at most) (w, w, w), and
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decreases with every step of the search. Hence, it is enough to observe the
following: the length of a branch in the proof-search tree is bounded by w3;
the branching degree of the tree is bounded by 2w; the number of formulas
contained in any sequent occurring during the search can be seen to be
bounded by O(w2). Therefore, the result follows. More precisely, as we in
fact always need to remember just one whole branch, an upper bound of the
needed space is O(w5).

Statman provides, in his seminal paper [30], a polynomial translation of
intuitionistic logic into its implicational fragment. As IPC is PSPACE-hard,
so is its implicational fragment (see also [28]). Therefore, any conservative
extension of the implicational fragment of IPC is PSPACE-hard as well,
including logics considered in this paper5. To sum up:

Corollary 5.7. The satisfiability problem for either one of the logical systems
N, NeF, CoPC or MPC is PSPACE-complete.

Proof. The inclusion in PSPACE is Theorem 5.6. Hardness follows from
the fact that all the logics we consider are conservative extensions of the
implication fragment of intuitionistic logic, known to be PSPACE-hard [28,
30].

6. Conclusions and Further Research

The question whether the logics addressed in this paper enjoy the property
of uniform interpolation remains open. We conclude the article with some
comments and remarks on this problem.

Uniform interpolation is a strengthening of the Craig interpolation prop-
erty, claiming that for each formula φ(�q, �p) there exists a post-interpolant
∃�qφ(�p) such that: (1) φ → ∃�qφ is provable, and (2) for each ψ(�p, �r) with
φ → ψ provable, also ∃�qφ → ψ is provable. Symmetrically, for each ψ(�p, �r)
there exists a pre-interpolant ∀�rψ(�p) such that: (1) ∀�rψ → ψ is provable,
and (2) for each φ(�q, �p) with φ → ψ provable, φ → ∀�rψ is provable as well.
Note that here we deliberately confuse the existence of a post-interpolant

5It has been known before that MPC is PSPACE-complete, and we include it here for
the sake of completeness. Statman’s polynomial translation from [30] can in fact be seen
as one from IPC into MPC. Another polynomial translation of IPC into MPC, which makes
use of the constant f , was found in a letter from Johansson to Heyting from 1935 [32] and
is discussed in [8]. Note that MPC can be in turn translated into CoPC (see the remark
after Proposition 4.2), but this translation is not polynomial.
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and a pre-interpolant with the possibility of simulating propositional quan-
tification. In terms of the Craig interpolation property, uniform interpolation
means that there are a least (∃�qφ) and a greatest (∀�rψ) interpolant with
respect to ‘provability order’, for each provable implication φ(�q, �p) → ψ(�p, �r).
The interpolants are unique up to provable equivalence.

Uniform interpolation for intuitionistic propositional logic has been orig-
inally proved by Pitts in [25], using proof-theoretical means. As for positive
logic, the pre-interpolation property does not hold in full generality. Nev-
ertheless, the ‘failing’ cases are of the following form. Given the formula
p → r, its pre-interpolant ∀r(p → r) in intuitionistic logic is equivalent to
the formula ¬p, and there is no formula in the language of positive logic
containing only p that does the job: for every formula φ(p, q) in the positive
language, φ(p, q) → (p → r) is not valid. This is a typical pathological case,
and in all the other cases, the pre-interpolant exists. This result was proved
in [9], where de Jongh and Zhao obtained uniform interpolation for positive
logic, and for MPC (in the language with the constant f); the MPC uniform
interpolant is obtained from the one of intuitionistic logic, by means of a
clever construction of a positive content ϕ+ associated to a formula ϕ.

We focus here on the possibility of proving uniform interpolation for the
logic defined by the contraposition axiom. Also in this case, pre-interpolants
do not always exist. In fact, the same example as in the case of positive logic
does the job: if we consider again ∀r(p → r), no formula containing only the
variable p can work as an interpolant. Similarly to the MPC case, it is also
true that φ(p, q) → (p → r) does not hold for any φ(p, q) in the language.
One is therefore tempted to conjecture that the revised MPC version of uni-
form (pre-)interpolation could go through in this setting, and try to derive
the uniform interpolation property for the logic CoPC (and possibly, for NeF)
from that of MPC. However, some simple differences between the two cases
are clear: for instance, observe that ∀r(p → ¬r) ↔ ¬p holds in MPC, while
∀r(p → ¬r) ↔ (p → ¬p) holds only in the presence of the contraposition
axiom, and moreover p → ¬p is the translation of the MPC interpolant by
the ∼ translation: (¬p)∼ = (p → ¬p) (see the remark after Proposition 4.2).
It would however be naive to hope that the uniform interpolants in the
contraposition case can always be obtained by translation. In fact, a coun-
terexample is given by the following observation: it is possible to construct
a uniform pre-interpolant ∀r(¬p ∧ q → ¬r) for the formula (¬p ∧ q → ¬r)
in the logic defined by the contraposition axiom, such interpolant being of
the form ¬p → (q → ¬q); however, the latter is not (equivalent to) the
translation of the corresponding MPC interpolant ¬p → ¬q.
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We have not been able so far to prove or refute the uniform interpolation
property for any of the logics N, NeF, and CoPC, and we leave it for further
considerations, algebraic or proof-theoretic.
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