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Abstract. In this article we introduce a generalization of locally conformallyKählermetrics
from complex manifolds to complex analytic spaces with singularities and study which
properties of locally conformally Kähler manifolds still hold in this new setting. We prove
that if a complex analytic space has only quotient singularities, then it admits a locally
conformally Kähler metric if and only if its universal cover admits a Kähler metric such that
the deck automorphisms act by homotheties of the Kähler metric. We also prove that the
blow-up at a point of an LCK complex space is also LCK.

1. Introduction

AKählermanifold is a complexmanifold admitting a (1,1)-formωwhich is positive
definite and d-closed. This form is called Kähler form, or by an abuse of language
which is unlikely to cause any confusion, Kähler metric, since it corresponds to
a hermitian metric. By Dolbeault’s lemma, a Kähler form can be written locally
ω = i∂∂ϕ, where ϕ is a strictly plurisubharmonic function, called Kähler potential.
Hence,ω is completely determined by a family of Kähler potentials (ϕα)α∈A, which
verify the compatibility condition i∂∂ϕα = i∂∂ϕβ on the open subset where both
are defined. Grauert [3] andMoishezon [5] used this equivalent definition to extend
the notion of Kähler metrics to complex spaces with singularities.

A locally conformally Kähler manifold M is a complex manifold admitting
a (1,1)-form ω such that every point x ∈ M has a neighborhood U and there is
a smooth function f : U → R such that e− f ω is Kähler. By using local Kähler
potentials and compatibility conditions, the definition of locally conformallyKähler
metrics can be extended to complex spaces with singularities in the same manner
as Grauert and Moishezon did for the Kähler case.
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A well known characterization of locally conformally Kähler manifolds (LCK
for short) is the following result: a complex manifold M admits an LCK metric
if and only if its universal cover ˜M admits a Kähler metric such that the deck
automorphisms act on ˜M by Kähler homotheties.

Therefore, it is natural to ask wether or not the equivalent definition for LCK
remains valid for complex analytic spaces. The main result of this article solves this
affirmatively in the case of complex analytic spaces with quotient singularities:

Theorem 1.1. Let X be a complex analytic space which has only quotient singu-
larities.

Then, X admits an LCK metric if and only if its universal cover ˜X admits a
Kähler metric such that deck automorphisms act on ˜X by homotheties of the Kähler
metric.

We also generalize to complex spaces a classical theorem regarding LCK man-
ifolds. We prove the following result:

Theorem 1.2. The blow-up at a point of an LCK complex space is also LCK.

In section 4 of this paper, we give some examples of LCK singular complex
spaces which do not admit Kähler metrics. They are obtained as a quotient of an
LCK manifold by a finite group of automorphisms with fixed points. In the last
section, we make some remarks and propose an open problem, for further study of
LCK complex spaces.

2. Preliminaries

In this section, we collect the notions, definitions, and results that we need for the
main theorem.

Definition 2.1. Let X be a complex space. A Kähler metric on X is a collection
(Uα, ϕα)α∈A, where (Uα)α∈A is an open covering of X , ϕα is a strongly plurisub-
harmonic function on Uα , such that on each nonempty intersection Uα ∩ Uβ we
have the following compatibility condition:

ϕα − ϕβ = Re gαβ,

where gαβ is a holomorphic function on Uα ∩Uβ .

If X is a complex manifold, such a collection (Uα, ϕα)α∈A defines indeed a
Kähler form on X , given locally, on each set Uα , by i∂∂ϕα .

If the collection (Uα, ϕα)α∈A verifies the open covering and the compatibility
conditions from the Kähler metric definition above, but each function ϕα is only
assumed to be plurisubharmonic, and strictly plurisubharmonic on the complement
of an analytic subset of positive codimension in Uα , then (Uα, ϕα)α∈A is called a
weakly Kähler metric on X .

For a short presentation of locally conformally Kähler (LCK) manifolds, one
may read the survey [7] by Ornea and Verbitsky. There are more equivalent defini-
tions of LCK manifolds:
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Definition 2.2. A complex manifold M is called LCK if it verifies one of the fol-
lowing equivalent conditions:

(1) There exists a (1, 1)-form ω on M such that for every x ∈ M , there exists an
open neighborhood U of x and a smooth function f : U → R such that e− f ω

is a Kähler form on U ;
(2) M has a Hermitian metric ω such that dω = θ ∧ ω, where θ is a closed 1-form

on M , called the Lee form;
(3) The universal cover ˜M of M has a Kähler metric such that the deck transform

group acts on ˜M by Kähler homotheties;
(4) M admits an oriented, flat, real line bundle (L ,∇) and an L-valued (1,1)-form

ω which is Kähler with respect to d∇ .

