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EXTENDING AN EXAMPLE BY COLDING AND MINICOZZI

LORENZO RUFFONI AND FRANCESCA TRIPALDI

Abstract. Extending an example by Colding and Minicozzi [CMI03], we con-

struct a sequence of properly embedded minimal disks Σi in an infinite Eu-
clidean cylinder around the x3-axis with curvature blow-up at a single point.

The sequence converges to a non smooth and non proper minimal lamination in

the cylinder. Moreover, we show that the disks Σi are not properly embedded
in a sequence of open subsets of R3 that exhausts R3.
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1. Introduction

In a series of influential papers [CMI04a; CMI04b; CMI04c; CMI04d], Colding
and Minicozzi initiated the study of sequences of minimal disks in a 3-manifold. In
general, if no restriction on the curvatures of the disks is required, it is known that
some wild behaviour should be expected. For instance, in [CMI03] Colding and
Minicozzi constructed an example of a sequence of minimal disks in a Euclidean
ball for which curvatures blow up at the centre of the ball, and such that the
limit lamination is neither smooth nor proper. This result is obtained by a careful
analysis of the Weierstrass representation of the minimal disks.

Following this example, a number of similar results have been obtained via anal-
ogous methods, in which comparable wild limits are observed with the curvature
blowing up at a finite set of points on a line [Dea06], along a closed segment [Kha09],
or more generally any compact subset of a line [Kle12]. Using variational methods,
Hoffman and White [HW11] provided examples of minimal disks in an infinite Eu-
clidean cylinder with curvature blow-ups along any prescribed compact subset of
the axis of the cylinder.

In this paper, we follow the approach of [CMI03] and show that their example
can be extended to create a sequence of properly embedded minimal disks Σi in
an infinite Euclidean cylinder, displaying the same pathologies. By [CMI04d], it is
known that these pathologies do not occur if the sequence Σi is indeed a sequence

2010 Mathematics Subject Classification. 53A10, 49Q05.
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2 LORENZO RUFFONI AND FRANCESCA TRIPALDI

of minimal disks properly embedded in a sequence of open sets which invade the
whole R3.

Here we prove that the disks Σi, which we obtained by extending the ones
constructed in [CMI03], do not give rise to minimal disks properly embedded in a
growing family of cylinders which exhaust R3.

Our main result is therefore analogous to Theorem 1 in [CMI03] and can be
stated as follows; we refer to [CMI03] for the definition of multi-valued graph and
pictures.

Theorem 1.1. One can construct a sequence of properly embedded minimal disks
0 ∈ Σi ⊂ {x2

1+x2
2 ≤ 1, x3 ∈ R} ⊂ R3 containing the x3-axis, {(0, 0, t) | t ∈ R} ⊂ Σi,

and such that the following conditions are satisfied:

(1) limi→∞ |AΣi |2(0) =∞;
(2) supi supΣi\Bδ |AΣi |2 <∞ for all δ > 0;

(3) Σi \ {x3-axis} = Σ1,i ∪ Σ2,i, for multi-valued graphs Σ1,i and Σ2,i;
(4) Σi \ {x3 = 0} converges to two embedded minimal disks Σ± ⊂ {±x3 > 0}

with Σ±\Σ± = {x2
1 +x2

2 ≤ 1, x3 = 0}. Moreover, Σ±\{x3-axis} = Σ±1 ∪Σ±2
for multi-valued graphs Σ±1 and Σ±2 each of which spirals into {x3 = 0}.

From (4) we get that Σi \ {0} converges to a minimal lamination of {x2
1 + x2

2 ≤
1, x3 ∈ R} \ {0} (with leaves Σ−, Σ+, and {x2

1 + x2
2 ≤ 1, x3 = 0} \ {0}) which does

not extend to a lamination of {x2
1 + x2

2 ≤ 1, x3 ∈ R}. In other words, 0 is not a
removable singularity.

The structure of the paper is as follows: in Section 2 we review the definitions and
basic results on the Weierstrass representation of minimal surfaces in the Euclidean
space R3, and set up some notations for the domains and functions that will be
used. In Section 3, we show that the disks constructed with those data are properly
embedded in a fixed infinite Euclidean cylinder around the x3-axis, and in Section 4
we show that they are not a sequence of properly embedded disks in an exhausting
family. Section 5 contains the conclusion of the proof of the main theorem.

