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Abstract
Extending an example by Colding and Minicozzi (Trans Am Math Soc 356(1):283–
289, 2003), we construct a sequence of properly embedded minimal disks �i in an
infinite Euclidean cylinder around the x3-axis with curvature blow-up at a single point.
The sequence converges to a non-smooth and non-proper minimal lamination in the
cylinder.Moreover, we show that the disks�i are not properly embedded in a sequence
of open subsets of R3 that exhausts R3.

Keywords Minimal surfaces · Minimal laminations · Colding–Minicozzi theory

Mathematics Subject Classification 53A10 · 49Q05

1 Introduction

In a series of influential papers [2–5], Colding and Minicozzi initiated the study of
sequences of minimal disks in a 3-manifold. In general, if no restriction on the curva-
tures of the disks is required, it is known that some wild behaviour should be expected.
For instance, in [1] Colding and Minicozzi constructed an example of a sequence of
minimal disks in a Euclidean ball for which curvatures blow up at the centre of the
ball, and such that the limit lamination is neither smooth nor proper. This result is
obtained by a careful analysis of the Weierstrass representation of the minimal disks.

Following this example, a number of similar results have been obtained via anal-
ogous methods, in which comparable wild limits are observed with the curvature
blowing up at a finite set of points on a line [6], along a closed segment [8], or more
generally any compact subset of a line [9]. Using variational methods, Hoffman and
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Extending an Example by Colding and Minicozzi 1029

White [7] provided examples of minimal disks in an infinite Euclidean cylinder with
curvature blow-ups along any prescribed compact subset of the axis of the cylinder.

In this paper, we follow the approach of [1] and show that their example can be
extended to create a sequence of properly embedded minimal disks �i in an infinite
Euclidean cylinder, displaying the same pathologies. By [5], it is known that these
pathologies do not occur if the sequence �i is indeed a sequence of minimal disks
properly embedded in a sequence of open sets which invade the whole R3.

Here we prove that the disks �i , which we obtained by extending the ones con-
structed in [1], do not give rise to minimal disks properly embedded in a growing
family of cylinders which exhaust R3.

Our main result is therefore analogous to Theorem 1 in [1] and can be stated as
follows; we refer to [1] for the definition of multi-valued graph and pictures.

Theorem 1.1 One can construct a sequence of properly embedded minimal disks 0 ∈
�i ⊂ {x21 + x22 ≤ 1, x3 ∈ R} ⊂ R

3 containing the x3-axis, {(0, 0, t) | t ∈ R} ⊂ �i ,
and such that the following conditions are satisfied:

(1) limi→∞ |A�i |2(0) = ∞;
(2) supi sup�i\Bδ

|A�i |2 < ∞ for all δ > 0;
(3) �i \ {x3-axis} = �1,i ∪ �2,i , for multi-valued graphs �1,i and �2,i ;
(4) �i \ {x3 = 0} converges to two embedded minimal disks �± ⊂ {±x3 > 0} with

�± \ �± = {x21 + x22 ≤ 1, x3 = 0}. Moreover, �± \ {x3-axis} = �±
1 ∪ �±

2 for
multi-valued graphs �±

1 and �±
2 each of which spirals into {x3 = 0}.

From (4) we get that �i \ {0} converges to a minimal lamination of {x21 + x22 ≤
1, x3 ∈ R}\{0} (with leaves�−,�+, and {x21 +x22 ≤ 1, x3 = 0}\{0}) which does not
extend to a lamination of {x21 + x22 ≤ 1, x3 ∈ R}. In other words, 0 is not a removable
singularity.

The structure of the paper is as follows: in Sect. 2 we review the definitions and
basic results on the Weierstrass representation of minimal surfaces in the Euclidean
space R3, and set up some notations for the domains and functions that will be used.
In Sect. 3, we show that the disks constructed with those data are properly embedded
in a fixed infinite Euclidean cylinder around the x3-axis, and in Sect. 4 we show that
they are not a sequence of properly embedded disks in an exhausting family. Section 5
contains the conclusion of the proof of the main theorem.