Using the first of these equivalent definitions, we can generalize LCK metrics
to singular complex spaces, in the following way:

Definition 2.3. Let X be a complex space. An LCK metric on X is a collection
(Uα, ϕα, hα)α∈A, where (Uα)α∈A is an open covering of X , ϕα is a strongly pluri-
subharmonic function onUα , and hα : Uα → R is a smooth function, such that we
have the following compatibility condition:

ehα i∂∂ϕα = ehβ i∂∂ϕβ

on each nonempty intersection Uα ∩Uβ ∩ Xreg.
As in the Kähler case, such a collection (Uα, ϕα, hα)α∈A will be called weakly

LCK if we require every function ϕα to be only plurisubharmonic, and strictly
plurisubharmonic on the complement of an analytic subset of positive codimension
in Uα .

Two Kähler (or LCK) metrics are considered to be equal if they determine the
same (1,1)-form on the regular locus of the complex space.

If (X, ω) is a Kähler space, ω = (Uα, ϕα)α∈A, and h : X → R is a smooth
function, we denote by ehω the metric (Uα, ϕα, h|Uα )α∈A. We say that an automor-
phism γ ∈ Aut(X) acts by homotheties of the Kähler metric if γ 	ω = eCω, where
C ∈ R.

Definition 2.4. If X is a complex space, then a point x ∈ Xsing is called quotient
singularity if there exists a finite subgroup G of automorphisms ofCn such that the
germs (X, x) and (Cn/G, 0) are biholomorphic.

The folowing result about the properties of quotient singularities is a particular
case of H. Cartan’s [2, Théorème 1]:

Theorem 2.5. Let M be a complex manifold and G a finite group of automorphisms
of M.

Then, the quotient space X := M/G with the sheaf induced by the canonical
projection p : M → M/G is a normal space.

The next theorem, by Bierstone and Milman [1, Theorem 13.4], is the funda-
mental result on global desingularization of complex spaces.



486 G.-I. Ioniţă, O. Preda

Theorem 2.6. Any complex space X admits a desingularization π : ˜X → X such
that π is the composition of a locally finite sequence of blow-ups with smooth
centers and π−1(Xsing) is a divisor with normal crossings in ˜X.

In this theorem locally finite sequence of blow-upsmeans that on every compact
subset, all but finitely many blow-ups are trivial.

The following theorem of Kollár, which combines [4, Lemma 7.2] and [4,
Theorem 7.5], gives a sufficient condition under which the fundamental group of a
normal space and the fundamental group of a desingularization of it, are isomorphic.

Theorem 2.7. Let X be a normal space which has only quotient singularities and
f : Y → X a resolution of singularities.

Then, the induced homomorphism f	 : π1(Y ) → π1(X) is an isomorphism.

Of course, taking into account Theorem 2.5, the assumption of normality in
Kollár’s theorem is superfluous, but we kept the original statement. We mention
that a different proof for Theorem 2.7 was given by Verbitsky [9, Theorem 4.1].

3. The main results

3.1. A characterization theorem for LCK complex spaces

Proof of Theorem 1.1. Firstly, we prove the direct implication, so we know by
hypothesis that X admits an LCK metric. We denote by p : ˜X → X the universal
cover of X and we consider π : Y → X a resolution of singularities for X . These
two maps induce a resolution of singularities π̃ : ˜Y → ˜X and a cover p̃ : ˜Y → Y
such that the following diagram commutes:

˜Y

π̃

p̃
Y

π

˜X p X

Now,denote by (Uα, ϕα, hα)α∈A theLCKmetric on X . Then,with the notations:
Vα := π−1(Uα), ψα := ϕα ◦ π , and gα := hα ◦ π for every α ∈ A, we have that
(Vα, ψα, gα)α∈A is a weakly LCK metric on Y . Since p : ˜Y → Y is a covering of
Y , if we define ˜Vα := p̃−1(Vα), ˜ψα := ψα ◦ p̃, and g̃α := gα ◦ p̃, we obtain that
(˜Vα, ˜ψα, g̃α)α∈A is a weakly LCK metric on ˜Y . Denote by˜θ its induced Lee form.
Since ˜X is the universal cover of a complex space with only quotient singularities,
it also has only quotient singularities, and by Theorem 2.5 it is also normal. Hence,
by Theorem 2.7, ˜Y is simply connected, which further implies that˜θ is exact: there
exists F ∈ C∞(˜Y ) such that ˜θ = dF .