Acknowledgements: the authors wish to thank the Department of Mathe-
matics of Bologna University for its kind hospitality during the early stage of this
project. This work has been partially supported by the Academy of Finland (grant
288501 ‘Geometry of subRiemannian groups’), by the European Research Coun-
cil (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’) and by
the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska-Curie grant agreement No 777822 (‘Geometric and Harmonic
Analysis with Interdisciplinary Applications’).

2. Preliminaries and set up

Let us first fix some notation. Following [CMI03], we will use (x1, x2, x3) as the
coordinates in R3 and z = x+ iy in C. Given f : C→ Cn, ∂xf and ∂yf will denote
∂f
∂x and ∂f

∂y respectively, and likewise we will have ∂zf = 1
2 (∂xf − i∂yf). Given a

point p = (p1, p2, p3) ∈ R3 and a value r > 0, we will denote by Dr(p) the Euclidean
disk of radius r, contained in the horizontal plane {x3 = p3}, and centred at the
point p = (p1, p2, p3).
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When Σ is a smooth surface embedded in R3, we denote by KΣ its sectional
curvature, and by AΣ its second fundamental form; so when Σ is minimal we will
have |AΣ|2 = −2KΣ. Moreover, when Σ is oriented, nΣ will denote its unit normal.

Let us recall the classical definition of a Weierstrass representation and its role
in constructing minimal surfaces (see [Oss02]). Let Ω ⊂ C be a domain in the
complex plane, g a meromorphic function on Ω and φ a holomorphic 1-form on Ω;
then we refer to the couple (g, φ) as a Weierstrass representation.

Given a a Weierstrass representation (g, φ), one can associate to it a conformal
minimal immersion F : Ω→ R3

F (z) = Re

∫
ζ∈γz0,z

(
1

2

(
g−1(ζ)− g(ζ)

)
,
i

2

(
g−1(ζ) + g(ζ)

)
, 1

)
φ(ζ) .(2.1)

Here, z0 ∈ Ω denotes a fixed base point, and the integral is taken along a path
γz0,z that joins z0 to z in Ω. As soon as g has no zeros or poles and Ω is simply
connected, F will not depend on the choice of the integration path (see [CMI03]).
On the other hand the choice of the base point z0 will change the value of F by an
adding constant.

Using the Weierstrass data, one can find explicit formulae for the unit normal n
and the Gauss curvature K (see Sections 8 and 9 in [Oss02]):

n =

(
2Reg, 2Img, |g|2 − 1

)
|g|2 + 1

,(2.2)

K = −
[

4|∂zg| |g|
|φ| (1 + |g|2)2

]2

(2.3)

As previously pointed out, the main goal of this paper is to provide an unbounded
extension of the domain, on which to keep the same choice of the Weierstrass data
as in [CMI03]. The map F is guaranteed to be an immersion (that is, dF 6= 0) as
soon as φ does not vanish and g has no zeros or poles.

We include the following lemma (see Lemma 1 in [CMI03]), since its results will
be useful for some further computations later on.

Lemma 2.1. Let F be as in equation (2.1) for the Weierstrass data (g, φ) given
by g(z) = ei(u(z)+iv(z) and φ = dz, then

∂xF = (sinh v · cosu, sinh v · sinu, 1) ,(2.4)

∂yF = (cosh v · sinu,− cosh v · cosu, 0) .(2.5)

Let us construct the one-parameter family (with parameter a ∈ (0, 1/2]) of min-
imal immersions Fa that we will be using to construct our family of embedded
minimal disks Σa.

Definition 2.2. We choose the same Weierstrass data (ga, φ) as in [CMI03], that
is:

ga = eiha , where ha(z) =
1

a
arctan

(
z

a

)
and φ = dz .(2.6)

In this case, the two real functions u and v in Lemma 2.1 will then depend on
the parameter a: ha = ua + iva (see Remark 2.6 for an explicit formulation of both
ua and va).
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Figure 1. Graphical representations of both domains D1
a (in blue)

and D2
a (in red) for different values of the parameter a.

