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THE DAMPED WAVE EQUATION WITH SINGULAR DAMPING

PEDRO FREITAS, NICOLAS HEFTI, AND PETR SIEGL

Abstract. We analyze the spectral properties and peculiar behavior of solu-

tions of a damped wave equation on a finite interval with a singular damping
of the form α/x, α > 0. We establish the exponential stability of the semi-

group for all positive α, and determine conditions for the spectrum to consist

of a finite number of eigenvalues. As a consequence, we fully characterize
the set of initial conditions for which there is extinction of solutions in finite

time. Finally, we propose two open problems related to extremal decay rates

of solutions.

1. Introduction

We consider the linear damped wave equation
utt(x, t) +

2α

x
ut(x, t) = uxx(x, t), x ∈ I := (0, 1), t > 0,

u(0, ·) = u(1, ·) = 0,

(u(·, 0), ut(·, 0)) = (u0, u1) ∈W 1,2
0 (I)× L2(I)

(1)

where α is a positive parameter.
The case α = 1 was studied by Castro and Cox in [2], where they showed that in

that instance every solution vanishes in finite time. More precisely, they proved that
u(·, t) ≡ 0 for t > 2, irrespectively of the initial values. This analysis was carried out
within the context of the optimization of the spectral abscissa of the damped wave
equation, under the restriction that the damping term a ∈ BV (I), i.e. a function
of bounded variation on I. To be more specific, if we consider the spectral problem
associated with (1) in the case of a general damping term a ∈ BV (I), namely (we
will be more precise about this in Section 2),{

λ2φ+ 2λaφ = φxx, x ∈ I,

φ(0) = φ(1) = 0,
(2)

the spectral abscissa is defined as the supremum of the real parts of the spectrum
associated with (2). This is, in turn, related to the decay rate of solutions of (1).
Because of the bounded variation restriction, the approach in [2] consisted in con-
sidering the family of functions an(x) = 1/(x + 1/n), thus showing that it was
possible to make the spectral abscissa as large (negative) as possible within this
class, by letting n become sufficiently large.

Assuming that we do not restrict ourselves to functions of bounded variation, it
becomes possible to consider damping terms as those in (1) as a way of approaching
the limiting case which yields finite-time extinction. It is then possible to show
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2 PEDRO FREITAS, NICOLAS HEFTI, AND PETR SIEGL

that the corresponding operator is well-defined and the associated semigroup is
exponentially stable, cf. Section 2 and Theorem 2.3. Nonetheless, our aim is to
understand the corresponding spectra and special features of the time evolution.
In particular, we will show that what singles out the case of α = 1 is that the
associated spectrum is, in fact, empty, and that this is the only instance where this
happens. This complements the well-known example with empty spectrum, the
so-called complex Airy operator in L2(R), namely

A = − d2

dx2
+ ix, Dom(A) = {f ∈W 2,2(R) : xf ∈ L2(R)},

cf. for instance [8, 1]. However, unlike in the case of A where the associated semi-
group exhibits the super-exponential decay

‖e−tA‖ = e−
t3

12 , t > 0,

cf. [7, Sec. 14.3.2], here every solution vanishes in finite time.
In this paper, we will show that the spectrum is empty only for α = 1, and that

for non-integer positive α, there are infinitely many eigenvalues with “unusual”
asymptotic behavior, cf. (8). Furthermore, when α takes on a positive integer value
n > 1, all but (n− 1) eigenvalues disappear at infinity, cf. Theorem 2.2 for details.
Moreover, for these positive integer values of α, all but a finite-dimensional subspace
of initial values, cf. (18), lead to a vanishing solution in finite time, cf. Theorem 3.1;
the proof of these statements is based on a detailed analysis of the semigroup
employing the Laplace transform and Paley-Wiener-Schwartz Theorem.

2. Spectrum and exponential stability

As usual, we rewrite (1) as the first order system

∂t

(
u
v

)
= G0

(
u
v

)
,

where we start with an initial operator

G0 :=

 0 I

d2

dx2
−2α

x

 , Dom(G0) :=
(
W 1,2

0 (I) ∩W 2,2(I)
)2
.

It is known, see e.g. [5], that the closure

G := G0 (3)

in the space

H := W 1,2
0 (I)× L2(I),

〈(φ1, φ2), (ψ1, ψ2)〉H := 〈φ′1, ψ′1〉L2 + 〈φ2, ψ2〉L2 ,
(4)

has convenient properties, namely −G is m-accretive and thus it generates a con-
traction semigroup in H. Moreover, to analyze the spectrum of G, we rely on the
spectral equivalence of G with the associated quadratic operator function

T (λ) := − d2

dx2
+

2λα

x
+ λ2, Dom(T (λ)) = W 1,2

0 (I) ∩W 2,2(I), λ ∈ C.

As the damping term 2α/x is relatively bounded with the bound 0 with respect
to the one dimensional Dirichlet Laplacian −∆D in L2(I), the claims above follow
from perturbation arguments and can be obtained from more general statements
in [5].

Proposition 2.1. Let α > 0, let H be as in (4) and G as in (3). Then

(i) G generates a contraction semigroup in H,
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(ii) we have the spectral equivalence

λ ∈ σ(G) ⇐⇒ 0 ∈ σ(T (λ)), (5)

(iii) spectrum of G is discrete, i.e. consisting only of isolated eigenvalues of finite
algebraic multiplicity.