Next, we may assume that the sets (Uα)α∈A of the LCK structure on X are
connected and sufficiently small such that for each α ∈ A, p−1(Uα) is a disjoint
union of open sets in ˜X , each of them biholomorphic toUα . Then, for each α ∈ A,
p̃−1(Vα) = ∪i∈Iα ˜Vα,i is a union of pairwise disjoint open connected sets, each of
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them biholomorphic to Vα , and we denote ˜Uα,i := π̃(˜Vα,i ); for every α ∈ A and
i ∈ Iα , we have that p(˜Uα,i ) = Uα . Also, for every α ∈ A and every i ∈ Iα ,
p̃ : ˜Vα,i → Vα is a biholomorphism and on ˜Vα,i , we have: d(g̃α) = dF . Hence,
there exists a constant Cα,i ∈ C such that F = g̃α + Cα,i on ˜Vα,i . Now, it is not
difficult to verify that

(

˜Vα,i , e
−Cα,i

˜ψα|˜Vα,i

)

α∈A;i∈Iα

is a weakly Kähler metric on ˜Y .
Furthermore, since ˜ψα|˜Vα,i

are by construction constant on the fibers of π̃ , they

descend to ˜X , where we denote them by ϕ̃α|˜Uα,i
. Moreover, since ϕ̃α|˜Uα,i

= p	ϕα|˜Uα,i

and p is a local biholomorphism, they are strictly plurisubharmonic, hence the
family

ω̃ =
(

˜Uα,i , e
−Cα,i ϕ̃α|˜Uα,i

)

α∈A;i∈Iα

is a Kähler metric on ˜X .
From this point forward, the proof is similar to the one for manifolds, with

the necessary adaptations. Knowing that g̃α is constant on the fibers of π̃ , we
deduce that g̃α descends to a function ˜hα on p−1(Uα) = ∪i∈Iα ˜Uα,i . Also, since
F = g̃α + Cα,i on ˜Vα,i , it follows that F descends to a function f on ˜X . Hence,
we have f = ˜hα + Cα,i on ˜Uα,i .

Consider γ ∈ AutX ˜X . By the commutativity of the diagram, we also have
˜hα = hα ◦ p, hence it is invariant to the action of γ . That being so, taking into
account that˜hα = f − Cα,i on ˜Uα,i , we get that the 1-form d f defined on ˜Xreg is
invariant to the action of γ . Since d( f −γ 	 f ) = d f −d(γ 	 f ) = d f −γ 	(d f ) = 0
on ˜Xreg, there exists C ∈ C such that f = γ 	 f + C on ˜Xreg. By the continuity of
f and the connectedness and density of ˜Xreg, we deduce that f = γ 	 f +C on ˜X .
Next, we want to see how γ acts on the Kähler metric. For each j ∈ Iα , there is
exactly one i ∈ Iα such that γ (˜Uα, j ) = ˜Uα,i , thus:

γ 	
(

e−Cα,i ϕ̃α|˜Uα,i

)

= γ 	
(

e
˜hα− f ϕ̃α|˜Uα,i

)

= e
˜hα−γ 	 f ϕ̃α|˜Uα, j

= eCe
˜hα− f ϕ̃α|˜Uα, j

= eC
(

e−Cα, j ϕ̃α|˜Uα, j

)

,

which consequently gives γ 	ω̃ = eC ω̃, ending the proof for the direct implication.
Now, in order to prove the reversed implication, we suppose that the universal

cover ˜X of the complex space X , has a Kähler metric ω̃ such that AutX ˜X acts on
˜X by Kähler homotheties. Hence, we have the character morphism χ : AutX ˜X =
π1(X) → R