In this paper, we are extending the original bounded domain Ωa defined in
[CMI03] to an unbounded one, which will still be denoted by Ωa. To do so, we will
first introduce the two families of domains D1

a and D2
a, as follows (see Figure 1):

D1
a =

{
(x, y)

∣∣∣∣|y| ≤ (x2 + a2)3/4

2

}
,(2.7)

D2
a =

{
(x, y)

∣∣∣∣|y| ≤ (x2 + a2)1/2

2

}
.(2.8)

One should notice that the two domains D1
a and D2

a cross at the points where

x = ±
√

1− a2 ,(2.9)
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hence somewhere in the intervals [
√

3/2, 1] and [−1,−
√

3/2], depending on the
parameter a ∈ (0, 1/2]. One should also notice that for x2 > 1 − a2, the second
domain D2

a (in red) is strictly contained inside the first domain D1
a (in blue), that

is

D2
a ∩ {(x, y) | x2 > 1− a2} ⊂ D1

a ∩ {(x, y) | x2 > 1− a2} .(2.10)

Viceversa, for x2 < 1− a2, we have the opposite inclusion:

D1
a ∩ {(x, y) | x2 < 1− a2} ⊂ D2

a ∩ {(x, y) | x2 < 1− a2} .(2.11)

In Colding and Minicozzi’s paper, the domains of definition Ωa are exactly taken
as follows (see equation (2.1) in [CMI03]):{

(x, y)

∣∣∣∣|x| ≤ 1

2
, |y| ≤ (x2 + a2)3/4

2

}
= D1

a ∩
{

(x, y)

∣∣∣∣|x| ≤ 1

2

}
,(2.12)

which always falls into case (2.11), since 1
4 < 1− a2 for any a ∈ (0, 1/2].

Let us take into consideration the value 1
π (please refer to Remark 3.2 for the

reasoning behind the choice of this value). If we divide the interval [ 1
π ,

1
2 ] into

thirds, we get the following two values:

xA =
1

π
+

(
1

2
− 1

π

)
· 1

3
=

1

π
+
π − 2

6π
=

6 + π − 2

6π
=

4 + π

6π
, and(2.13)

xB =
1

π
+

(
1

2
− 1

π

)
· 2

3
=

1

π
+
π − 2

3π
=

3 + π − 2

3π
=

1 + π

3π
.(2.14)

By symmetry, the points −xB and −xA will divide into thirds the interval
[− 1

2 ,−
1
π ].

As already pointed out, D1
a ∩ {(x, y) | |x| ≤ 1

2} ⊂ D
2
a ∩ {(x, y) | |x| ≤ 1

2}, which
means that if we consider the two boundaries as follows

|y| = (x2 + a2)3/4

2
, for |x| ≤ xA , and |y| = (x2 + a2)1/2

2
, for |x| ≥ xB(2.15)

we will see jumps (see Figure 2 for a graphical representation of these jumps) of
magnitude equal to yB − yA, where

yA =
(x2
A + a2)3/4

2
, and yB =

(x2
B + a2)1/2

2
.(2.16)

In order to join these two domains

D1
a ∩ {(x, y) | |x| ≤ xA} and D2

a ∩ {(x, y) | |x| ≥ xB}(2.17)

we can simply take the following line segments


ξ1(x) = yA + (yB − yA) x−xA

xB−xA from (xA, yA) to (xB , yB)

ξ2(x) = yA + (yB − yA) x+xA
xA−xB from (−xA, yA) to (−xB , yB)

ξ3(x) = −ξ1(x) = −yA + (yA − yB) x−xA
xB−xA from (xA,−yA) to (xB ,−yB)

ξ4(x) = −ξ2(x) = −yA + (yA − yB) x+xA
xA−xB from (−xA,−yA) to (−xB ,−yB)

Using these segments, we are then able to define our domains of definition Ωa.
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Figure 2. Graphical representations of the domains D1
a∩{(x, y) |

|x| ≤ xA} (in blue) and D2
a∩{(x, y) | |x| ≥ xB} (in red) for different

values of the parameter a.