2 Preliminaries and Set Up

Let us first fix some notation. Following [1], we will use (x1, x2, x3) as the coordinates
in R

3 and z = x + iy in C. Given f : C → C
n , ∂x f and ∂y f will denote ∂ f

∂x and
∂ f
∂ y , respectively, and likewise we will have ∂z f = 1

2 (∂x f − i∂y f ). Given a point

p = (p1, p2, p3) ∈ R
3 and a value r > 0, we will denote by Dr (p) the Euclidean

disk of radius r , contained in the horizontal plane {x3 = p3}, and centred at the point
p = (p1, p2, p3).
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1030 L. Ruffoni, F. Tripaldi

When � is a smooth surface embedded in R
3, we denote by K� its sectional

curvature, and by A� its second fundamental form; so when � is minimal we will
have |A� |2 = −2K� . Moreover, when � is oriented, n� will denote its unit normal.

Let us recall the classical definition of a Weierstrass representation and its role in
constructing minimal surfaces (see [10]). Let � ⊂ C be a domain in the complex
plane, g a meromorphic function on � and φ a holomorphic 1-form on �; then we
refer to the couple (g, φ) as a Weierstrass representation.

Given a a Weierstrass representation (g, φ), one can associate to it a conformal
minimal immersion F : � → R

3

F(z) = Re
∫

ζ∈γz0,z

(
1

2

(
g−1(ζ ) − g(ζ )

)
,
i

2

(
g−1(ζ ) + g(ζ )

)
, 1

)
φ(ζ ) . (2.1)

Here, z0 ∈ � denotes a fixed base point, and the integral is taken along a path γz0,z
that joins z0 to z in �. As soon as g has no zeros or poles and � is simply connected,
F will not depend on the choice of the integration path (see [1]). On the other hand
the choice of the base point z0 will change the value of F by an adding constant.

Using theWeierstrass data, one can find explicit formulae for the unit normal n and
the Gauss curvature K (see [10, Sects. 8 and 9]):

n =
(
2Reg, 2Img, |g|2 − 1

)
|g|2 + 1

, (2.2)

K = −
[

4|∂zg| |g|
|φ| (1 + |g|2)2

]2
. (2.3)

As previously pointed out, the main goal of this paper is to provide an unbounded
extension of the domain, on which to keep the same choice of the Weierstrass data as
in [1]. The map F is guaranteed to be an immersion (that is, dF �= 0) as soon as φ

does not vanish and g has no zeros or poles.
We include the following lemma (see Lemma 1 in [1]), since its results will be

useful for some further computations later on.

Lemma 2.1 Let F be as in Eq. (2.1) for the Weierstrass data (g, φ) given by g(z) =
ei(u(z)+iv(z) and φ = dz, then

∂x F = (sinh v · cos u, sinh v · sin u, 1) , (2.4)

∂y F = (cosh v · sin u,− cosh v · cos u, 0) . (2.5)

Let us construct the one-parameter family (with parameter a ∈ (0, 1/2]) ofminimal
immersions Fa that we will be using to construct our family of embedded minimal
disks �a .

Definition 2.2 We choose the same Weierstrass data (ga, φ) as in [1], that is

ga = eiha , where ha(z) = 1

a
arctan

(
z

a

)
and φ = dz . (2.6)
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Extending an Example by Colding and Minicozzi 1031

Fig. 1 Graphical representations of both domains D1
a (in blue) and D2

a (in red) for different values of the
parameter a

In this case, the two real functions u and v in Lemma 2.1 will then depend on the
parameter a: ha = ua + iva (see Remark 2.6 for an explicit formulation of both ua
and va).