>0 given by AutX ˜X 
 γ �→ γ 	ω̃
ω̃

∈ R. On ˜X × R we consider the
following equivalence relation: (x, t) ∼ (y, s) if there exists γ ∈ AutX ˜X such that
y = γ (x) and s = χ(γ )t . Then, E = ((˜X ×R)/∼) → X is a line bundle which is
trivial, since there exists an open cover of X and a choice of transition maps which
are all positive. Given a section u on E which is non-zero at every point, we obtain
a section ũ = p	u for the line bundle ˜E = p	E on ˜X , which is also trivial. Hence,
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we may consider that ũ is a function with values in R
>0. For any γ ∈ AutX ˜X , by

the construction of the line bundle ˜E , we get

γ 	ũ

ũ
= χ(γ ) = γ 	ω̃

ω̃
,

hence
1

ũ
ω̃ is deck-invariant. There exists a real function˜h such that

1

ũ
= e

˜h . Also,

we may consider that ω̃ = (˜Uα,i , ϕ̃α,i ), where for every α, the family (˜Uα,i )i∈Iα
is made of connected open sets which are projected by p biholomorphically on
Uα ⊂ X . Then, for every α, we choose an arbitrary i ∈ Iα and denote ϕα =
ϕ̃α,i ◦ p−1

|˜Uα,i
: Uα → R, and hα = ˜h ◦ p−1

|˜Uα,i
: Uα → R. With these notations, it is

now easy to verify that (Uα, ϕα, hα)α∈A is an LCK metric on X . ��

3.2. The blow-up at a point of an LCK complex space

A classical result, by Tricerri [8] and Vuletescu [10], says that the blow-up at a
point of an LCK manifold is also an LCK manifold. In the next lines we show that
this result can be easily generalized to complex spaces.

Proof of Theorem 1.2. Let X be a complex space with the LCK metric ω =
(Vα, ϕα, hα)α∈A, and x0 ∈ X . We may assume that x0 has a neighborhood U
such that U ⊂ Vα , and U ∩ Vβ = ∅ for all β �= α. We may also assume that Vα is
sufficiently small such that it can be embedded as a closed complex subspace in the
unit ball B ⊂ C

N , and such that ϕα extends to a strictly plurisubharmonic function
on B (we keep the same notation ϕα for the extended function).

Now, denote by ̂B the blow-up of B in x0, and by π : ̂B → B the projection.
Then,π−1(x0) =: E � P

N−1(C). Using the technique from [10], one can construct
a (1,1)-form E as the curvature of a line bundle on ̂B, such that E has the
following properties: it is negative definite along E (i.e. E (v, J

̂B
v) < 0 for every

P ∈ E and every non-zero vector v ∈ TP (E), where J
̂B
is the complex structure

on ̂B), it is negative semi-definite at points of E (i.e. E (v, J
̂B
v) ≤ 0 for every

P ∈ E and every v ∈ TP (̂B)), and it is zero outside a compact subset of π−1(U ).
Then, for a sufficiently small constant ε > 0, the (1,1)-form

h = i∂∂(π	ϕα) − εE

is positive definite. It is also d-closed, sinceE is the curvature formof a line bundle.
Hence, it is a Kähler form on ̂B. By Dolbeault’s lemma, it can be represented in
the form of the generalized definition of Kähler metrics, as h = (Wj , ϕ j ) j∈J . With
the notations Vα j = π−1(Vα) ∩ Wj and ϕα j = ϕ j |Vα j

, we have that (Vα j , ϕα j ) j∈J

is a Kähler metric on ̂Vα , the blow-up of Vα at x0. Since E = 0 outside π−1(U ),
the strictly plurisubharmonic functions π	ϕα and ϕα j determine the same Kähler
metric on Vα j \ π−1(U ). For this reason, by glueing X \ U and ̂Vα in the natural
way, with the notation hα j = (π	hα)|Vα j

, the compatibility condition ehβ i∂∂ϕβ =
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ehα j i∂∂ϕα j holds on Vβ ∩ Vα j ∩ Xreg, for any j ∈ J and any β ∈ A \ {α}, because
Vβ ∩ π−1(U ) = ∅. Hence,

(Vβ, ϕβ, hβ)β∈A\{α} ∪ (Vα j , ϕα j , hα j ) j∈J

is an LCK metric on ̂X , the blow-up at x0 of X . ��

4. Examples

In this sectionwe give examples of LCK complex spaces which do not admit Kähler
metrics. They are obtained as the quotient of an LCK (non-Kähler) manifold by a
finite group of automorphisms which have fixed points.