Definition 2.3. Our unbounded domains of definition Ωa for a ∈ (0, 1/2] are given
by

Ωa =

(x, y) such that


|y| ≤ (x2+a2)3/4

2 for |x| ≤ xA
|y| ≤ (x2+a2)1/2

2 for |x| ≥ xB
|y| ≤ ξ1(x) for xA ≤ x ≤ xB
|y| ≤ ξ2(x) for − xB ≤ x ≤ −xA

 ,
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and

Ω0 =
⋂
a>0

Ωa \ {0} = Ω+
0 ∪ Ω−0 ,(2.18)

where Ω+
0 and Ω−0 are respectively the right and left components of Ω0.

Remark 2.4. One should notice that Definition 2.3 gives rise to domains Ωa whose
boundaries are piecewise smooth. In order to obtain smooth domains, it is sufficient
to take the convolution of the boundary with a Friedrich mollifier.

Remark 2.5. Let us notice that, by construction, Ωa ⊂ D2
a for any a ∈ [0, 1/2].

Remark 2.6. Let us study the explicit formulation of ha = ua+ iva. On a suitable
domain of definition we have, using the standard notation z = x+ iy, that

ha(z) =
1

a
arctan

(
z

a

)
=

i

2a

[
Log

(
1− iz

a

)
− Log

(
1 +

iz

a

)]
=
i

2a

[
Log

(
a− ix+ y

a

)
− Log

(
a+ ix− y

a

)]
=
i

2a

[
1

2
log

(
(a+ y)2 + x2

a2

)
+ iArg

(
a+ y − ix

a

)
+

− 1

2
log

(
(a− y)2 + x2

a2

)
− iArg

(
a− y + ix

a

)]
=
i

2a

[
1

2
log

(
(a+ y)2 + x2

(a− y)2 + x2

)
+ iArg

(
a+ y − ix

a

)
− iArg

(
a− y + ix

a

)]
=

1

2a
Arg

(
a− y + ix

a

)
− 1

2a
Arg

(
a+ y − ix

a

)
+

i

4a
log

(
(a+ y)2 + x2

(a− y)2 + x2

)
=ua(x, y) + iva(x, y) .

Remark 2.7. Let us further notice that the functions ha are indeed well-defined,
since the domains Ωa are simply connected and the points ±ia /∈ Ωa. In fact, when
x = 0, we have |y| ≤ a3/2/2, and we have that a3/2/2 < a if and only if a < 4 (and
by construction we are assuming a ≤ 1/2).

Definition 2.8. In order to fix the notation, we will be denoting by Fa the confor-
mal minimal immersion Fa : Ωa → R3 associated to the Weierstrass representation
(ga, φ) for any a ∈ (0, 1/2].

In the following lemma, we will be covering some explicit expressions and bounds
that will be useful in the next sections. Unless otherwise stated, from now on we
will be working within our domains of definition, that is z = x+ iy ∈ Ωa.

Lemma 2.9. Let ha(z) = ua(z) + iva(z) = 1
a arctan

(
z
a

)
be as above; then the

following holds:

(1) ∂zha(z) =
1

z2 + a2
=

x2 + a2 − y2 − 2ixy

(x2 + a2 − y2)2 + 4x2y2
,

(2) Ka(z) = − |∂zha|
2

cosh4(va)
= − |z2 + a2|−2

cosh4(Im(arctan(z/a))/a)
,

(3) ∂yua(z) =
2xy

(x2 + a2 − y2)2 + 4x2y2
,
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(4) ∂yva(z) =
x2 + a2 − y2

(x2 + a2 − y2)2 + 4x2y2
,

(5) |∂yua(z)| ≤ 4|xy|
(x2 + a2)2

,

(6) ∂yva(z) >
3

8(x2 + a2)
,

(7) va(x, y) ≥ 0 for y ≥ 0 and va(x, y) < 0 for y < 0 .

Proof. (1) and (2) are just computations, and (3) and (4) follow directly from (1)
by applying the Cauchy-Riemann equations to ha (see equations (2.2), (2.3) and
(2.4) in [CMI03]).

Both inequalities (5-6) are obtained using the estimate y2 ≤ x2+a2

4 , which holds
for every point (x, y) ∈ Ωa (see Remark 2.5). Finally, we obtain (7) by combining
(6) with the fact that va(x, 0) = 0. �

Remark 2.10. Using the notation in Definition 2.1, we have that for any x ∈
R Fa(x, 0) = (0, 0, x). This can be obtain by directly integrating equation (2.4),
knowing that va(x, 0) = 0.