In this paper, we are extending the original bounded domain �a defined in [1] to
an unbounded one, which will still be denoted by �a . To do so, we will first introduce
the two families of domains D1

a and D2
a , as follows (see Fig. 1):

D1
a =

{
(x, y)

∣∣∣∣|y| ≤ (x2 + a2)3/4

2

}
, (2.7)

D2
a =

{
(x, y)

∣∣∣∣|y| ≤ (x2 + a2)1/2

2

}
. (2.8)

One should notice that the two domains D1
a and D2

a cross at the points where

x = ±
√
1 − a2, (2.9)
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1032 L. Ruffoni, F. Tripaldi

hence somewhere in the intervals [√3/2, 1] and [−1,−√
3/2], depending on the

parameter a ∈ (0, 1/2]. One should also notice that for x2 > 1 − a2, the second
domain D2

a (in red) is strictly contained inside the first domain D1
a (in blue), that is

D2
a ∩ {(x, y) | x2 > 1 − a2} ⊂ D1

a ∩ {(x, y) | x2 > 1 − a2} . (2.10)

Vice versa, for x2 < 1 − a2, we have the opposite inclusion:

D1
a ∩ {(x, y) | x2 < 1 − a2} ⊂ D2

a ∩ {(x, y) | x2 < 1 − a2} . (2.11)

In Colding and Minicozzi’s paper, the domains of definition �a are exactly taken
as follows (see [1, Eq. (2.1)]):

{
(x, y)

∣∣∣∣|x | ≤ 1

2
, |y| ≤ (x2 + a2)3/4

2

}
= D1

a ∩
{
(x, y)

∣∣∣∣|x | ≤ 1

2

}
, (2.12)

which always falls into case (2.11), since 1
4 < 1 − a2 for any a ∈ (0, 1/2].

Let us take into consideration the value 1
π

(please refer to Remark 3.2 for the
reasoning behind the choice of this value). If we divide the interval [ 1

π
, 1
2 ] into thirds,

we get the following two values:

xA = 1

π
+

(
1

2
− 1

π

)
· 1
3

= 1

π
+ π − 2

6π
= 6 + π − 2

6π
= 4 + π

6π
, and (2.13)

xB = 1

π
+

(
1

2
− 1

π

)
· 2
3

= 1

π
+ π − 2

3π
= 3 + π − 2

3π
= 1 + π

3π
. (2.14)

By symmetry, the points−xB and−xA will divide into thirds the interval [− 1
2 ,− 1

π
].

As already pointed out, D1
a ∩ {(x, y) | |x | ≤ 1

2 } ⊂ D2
a ∩ {(x, y) | |x | ≤ 1

2 }, which
means that if we consider the two boundaries as follows:

|y| = (x2 + a2)3/4

2
, for |x | ≤ xA , and |y| = (x2 + a2)1/2

2
, for |x | ≥ xB (2.15)

we will see jumps (see Fig. 2 for a graphical representation of these jumps) of magni-
tude equal to yB − yA, where

yA = (x2A + a2)3/4

2
, and yB = (x2B + a2)1/2

2
. (2.16)

In order to join these two domains:

D1
a ∩ {(x, y) | |x | ≤ xA} and D2

a ∩ {(x, y) | |x | ≥ xB}, (2.17)

123



Extending an Example by Colding and Minicozzi 1033

Fig. 2 Graphical representations of the domains D1
a ∩ {(x, y) | |x | ≤ xA} (in blue) and D2

a ∩ {(x, y) |
|x | ≥ xB } (in red) for different values of the parameter a

we can simply take the following line segments:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ1(x) = yA + (yB − yA) x−xA
xB−xA

from (xA, yA) to (xB, yB)

ξ2(x) = yA + (yB − yA) x+xA
xA−xB

from (−xA, yA) to (−xB, yB)

ξ3(x) = −ξ1(x) = −yA + (yA − yB) x−xA
xB−xA

from (xA,−yA) to (xB,−yB)

ξ4(x) = −ξ2(x) = −yA + (yA − yB) x+xA
xA−xB

from (−xA,−yA) to (−xB ,−yB).

Using these segments, we are then able to define our domains of definition �a .

Definition 2.3 Our unbounded domains of definition �a for a ∈ (0, 1/2] are given by

�a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, y) such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|y| ≤ (x2+a2)3/4

2 for |x | ≤ xA

|y| ≤ (x2+a2)1/2

2 for |x | ≥ xB
|y| ≤ ξ1(x) for xA ≤ x ≤ xB
|y| ≤ ξ2(x) for − xB ≤ x ≤ −xA

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,
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1034 L. Ruffoni, F. Tripaldi

and

�0 =
⋂
a>0

�a \ {0} = �+
0 ∪ �−

0 , (2.18)

where �+
0 and �−

0 are, respectively, the right and left components of �0.