Example 4.1. Quotients of Hopf manifolds of dimension at least 3.
Consider λ ∈ C, λ �= 0, |λ| < 1 and the matrix A = diag(λ, λ, λ2). Denote

G = {An : n ∈ Z}. Then, theHopfmanifold H = (C3\{0})/G is an LCKmanifold
which does not admit Kähler metrics. Also, take the matrix B = diag(−1,−1, 1)
and denote J = {I3, B}. Define the function � : C3 → C

4 by �(z1, z2, z3) =
(z21, z

2
2, z1z2, z3). By the results in [2, Section 4], Y = (C3 \ {0})/J is a singular

complex space biholomorphic to Y0 = �(C3 \ {0}) ⊂ C
4 \ {0}. Consider the

function ϕ(w) = ‖w‖2 on C
4. Then, i∂∂ϕ is a Kähler form on C

4 which induces
a Kähler metric 0 on Y0. Denote by  the Kähler metric on Y obtained via the
biholomorphism Y � Y0. Also, denote Y/G =: X . It is not difficult to verify that
AutX Y � G acts by homotheties of the Kähler metric . Finally, by theorem
Theorem 1.1, which for the converse implication is true (with the same proof)
for any cover, not only the universal cover, X is LCK. However, X does not admit
Kähler metrics, since it contains (C2 \{0}×{0})/JG as a closed complex subspace
which is a 2-dimensional Hopf mainfold.

Example 4.2. Quotients of compact LCK surfaces.
Let (M,) be a compact LCK (non-Kähler) manifold which has a finite cyclic

group G = 〈F〉 ⊂ Aut(M) for which the metric  is invariant, and such that
the fixed point locus of F is a finite set. For every point x ∈ M , there exists a
neighborhoodU 
 x inM such that onU , = e− f i∂∂φ, where f is smooth and φ

is strictly plurisubharmonic. If the metric onU can also be written  = e−gi∂∂ψ ,
then e−( f −g)i∂∂φ = ∂∂ψ leads to d( f − g) = 0, hence f = g + C , which
further implies e− f i∂∂φ = e− f i∂∂(eCψ). Therefore, we may assume that f is
G-invariant. Moreover, by taking the pull-back of the metric  by all the elements
of G and then taking the average metric, we may assume that ϕ is also G-invariant,
hence both f and ϕ descend to functions on the singular space X = M/G.

Consequently, the LCK metric  descends to ω = (Vj , ϕ j , h j )1≤ j≤r , which is
an LCKmetric on Xreg. However, the functions ϕ j and h j may not be smooth at the
singular points of X . We may assume that the projection on X of every fixed point
of F has a small neighborhood in X which intersects only one of the sets Vj . We
can modify both ϕ j and h j on this small neighborhood, to make them smooth, with
the modified ϕ j still strictly plurisubharmonic, thus obtaining a modified metric on
X which is still LCK.
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Now, if we assume that X has a Kähler metric, then its pull-back to M is a
(1,1)-form on M which is Kähler on the complement of the set of fixed points of
F , and it can be modified at those points to obtain a Kähler metric on the whole
M , yielding a contradiction. Hence, the singular complex space X does not admit
Kähler metrics.

5. Remarks

Mumford [6] proved that if P ∈ V is a normal point of a 2-dimensional algebraic
variety, thenV \{P} is locally simply connected around P if and only if P is a regular
point of V . Thus, the regular locus of a simply connected normal complex space is
not, in general, simply connected. For this reason, the proof of our theorem cannot
be modified to use normalizations instead of desingularizations, which would have
been better, since the method would have worked for any complex space. But it is
worth remarking that even if for our proof the additional assumption on the type of
singularities is essential, the theorem might be true for the general case of singular
complex spaces. Thus, we propose the following problem:

Problem 5.1. Prove that a complex space X admits an LCK metric if and only if
its universal cover ˜X admits a Kähler metric such that deck automorphisms act on
˜X by homotheties of the Kähler metric, or find a counterexample to this statement.

We also want to point out that the Hopf surface (2-dimensional) and the Inoue
surface do not have “enough" automorphisms to be used for examples like Exam-
ple 4.1, and the quotient of any of these surfaces by a finite group of automorphisms
is again smooth and in the same class as the initial surface. Also, since all our con-
crete examples are quotients of LCK, non-Kähler manifolds, it would be interesting
to find a different way to construct an example of LCK complex space which does
not admit Kähler metrics.
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