Let us further fix the following notation for points on the boundary of Ωa.

Definition 2.11. Given fixed values for x0 ∈ R and a ∈ (0, 1/2], we will denote
by yx0,a the y value of the point of intersection between the line x = x0 and the
boundary of Ωa in the upper-half plane. Likewise, we will denote by −yx0,a the y
value of the point of intersection between x = x0 and the boundary in the lower-half
plane.

In other words:

yx0,a =


(x2

0+a2)3/4

2 if |x0| ≤ xA ,
(x2

0+a2)1/2

2 if |x0| ≥ xB ,
ξ1(x0) if xA ≤ x0 ≤ xB ,
ξ2(x0) if − xB ≤ x0 ≤ −xA

,

and

−yx0,a =


− (x2

0+a2)3/4

2 if |x0| ≤ xA ,
− (x2

0+a2)1/2

2 if |x0| ≥ xB ,
−ξ1(x0) if xA ≤ x0 ≤ xB ,
−ξ2(x0) if − xB ≤ x0 ≤ −xA

.

Remark 2.12. As already observed in Remark 2.5, we have Ωa ⊂ D2
a. This implies

in particular that for all x ∈ R and a ∈ (0, 1/2] we have |yx,a| ≤ (x2+a2)1/2

2 .

3. Lower bound: properly embedded in an infinite cylinder

In this section we want to show that all the minimal disks Σa = Fa(Ωa) are
properly embedded in a fixed infinite cylinder around the x3-axis in R3. To do this,
following [CMI03], we analyse the intersection of Σa with the horizontal planes
{x3 = x} for varying x ∈ R. We will see that there exists some R0 > 0 such that
for all a ∈ (0, 1

2 ] and for all x ∈ R, the intersection Σa ∩ {x3 = x} is a smooth
curve in the plane {x3 = x} going through the base point Fa(x, 0) = (0, 0, x) (see
Remark 2.10), whose restriction to the disk DR0((0, 0, x)) is properly embedded in
DR0

((0, 0, x)).



EXTENDING AN EXAMPLE BY COLDING AND MINICOZZI 9

The following lemmas are the extension of Lemma 3 in [CMI03] to our unbounded
domains. Let us fix some notations. We will consider the curves

γx,a : [−yx,a, yx,a]→ {x3 = x}, γx,a(y) := Fa(x, y)(3.1)

and use the notation γ′x,a(y) = ∂Fa
∂y (x, y). Using equation (2.5) on the choice of

Weierstrass data made in Definition 2.2, this vector can easily be computed to be

γ′x,a(y) = (cosh(va(x, y) sin(ua(x, y),− cosh(va(x, y) cos(ua(x, y), 0)

so in particular we have that∣∣∣∣γ′x,a(y)
∣∣∣∣ = cosh(va(x, y)) and

∣∣∣∣γ′x,a(0)
∣∣∣∣ = 1 .

Lemma 3.1. Using the notations above, the following holds:

(1) x3(Fa(x, y)) = x, that is γx,a = Σa ∩ {x3 = x},
(2) cos(γ′x,a(y), γ′x,a(0)) = cos(ua(x, y)− ua(x, 0)),
(3) the curve γx,a is a graph over the line with direction γ′x,a(0), contained in

a sector of angle θ0 ≤ 1
xA

= 6π
4+π (see equation (2.13) for the definition of

xA).