Remark 2.4 One should notice that Definition 2.3 gives rise to domains �a whose
boundaries are piecewise smooth. In order to obtain smooth domains, it is sufficient
to take the convolution of the boundary with a Friedrich mollifier.

Remark 2.5 Let us notice that, by construction, �a ⊂ D2
a for any a ∈ [0, 1/2].

Remark 2.6 Let us study the explicit formulation of ha = ua + iva . On a suitable
domain of definition we have, using the standard notation z = x + iy, that

ha(z) = 1

a
arctan

(
z

a

)
= i

2a

[
Log

(
1 − i z

a

)
− Log

(
1 + i z

a

)]

= i

2a

[
Log

(
a − i x + y

a

)
− Log

(
a + i x − y

a

)]

= i

2a

[
1

2
log

(
(a + y)2 + x2

a2

)
+ i Arg

(
a + y − i x

a

)
+

− 1

2
log

(
(a − y)2 + x2

a2

)
− i Arg

(
a − y + i x

a

)]

= i

2a

[
1

2
log

(
(a + y)2 + x2

(a − y)2 + x2

)
+ i Arg

(
a + y − i x

a

)
− i Arg

(
a − y + i x

a

)]

= 1

2a
Arg

(
a − y + i x

a

)
− 1

2a
Arg

(
a + y − i x

a

)
+ i

4a
log

(
(a + y)2 + x2

(a − y)2 + x2

)

= ua(x, y) + iva(x, y) .

Remark 2.7 Let us further notice that the functions ha are indeed well defined, since
the domains �a are simply connected and the points ±ia /∈ �a . In fact, when x = 0,
we have |y| ≤ a3/2/2, and we have that a3/2/2 < a if and only if a < 4 (and by
construction we are assuming a ≤ 1/2).

Definition 2.8 In order to fix the notation, we will be denoting by Fa the conformal
minimal immersion Fa : �a → R

3 associated to the Weierstrass representation
(ga, φ) for any a ∈ (0, 1/2].

In the following lemma, we will be covering some explicit expressions and bounds
that will be useful in the next sections. Unless otherwise stated, from now on we will
be working within our domains of definition, that is z = x + iy ∈ �a .

Lemma 2.9 Let ha(z) = ua(z)+iva(z) = 1
a arctan

( z
a

)
be as above; then the following

holds:

(1) ∂zha(z) = 1

z2 + a2
= x2 + a2 − y2 − 2i xy

(x2 + a2 − y2)2 + 4x2y2
,
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Extending an Example by Colding and Minicozzi 1035

(2) Ka(z) = − |∂zha |2
cosh4(va)

= − |z2 + a2|−2

cosh4(Im(arctan(z/a))/a)
,

(3) ∂yua(z) = 2xy

(x2 + a2 − y2)2 + 4x2y2
,

(4) ∂yva(z) = x2 + a2 − y2

(x2 + a2 − y2)2 + 4x2y2
,

(5) |∂yua(z)| ≤ 4|xy|
(x2 + a2)2

,

(6) ∂yva(z) >
3

8(x2 + a2)
,

(7) va(x, y) ≥ 0 for y ≥ 0 and va(x, y) < 0 for y < 0 .

Proof (1) and (2) are just computations, and (3) and (4) follow directly from (1) by
applying the Cauchy–Riemann equations to ha (see equations (2.2), (2.3) and (2.4) in
[1]).

Both inequalities (5-6) are obtained using the estimate y2 ≤ x2+a2
4 , which holds

for every point (x, y) ∈ �a (see Remark 2.5). Finally, we obtain (7) by combining (6)
with the fact that va(x, 0) = 0. �

Remark 2.10 Using the notation in Definition 2.1, we have that for any x ∈ R

Fa(x, 0) = (0, 0, x). This can be obtain by directly integrating equation (2.4), know-
ing that va(x, 0) = 0.