Proof. It follows from the classical one-dimensional Hardy inequality on I, i.e.

∀ψ ∈W 1,2
0 (I),

∫
I

|ψ(x)|2

x2
dx ≤ 4

∫
I
|ψ′(x)|2 dx, (6)

that, for all ψ ∈W 1,2
0 (I) ∩W 2,2(I) and each ε > 0,

|α|2
∫
I

|ψ(x)|2

x2
dx ≤ 4|α|2

∫
I
|ψ′(x)|2dx ≤ 4|α|2‖ψ′′‖L2‖ψ‖L2

≤ ε‖ψ′′‖2L2 +
4α4

ε
‖ψ‖2L2 .

Thus the damping a(x) = as(x) = α/x satisfies [5, Asm. I] and also (trivially) [5,
Asm. II], so the claims follow from [5, Thm. 2.2, 3.2]; we note that the spectral
equivalence from [5, Thm. 3.2] can be extended to all λ ∈ C since α/x is relatively
bounded with the bound 0 with respect to −∆D both in the operator and form
sense. �

The spectral equivalence (5) and known facts on the confluent hypergeomet-
ric functions allow us to describe the eigenvalues and eigenfunctions of G quite
precisely.

Theorem 2.2. Let α > 0 and let G be as in (3). Then

(i) the eigenvalues λ of G satisfy

λ ∈ σ(G) ⇐⇒ M(1− α, 2,−2λ) = 0, (7)

where M is the Kummer function, cf. [3, Sec. 13], and the corresponding
eigenvectors can be selected as (fλ, λfλ)t with

fλ(x) = xeλxM(1− α, 2,−2λx),

(ii) if α /∈ N, then σ(G) contains exactly dα − 1e negative eigenvalues and

infinitely many complex conjugated (non-real) eigenvalues {λ(α)k } satisfying

the asymptotic relation (for large |λ(α)k |)

λ
(α)
k = ∓2k + 1− α

2
πi− 1

2
log

(
−Γ(1− α)

Γ(2 + α)
(±2kπi)2α

)
+O(k−1 log k), k →∞,

(8)

(iii) if α = n+ 1, n ∈ N0, then

σ(G) = {µ(n)
k }

n
k=1 ⊂ (−∞, 0),

i.e. the spectrum of G consists of exactly n negative eigenvalues. The latter
are determined by

L(1)
n (−2µ) = 0,

where L
(1)
n are associated Laguerre polynomials, cf. [3, Eq. 18.5.12], and the

corresponding eigenvectors can be selected as (f
(n)
k , µ

(n)
k f

(n)
k )t with

f
(n)
k (x) := x exp(µ

(n)
k x)L(1)

n (−2µ
(n)
k x). (9)
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Proof. Relying on the spectral equivalence (5) and on that the spectrum of G is
discrete, it suffices to analyze the non-linear spectral problem for the associated
operator function T (λ), i.e.−f ′′(x) +

2λα

x
f(x) + λ2f(x) = 0,

f(0) = f(1) = 0.
(10)

If eigenpairs (λ, fλ) are found, then these λ’s are eigenvalues of G and it can be
easily checked that the corresponding eigenvectors can be selected as (fλ, λfλ)t.

The substitutions f(x) = xeλxv(x) and ξ = −2λx bring the differential equation
in (10) to the Kummer equation

ξvξξ + (2− ξ)vξ − (1− α)v = 0.

If α /∈ N, then the general solution read (with C1, C2 ∈ C),

C1M(1− α, 2, ξ) + C2U(1− α, 2, ξ),
cf. [3, Sec. 13.2] for the definition and properties of Kummer functions M and U .
The boundary condition f(0) = 0 in (10) and the behavior of U(1 − α, 2, ·) at 0
imply that C2 = 0 and the second boundary condition f(1) = 0 yields the eigenvalue
equation in (7). The claims on eigenvalues are based on known facts on zeros of
the Kummer function M , cf. [3, Sec. 13.9].

If α ∈ N, then the solution U must be replaced, cf. [3, Eq. 13.2.28], nonetheless,
the same conclusion is obtained. Namely, C2 = 0 and the eigenvalue equation in
(7) remains valid. Moreover, for α = n+ 1, n ∈ N0, the Kummer function reduces

to the associated Laguerre polynomial L
(1)
n and the claim (iii) follows. �

The eigenvalues of G depending on α are illustrated in Figure 1.

Figure 1. Real and imaginary parts of �ve eigenvalues of G as a function of � .

Finally, we show the exponential stability of the semigroup generated by G and
the validity of a spectral bound for all sufficiently large α > 0 and all α = n + 1,
n ∈ N, cf. [4, Chap. IV, V] for details on stability notions.

Theorem 2.3. Let α > 0 and let etG be the semigroup generated by G from (3).
Then the following hold:

(i) the semigroup etG is uniformly exponentially stable, i.e.

∃ε > 0, lim
t→+∞

eεt‖etG‖ = 0,

(ii) for sufficiently large α /∈ N, the spectral growth bound condition holds, i.e.

s(G) := sup
λ∈σ(G)

Reλ = inf {w ∈ R | lim
t→∞

e−wt‖etG‖ = 0} := ω0(G), (11)

(iii) for every α = n+ 1 ∈ N, the spectral growth bound condition holds.
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