Proof. Statement (1) follows directly from equation (2.1), as φ = dz. Let us prove
the other points. Notice that when |x| ≤ xA they are proved in Lemma 3 in
[CMI03], so let us focus on the case |x| > xA. To prove (2), following [CMI03], we
consider

〈γ′x,a(y), γ′x,a(0)〉 =
∣∣∣∣γ′x,a(y)

∣∣∣∣ ∣∣∣∣γ′x,a(0)
∣∣∣∣ cos(γ′x,a(y), γ′x,a(0))

so that by the above remarks we get

〈γ′x,a(y), γ′x,a(0)〉 = cosh(va(x, y)) cos(γ′x,a(y), γ′x,a(0))

On the other hand, equation (2.5) can also be used to obtain directly that

〈γ′x,a(y), γ′x,a(0)〉 = cosh(va(x, y)) cos(ua(x, y)− ua(x, 0))

which proves (2).
To obtain (3) we are going to integrate the inequalities obtained in Lemma 2.9

and use the fact that throughout Ωa we have y2 ≤ x2+a2

4 (see Remark 2.12):

|ua(x, y)− ua(x, 0)| ≤
∫ y

0

|∂tua(x, t)|dt ≤ 4|x|
(x2 + a2)2

y2

2
≤ |x|

2(x2 + a2)
.

Let us fix an angle θ ∈ (2, π). From the last estimate and (2) we get that the
absolute value of the angle between γ′x,a(y) and γ′x,a(0) is at most θ

2 if and only

if |x| > 1
θ . We are looking at the case |x| > xA, so we get that the angle is at

most 1
2xA

, so that all the tangent vectors γ′x,a(y) live in a sector of angle at most
1
xA

= 6π
4+π < π in the direction of γ′x,a(0). In particular γx,a is a graph over the

line in that direction. But by continuity this actually implies that the whole curve
is contained in the same sector. �

Remark 3.2. For |x| ≤ xA < 1
2 , equation (2.11) in [CMI03] proves that γx,a is

contained in a sector of angle 2. In our extension to |x| > xA, we get a sector of
angle θ0 = 1

xA
= 6π

4+π (see equation (2.13) for the definition of xA). The reason
for this particular choice is as follows: in order to get a convex sector we need
0 < θ0 = 1

xA
< π, i.e. 1

π < xA, but in order to get a connected domain Ωa we also

need xA <
1
2 .
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The first third of the interval [ 1
π ,

1
2 ] turns out to be a geometrically convenient

choice to satisfy both conditions, and this is the main reason for the specific choice
of xA we made above. Any other choice for the value of xA in the interval ( 1

π ,
1
2 )

would work.

In Lemma 3 of [CMI03], it is also proved that when |x| ≤ 1/2, the curves γx,a
have their endpoints outside the disks Dr0((0, 0, x)), where r0 > 0 does not depend
on a or x. We are now going to prove that the same is still true for arbitrarily large
values of |x|.

Lemma 3.3. Using the notations above, there exists r′0 > 0 such that for any
|x| > xA, and for any a ∈ (0, 1

2 ], we have ||γx,a(yx,a)− γx,a(0)|| > r′0

Proof. For any y ∈ [−yx,a, yx,a] we have the following equality

(3.2) ||γx,a(y)− γx,a(0)|| =
〈γx,a(y)− γx,a(0), γ′x,a(0)〉

||γ′x,a(0)|| cos(γx,a(y)− γx,a(0), γ′x,a(0))

and we want to find a lower bound for this quantity which is independent of a and
x. As observed above, ||γ′x,a(0)|| = 1, and of course the cosine term is bounded. So
it is enough to bound the numerator of the right hand side. Reasoning as in the
previous lemma, we have the following:

〈γx,a(y)− γx,a(0),γ′x,a(0)〉 =

∫ y

0

〈γ′x,a(t), γ′x,a(0)〉dt(3.3)

=

∫ y

0

cosh va(x, t) cos(ua(x, t)− ua(x, 0))dt .(3.4)

From Lemma 3.1 we get that the absolute value of the argument of the cosine is at
most θ0

2 = 1
2xA

= 3π
( 4 + π), so we can get a lower bound for the cosine.

Moreover from Lemma 2.9 we have va(x, y) ≥ 0 when y ≥ 0. This implies that
the integrand function is non-negative, and allows us to get

〈γx,a(y)− γx,a(0),γ′x,a(0)〉 ≥ cos (θ0)

∫ yx,a

yx,a/2

cosh va(x, t)dt(3.5)

so it is now enough to provide a lower bound for va. Integrating the estimate in
point (6) of Lemma 2.9, one easily gets that

min
yx,a/2≤y≤yx,a

|va(x, y)| =
∣∣∣va (x, yx,a

2

)∣∣∣ ≥ 3

32
√
x2 + a2

(3.6)

In the end we get

〈γx,a(y)− γx,a(0),γ′x,a(0)〉 ≥ cos(θ0) cosh

(
3

32
√
x2 + a2

) √
x2 + a2

4
≥

≥ cos(θ0)

4
|x| ≥ cos(θ0)

4
xA ≥

cos(θ0)

4π
.