Let us further fix the following notation for points on the boundary of �a .

Definition 2.11 Given fixed values for x0 ∈ R and a ∈ (0, 1/2], we will denote by
yx0,a the y value of the point of intersection between the line x = x0 and the boundary
of �a in the upper half-plane. Likewise, we will denote by −yx0,a the y value of the
point of intersection between x = x0 and the boundary in the lower half-plane.

In other words:

yx0,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x20+a2)3/4

2 if |x0| ≤ xA ,

(x20+a2)1/2

2 if |x0| ≥ xB ,

ξ1(x0) if xA ≤ x0 ≤ xB ,

ξ2(x0) if − xB ≤ x0 ≤ −xA

,

and

−yx0,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (x20+a2)3/4

2 if |x0| ≤ xA ,

− (x20+a2)1/2

2 if |x0| ≥ xB ,

−ξ1(x0) if xA ≤ x0 ≤ xB ,

−ξ2(x0) if − xB ≤ x0 ≤ −xA

.

Remark 2.12 As already observed in Remark 2.5, we have �a ⊂ D2
a . This implies in

particular that for all x ∈ R and a ∈ (0, 1/2] we have |yx,a | ≤ (x2+a2)1/2

2 .
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1036 L. Ruffoni, F. Tripaldi

3 Lower bound: properly embedded in an infinite cylinder

In this section we want to show that all the minimal disks �a = Fa(�a) are properly
embedded in a fixed infinite cylinder around the x3-axis in R

3. To do this, following
[1], we analyse the intersection of �a with the horizontal planes {x3 = x} for varying
x ∈ R. We will see that there exists some R0 > 0 such that for all a ∈ (0, 1

2 ] and for all
x ∈ R, the intersection �a ∩ {x3 = x} is a smooth curve in the plane {x3 = x} going
through the base point Fa(x, 0) = (0, 0, x) (see Remark 2.10), whose restriction to
the disk DR0((0, 0, x)) is properly embedded in DR0((0, 0, x)).

The following lemmas are the extension of Lemma 3 in [1] to our unbounded
domains. Let us fix some notations. We will consider the curves

γx,a : [−yx,a, yx,a] → {x3 = x}, γx,a(y) := Fa(x, y) (3.1)

and use the notation γ ′
x,a(y) = ∂Fa

∂ y (x, y). Using Eq. (2.5) on the choice of Weier-
strass data made in Definition 2.2, this vector can easily be computed to be

γ ′
x,a(y) = (cosh(va(x, y) sin(ua(x, y),− cosh(va(x, y) cos(ua(x, y), 0)

so in particular we have that

∣∣∣∣γ ′
x,a(y)

∣∣∣∣ = cosh(va(x, y)) and
∣∣∣∣γ ′

x,a(0)
∣∣∣∣ = 1 .

Lemma 3.1 Using the notations above, the following holds:

(1) x3(Fa(x, y)) = x, that is γx,a = �a ∩ {x3 = x},
(2) cos(γ ′

x,a(y), γ
′
x,a(0)) = cos(ua(x, y) − ua(x, 0)),

(3) the curve γx,a is a graph over the line with direction γ ′
x,a(0), contained in a sector

of angle θ0 ≤ 1
xA

= 6π
4+π

(see Eq. (2.13) for the definition of xA).

Proof Statement (1) follows directly from Eq. (2.1), as φ = dz. Let us prove the other
points. Notice that when |x | ≤ xA they are proved in Lemma 3 in [1], so let us focus
on the case |x | > xA. To prove (2), following [1], we consider

〈γ ′
x,a(y), γ

′
x,a(0)〉 = ∣∣∣∣γ ′

x,a(y)
∣∣∣∣ ∣∣∣∣γ ′

x,a(0)
∣∣∣∣ cos(γ ′

x,a(y), γ
′
x,a(0))

so that by the above remarks we get

〈γ ′
x,a(y), γ

′
x,a(0)〉 = cosh(va(x, y)) cos(γ

′
x,a(y), γ

′
x,a(0)).

On the other hand, Eq. (2.5) can also be used to obtain directly that

〈γ ′
x,a(y), γ

′
x,a(0)〉 = cosh(va(x, y)) cos(ua(x, y) − ua(x, 0))

which proves (2).
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Extending an Example by Colding and Minicozzi 1037

To obtain (3) we are going to integrate the inequalities obtained in Lemma 2.9 and
use the fact that throughout �a we have y2 ≤ x2+a2

4 (see Remark 2.12):

|ua(x, y) − ua(x, 0)| ≤
∫ y

0
|∂t ua(x, t)|dt ≤ 4|x |

(x2 + a2)2
y2

2
≤ |x |

2(x2 + a2)
.

Let us fix an angle θ ∈ (2, π). From the last estimate and (2) we get that the absolute
value of the angle between γ ′

x,a(y) and γ ′
x,a(0) is at most θ

2 if and only if |x | > 1
θ
.

We are looking at the case |x | > xA, so we get that the angle is at most 1
2xA

, so that

all the tangent vectors γ ′
x,a(y) live in a sector of angle at most 1

xA
= 6π

4+π
< π in the

direction of γ ′
x,a(0). In particular γx,a is a graph over the line in that direction. But by

continuity this actually implies that the whole curve is contained in the same sector. �

Remark 3.2 For |x | ≤ xA < 1

2 , [1, Eq. (2.11)] proves that γx,a is contained in a sector
of angle 2. In our extension to |x | > xA, we get a sector of angle θ0 = 1

xA
= 6π

4+π
(see

Eq. (2.13) for the definition of xA). The reason for this particular choice is as follows:
in order to get a convex sector we need 0 < θ0 = 1

xA
< π , i.e. 1

π
< xA, but in order

to get a connected domain �a we also need xA < 1
2 .

The first third of the interval [ 1
π
, 1
2 ] turns out to be a geometrically convenient

choice to satisfy both conditions, and this is the main reason for the specific choice of
xA we made above. Any other choice for the value of xA in the interval ( 1

π
, 1
2 ) would

work.

In Lemma 3 of [1], it is also proved that when |x | ≤ 1/2, the curves γx,a have their
endpoints outside the disks Dr0((0, 0, x)), where r0 > 0 does not depend on a or x .
We are now going to prove that the same is still true for arbitrarily large values of |x |.
Lemma 3.3 Using the notations above, there exists r ′

0 > 0 such that for any |x | > xA,
and for any a ∈ (0, 1

2 ], we have ||γx,a(yx,a) − γx,a(0)|| > r ′
0.

Proof For any y ∈ [−yx,a, yx,a] we have the following equality:

||γx,a(y) − γx,a(0)|| = 〈γx,a(y) − γx,a(0), γ ′
x,a(0)〉

||γ ′
x,a(0)|| cos(γx,a(y) − γx,a(0), γ ′

x,a(0))
(3.2)

and we want to find a lower bound for this quantity which is independent of a and x .
As observed above, ||γ ′

x,a(0)|| = 1, and of course the cosine term is bounded. So it is
enough to bound the numerator of the right-hand side. Reasoning as in the previous
lemma, we have the following:

〈γx,a(y) − γx,a(0), γ
′
x,a(0)〉 =

∫ y

0
〈γ ′

x,a(t), γ
′
x,a(0)〉dt (3.3)

=
∫ y

0
cosh va(x, t) cos(ua(x, t) − ua(x, 0))dt . (3.4)
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From Lemma 3.1 we get that the absolute value of the argument of the cosine is at
most θ0

2 = 1
2xA

= 4+π
3π , so we can get a lower bound for the cosine.