�

We conclude this section with the following statement.

Proposition 3.4. There exists R0 > 0 such that, for any a ∈ (0, 1
2 ], the surface

Σa ∩ {x2
1 + x2

2 ≤ R2
0, x3 ∈ R} is a properly embedded minimal disk. Moreover, we

have that {0 < x2
1 + x2

2 < R2
0, x3 ∈ R} ∩ Fa(Ωa) = Σ̃1,a ∪ Σ̃2,a for multi-valued

graphs Σ̃1,a and Σ̃2,a over DR0
(0) \ {0}.
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Proof. By Lemma 3.1 we have that Fa is an embedding. From Corollary 1 in
[CMI03], it follows that there exists a r0 > 0 such that for all |x| ≤ xA and a ∈ (0, 1

2 ]
we have that Σa ∩ {x3 = x} intersects Dr0((0, 0, x)) in a properly embedded arc.
A similar statement holds when |x| > xA for a possibly different r′0 > 0 thanks to
Lemma 3.3. It is then enough to take R0 = min{r0, r

′
0}.

Furthermore, if we consider equation (2.2), we get that Fa is vertical, that is
〈n, (0, 0, 1)〉 = 0 when |ga| = 1. However, |ga(x, y)| = 1 exactly when y = 0,
hence by Remark 2.10, we know that the image is graphical away from the x3-axis.
Combining this with Lemma 3.3 for |x| ≥ xA and equation (2.8) in [CMI03] for
|x| ≤ xA, we finally get our result. �

4. Upper bound: not properly embedded in an exhaustion of R3

We are left to prove that our minimal disks Σa are not properly embedded in
any growing sequence of open sets that exhausts R3.

In order to do so, we will show that there exists at least a value x 6= 0 for
which the maximal excursion of all helicoids on the horizontal slice {x3 = x} is
bounded from above by a constant Cx depending only on x. This would then
imply that one can find an infinite cylinder wide enough (for example, we could
take {x2

1 + x2
2 < 2Cx, x3 ∈ R}) in which the minimal disks Σa are not properly

embedded. As we will see in Remark 4.3 this is actually the case for all x 6= 0.

Lemma 4.1. Given an arbitrary value x ∈ R \ {0}, we have

max
0≤|y|≤ya,x

|va(x, yx,a)| ≤Mx ,(4.1)

where Mx is a constant that depends only on x.

Proof. By construction, as already pointed out in Remark 2.12, we know that
y2 ≤ 1

4 (x2 + a2) for any (x, y) ∈ Ωa and for any a ∈ (0, 1/2], hence from Lemma
2.9 we get:

∂yva(x, y) =
x2 + a2 − y2

(x2 + a2 − y2)2 + 4x2y2
≤ x2 + a2

(x2 + a2 − (x2 + a2)/4)2
=

16

9

1

x2 + a2
.

Applying this estimate (and knowing va(x, y) is an increasing function in y, see
Lemma 2.9), we then obtain:

max
0≤|y|≤yx,a

|va(x, y)| ≤
∫ yx,a

0

|∂yva(x, y)|dy =

∫ ya,x

0

∂yva(x, y)dy(4.2)

≤ 16

9

1

x2 + a2

∫ ya,x

0

dy =
16

9

1

x2 + a2

(x2 + a2)1/2

2
(4.3)

=
8

9

1√
x2 + a2

≤ 8

9|x|
=: Mx ∀ a ∈ (0, 1/2] .(4.4)

�

Lemma 4.2. Given an arbitrary value x ∈ R \ {0}, we also have:∣∣〈γx,a(yx,a)− γx,a(0), γ′x,a(0)〉
∣∣ ≤ Nx ,(4.5)

where Nx is a constant that depends only on x.
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Proof. Using the equation (3.3, 3.4), we get:

〈γx,a(yx,a)− γx,a(0), γ′x,a(0)〉 =

∫ yx,a

0

cosh va(x, t) cos(ua(x, t)− ua(x, 0))dt .