Moreover from Lemma 2.9 we have va(x, y) ≥ 0 when y ≥ 0. This implies that
the integrand function is non-negative, and allows us to get

〈γx,a(y) − γx,a(0),γ
′
x,a(0)〉 ≥ cos (θ0)

∫ yx,a

yx,a/2
cosh va(x, t)dt (3.5)

so it is now enough to provide a lower bound for va . Integrating the estimate in point
(6) of Lemma 2.9, one easily gets that

min
yx,a/2≤y≤yx,a

|va(x, y)| =
∣∣∣va

(
x,

yx,a
2

)∣∣∣ ≥ 3

32
√
x2 + a2

. (3.6)

In the end we get

〈γx,a(y) − γx,a(0), γ
′
x,a(0)〉 ≥ cos(θ0) cosh

(
3

32
√
x2 + a2

) √
x2 + a2

4
≥

≥ cos(θ0)

4
|x | ≥ cos(θ0)

4
xA ≥ cos(θ0)

4π
.

�

We conclude this section with the following statement.

Proposition 3.4 There exists R0 > 0 such that, for any a ∈ (0, 1
2 ], the surface �a ∩

{x21 + x22 ≤ R2
0, x3 ∈ R} is a properly embedded minimal disk. Moreover, we have

that {0 < x21 + x22 < R2
0, x3 ∈ R} ∩ Fa(�a) = �̃1,a ∪ �̃2,a for multi-valued graphs

�̃1,a and �̃2,a over DR0(0) \ {0}.
Proof By Lemma 3.1 we have that Fa is an embedding. From Corollary 1 in [1], it
follows that there exists a r0 > 0 such that for all |x | ≤ xA and a ∈ (0, 1

2 ] we have
that �a ∩ {x3 = x} intersects Dr0((0, 0, x)) in a properly embedded arc. A similar
statement holds when |x | > xA for a possibly different r ′

0 > 0 thanks to Lemma 3.3.
It is then enough to take R0 = min{r0, r ′

0}.
Furthermore, if we consider Eq. (2.2), we get that Fa is vertical, that is

〈n, (0, 0, 1)〉 = 0 when |ga| = 1. However, |ga(x, y)| = 1 exactly when y = 0,
and hence by Remark 2.10, we know that the image is graphical away from the x3-
axis. Combining this with Lemma 3.3 for |x | ≥ xA and [1, Eq. (2.8)] for |x | ≤ xA,
we finally get our result. �


4 Upper bound: not properly embedded in an exhaustion ofR3

We are left to prove that our minimal disks �a are not properly embedded in any
growing sequence of open sets that exhausts R3.
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In order to do so, we will show that there exists at least a value x �= 0 for which the
maximal excursion of all helicoids on the horizontal slice {x3 = x} is bounded from
above by a constantCx depending only on x . Thiswould then imply that one can find an
infinite cylinder wide enough (for example, we could take {x21 + x22 < 2Cx , x3 ∈ R})
in which the minimal disks �a are not properly embedded. As we will see in Remark
4.3 this is actually the case for all x �= 0.

Lemma 4.1 Given an arbitrary value x ∈ R \ {0}, we have

max
0≤|y|≤ya,x

|va(x, yx,a)| ≤ Mx , (4.1)

where Mx is a constant that depends only on x.

Proof By construction, as already pointed out in Remark 2.12, we know that y2 ≤
1
4 (x

2 + a2) for any (x, y) ∈ �a and for any a ∈ (0, 1/2], and hence from Lemma 2.9
we get

∂yva(x, y) = x2 + a2 − y2

(x2 + a2 − y2)2 + 4x2y2
≤ x2 + a2

(x2 + a2 − (x2 + a2)/4)2
= 16

9

1

x2 + a2
.

Applying this estimate (and knowing va(x, y) is an increasing function in y, see
Lemma 2.9), we then obtain

max
0≤|y|≤yx,a

|va(x, y)| ≤
∫ yx,a

0
|∂yva(x, y)|dy =

∫ ya,x

0
∂yva(x, y)dy (4.2)

≤ 16

9

1

x2 + a2

∫ ya,x

0
dy = 16

9

1

x2 + a2
(x2 + a2)1/2

2
(4.3)

= 8

9

1√
x2 + a2

≤ 8

9|x | =: Mx ∀ a ∈ (0, 1/2] . (4.4)

�


Lemma 4.2 Given an arbitrary value x ∈ R \ {0}, we also have
∣∣〈γx,a(yx,a) − γx,a(0), γ

′
x,a(0)〉

∣∣ ≤ Nx , (4.5)

where Nx is a constant that depends only on x.

Proof Using the Eqs. (3.3, 3.4), we get

〈γx,a(yx,a) − γx,a(0), γ
′
x,a(0)〉 =

∫ yx,a

0
cosh va(x, t) cos(ua(x, t) − ua(x, 0))dt .

(4.6)
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Therefore, since cosine is a bounded function, and using the estimate provided by
Lemma 4.1, we obtain

∣∣〈γx,a(yx,a) − γx,a(0), γ
′
x,a(0)〉

∣∣ ≤
∫ yx,a

0
| cosh(va(x, y))|dy (4.7)

=
∫ yx,a

0
cosh(va(x, y))dy ≤ cosh(Mx )

∫ yx,a

0
dy (4.8)

≤ cosh(Mx ) ·
√
x2 + a2

2
≤ cosh(Mx ) ·

√
x2 + 1/4

2
=: Nx . (4.9)

�

Remark 4.3 Let us study the behaviour of Nx . As already pointed out before, Mx =
C · 1/|x |, and hence

Nx ≈ C2 cosh

(
1

|x |
)

· (|x | + C2); (4.10)

therefore Nx → ∞ both when |x | → 0, and when |x | → ∞. On the other hand, for
any x for which |x | ∈ (0,∞), we have that Nx is bounded.

Proposition 4.4 The minimal disks �a cannot be properly embedded in any growing
sequence of open sets in R3 that exhausts R3.

Proof In order to prove this, it is sufficient to show that there exists at least one value
of x ∈ R for which the maximal excursion of all the helicoids �a on the horizontal
slice {x3 = x} is bounded from above by a constant that depends only on x .

In order to do so, we will be combining the results provided in Lemma 4.2 and
Lemma 3.1, so we finally obtain

‖γx,a(yx,a) − γx,a(0)‖ = 〈γx,a(yx,a) − γx,a(0), γ ′
x,a(0)〉

cos
(
γx,a(yx,a) − γx,a(0), γ ′

x,a(0)
) ≤ C Nx =: Cx .

�


5 Proof of Theorem 1.1

This result is analogous to Theorem 1 in Colding and Minicozzi’s paper [1]. In order
for this paper to be self-contained, we report the proof below.

Proof of Theorem 1.1 Up to rescaling, it is sufficient to show that there exists a sequence
�i ⊂ {x21 + x22 ≤ R2, x3 ∈ R}, for some R > 0. Lemma 3.1 gives minimal embed-
dings Fa : �a → R

3 with Fa(x, 0) = (0, 0, x) for any x ∈ R (see Remark 2.10), so
by Proposition 3.4 (3) holds for any R ≤ R0.

Let us take R = R0
2 and �i = {x21 + x22 ≤ R, x3 ∈ R} ∩ Fai (�ai ), where the

sequence ai is to be determined.
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To get (1), simply notice that, by equation in point (2) of Lemma 2.9, we get
|Ka |(0) = a−4 → ∞ as a → 0.

Still applying the same equation in point (2) of Lemma 2.9, we get that for all δ > 0,
supa sup{|x |≥δ}∩�a

|Ka | < ∞ . Combine this with (3) and Heinz’s curvature estimate
for minimal graphs (see [10, Eq. (11.7)]), and we get (2).

In order to get (4), we use Lemma 2 in [1] to choose ai → 0 so the mappings Fai
converge uniformly in C2 on compact subsets to F0 : �0 → R

3. Hence, by Lemma
3.1 and Proposition 3.4, the �i \ {x3 = 0} converge to two embedded minimal disks
�± ⊂ F0(�

±
0 ) with �± \ {x3-axis} = �±

1 ∪ �±
2 for multi-valued graphs �±

i .
To complete the proof, one should notice that in a small enough neighbourhood of

the plane {x3 = 0}, our minimal disks�i coincide with those constructed in [1]. Hence
each graph �±

i is ∞-valued (and hence spirals into the horizontal plane {x3 = 0}),
completing point (4). �
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