(4.6)

Therefore, since cosine is a bounded function, and using the estimate provided
by Lemma 4.1, we obtain:∣∣〈γx,a(yx,a)− γx,a(0), γ′x,a(0)〉

∣∣ ≤ ∫ yx,a

0

| cosh(va(x, y))|dy(4.7)

=

∫ yx,a

0

cosh(va(x, y))dy ≤ cosh(Mx)

∫ yx,a

0

dy(4.8)

≤ cosh(Mx) ·
√
x2 + a2

2
≤ cosh(Mx) ·

√
x2 + 1/4

2
=: Nx .(4.9)

�

Remark 4.3. Let us study the behaviour of Nx. As already pointed out before,
Mx = C · 1/|x|, hence

Nx ≈ C2 cosh

(
1

|x|

)
· (|x|+ C2) ,(4.10)

therefore Nx →∞ both when |x| → 0, and when |x| → ∞. On the other hand, for
any x for which |x| ∈ (0,∞), we have that Nx is bounded.

Proposition 4.4. The minimal disks Σa cannot be properly embedded in any grow-
ing sequence of open sets in R3 that exhausts R3.

Proof. In order to prove this, it is sufficient to show that there exists at least one
value of x ∈ R for which the maximal excursion of all the helicoids Σa on the
horizontal slice {x3 = x} is bounded from above by a constant that depends only
on x.

In order to do so, we will be combining the results provided in Lemma 4.2 and
Lemma 3.1, so we finally obtain:

‖γx,a(yx,a)− γx,a(0)‖ =
〈γx,a(yx,a)− γx,a(0), γ′x,a(0)〉

cos
(
γx,a(yx,a)− γx,a(0), γ′x,a(0)

) ≤ C Nx =: Cx .

�

5. Proof of Theorem 1.1

This result is analogous to Theorem 1 in Colding and Minicozzi’s paper [CMI03].
In order for this paper to be self-contained, we report the proof below.

Proof of Theorem 1.1. Up to rescaling, it is sufficient to show that there exists a
sequence Σi ⊂ {x2

1 + x2
2 ≤ R2, x3 ∈ R}, for some R > 0. Lemma 3.1 gives minimal

embeddings Fa : Ωa → R3 with Fa(x, 0) = (0, 0, x) for any x ∈ R (see Remark
2.10), so by Proposition 3.4 (3) holds for any R ≤ R0.

Let us take R = R0

2 and Σi = {x2
1 + x2

2 ≤ R, x3 ∈ R} ∩ Fai(Ωai), where the
sequence ai is to be determined.

To get (1), simply notice that, by equation in point 2. of Lemma 2.9, we get
|Ka|(0) = a−4 →∞ as a→ 0.
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Still applying the same equation in point 2. of Lemma 2.9, we get that for all
δ > 0, supa sup{|x|≥δ}∩Ωa |Ka| <∞ . Combine this with (3) and Heinz’s curvature

estimate for minimal graphs (see equation (11.7) in [Oss02]), and we get (2).
In order to get (4), we use Lemma 2 in [CMI03] to choose ai → 0 so the mappings

Fai converge uniformly in C2 on compact subsets to F0 : Ω0 → R3. Hence, by
Lemma 3.1 and Proposition 3.4, the Σi \ {x3 = 0} converge to two embedded
minimal disks Σ± ⊂ F0(Ω±0 ) with Σ± \ {x3-axis} = Σ±1 ∪ Σ±2 for multi-valued
graphs Σ±i .

To complete the proof, one should notice that in a small enough neighbourhood
of the plane {x3 = 0}, our minimal disks Σi coincide with those constructed in
[CMI03]. Hence each graph Σ±i is ∞-valued (and hence spirals into the horizontal
plane {x3 = 0}), completing point (4).

�
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40014, Finland
E-mail address: francesca.f.tripaldi@jyu.fi


	1
	2. Preliminaries and set up
	3. Lower bound: properly embedded in an infinite cylinder
	4. Upper bound: not properly embedded in an exhaustion of R3
	5. Proof of Theorem 1.1
	References

