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Abstract
In this paper, we study the geometry of surfaces with the generalised simple lift property.
This work generalises previous results by Bernstein and Tinaglia (J Differ Geom 102(1):1–
23, 2016) and it is motivated by the fact that leaves of a minimal lamination obtained as a
limit of a sequence of property embedded minimal disks satisfy the generalised simple lift
property.
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1 Introduction

Motivated by the work of Colding and Minicozzi [3–6] and Hoffman and White [8] on
minimal laminations obtained as limits of sequences of properly embedded minimal disks,
in [1] Bernstein and Tinaglia introduce the concept of the simple lift property. Interest in these
surfaces arises because leaves of a minimal lamination obtained as a limit of a sequence of
properly embedded minimal disks satisfy the simple lift property. In [1] they prove that an
embedded minimal surface � ⊂ � with the simple lift property must have genus zero, if
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� is an orientable three-manifold satisfying certain geometric conditions. In particular, one
key condition is that � cannot contain closed minimal surfaces.

In this paper, we generalise this result by taking an arbitrary orientable three-manifold �

and introducing the concept of the generalised simple lift property, which extends the simple
lift property in [1]. Indeed, we prove that leaves of a minimal lamination obtained as a limit of
a sequence of properly embedded minimal disks satisfy the generalised simple lift property
and we are able to restrict the topology of an arbitrary surface � ⊂ � with the generalised
simple lift property.

Among other things, we prove that the only possible compact leaves of a minimal lam-
ination obtained as limits of a sequence of properly embedded minimal disks are the torus
in the orientable case, the Klein bottle and the connected sum of three and four projective
planes in the non-orientable case.

2 Notation and definitions

Throughout the paper, we will assume � to be an open subset of an orientable three-
dimensional Riemannian manifold (M, g). We denote by dist� the distance function on
� and by exp� the exponential map. Therefore, we have

exp�
p : Br (0) → Br (p) ,

where Br (0) is the Euclidean ball in R
3 of radius r centred at the origin, and Br (p) is the

geodesic ball in M of radius r centred at p ∈ �.
For an embedded surface �, we write

exp⊥ : N� → �

to denote the norma exponential map, where N� is the normal bundle.
If N� is trivial, then we say that � is two-sided, otherwise we say that � is one-sided.

As � is oriented, � being two-sided is equivalent to saying that � is orientable.
Let us fix a subset U ⊂ N�, then we define

NU (�) := exp⊥(U ) .

The set NU (�) is regular if there is an open set V with U ⊂ V such that exp⊥ : V →
NV (�) is a diffeomorphism. If NU (�) is regular, then the map �� : NU (�) → �, given
by the nearest point projection, is smooth and for any (q, v) ∈ TNU (�), there is a natural
splitting

v = v⊥ + vT ,

where v⊥ is orthogonal to vT , and vT is perpendicular to the fibres of �� .
We say that such v is δ-parallel to � if

|v⊥| ≤ δ|v| and
1

1 + δ
|vT | ≤ |d(��)q(v)| ≤ (1 + δ)|vT | .

Given ε > 0, we set Uε := {(p, v) ∈ N� | |v| < ε} and define Nε(�), the ε-
neighbourhood of �, to be NUε (�). If � is an embedded smooth surface and �0 ⊂ �

is a pre-compact subset, then ∃ ε > 0 so that Nε(�0) is regular.
Given a fixed embedded surface � and δ ≥ 0, we say that another embedded smooth

surface � is a smooth δ-graph over � if there exists an ε > 0 such that:
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1. Nε(�) is a regular ε-neighbourhood of �;
2. either � is a proper subset of Nε(�) or � is a proper subset of Nε(�) \ �;
3. for all (q, v) ∈ T� is δ-parallel to �.

We say that a smooth δ-graph � over � is a smooth δ-cover of �, if � is connected and
��(�) = �.

Let γ : [0, 1] → � be a smooth curve in �. We will also denote the image of such γ as
γ .

We say that a curve γ
∧ : [0, 1] → Nδ(γ ) is a δ-lift of γ if

• Nδ(γ ) is regular;
• �� ◦ γ

∧ = γ ;
• for all t ∈ [0, 1], (γ∧(t), γ

∧′
(t)) is δ-parallel to �.

This definition extends to piece-wise C1 curves in an obvious manner.

3 The generalised simple lift property for a finite number of curves

Let us introduce the concept of lifts of curves into embedded disks.

Definition 3.1 Generalised simple lift property.
Let � be a surface in �. Then � has the generalised simple lift property if, for any δ > 0

and for any p ∈ �, the following holds.
Given γ1, . . . , γn : [0, 1] → � a collection of n arbitrary smooth curves, and any pre-

compact open subset U ⊂ � such that γ1 ∪ · · · ∪ γn ⊂ U , there exist ti ∈ [0, 1] for which
γi (ti ) = p for any i = 1, . . . , n, as well as:

i. a constant ε = ε(U , δ) > 0;
ii. 	 ⊂ � an embedded disk;
iii. γ

∧

i : [0, 1] → Nε(U ) δ-lifts of γi

such that

1. γ
∧

i ⊂ 	 ∩ Nε(U );
2. 	 ∩ Nε(U ) is a δ-graph over U ;
3. there exists a point q ∈ Nε(p) ∩ 	 such that q ∈ γ

∧

i for every i = 1, . . . , n;
4. the connected component of 	 ∩ Nε(U ) containing γ

∧

i is a δ-cover of U .

The union γ
∧

1 ∪ · · · ∪ γ
∧

n is called the generalised simple δ-lift of γ1 ∪ · · · ∪ γn pointed
at (p, q) into �.

One should notice that the embedded disk 	 ⊂ � that the definition implies exists will
depend on the choice of the constant δ > 0, the n curves γ1, . . . , γn and the pre-compact
subsetU ⊂ � that contains the curves. Notation wise, throughout this paper, when studying
a lift of n given curves γ1, . . . , γn , if we want to highlight the dependence of the construction
on the choice of curves, we will denote the embedded disk 	 that contains the generalised
simple δ-lift of γ1 ∪ · · · ∪ γn by 	(γ1, . . . , γn).

A surface with the generalised simple lift property is one for which, in an effective sense,
the universal cover of the surface can be properly embedded as a disk near the surface. For
this reason, to understand the topology of the surface �, it is important to understand the
lifting behaviour of closed curves.

With this in mind, we give the following definition.
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Definition 3.2 Closed and open lift property.
Let � ⊂ � be an embedded surface with the generalised simple lift property. If γ :

[0, 1] → � is a smooth closed curve, then γ has the open lift property if there exists a
δ0 > 0 so that, for all δ0 > δ > 0, γ does not have a closed generalised simple δ-lift
γ
∧ : [0, 1] → Nδ(�). Otherwise, γ has the closed lift property.

If a closed curve γ has the closed lift property, then there is a sequence δi → 0 so that
there are closed simple δi -lifts γ

∧

i of γ .
If it is possible to choose the lifts of a curve γ to be embedded (and in particular non-

intersecting), we say γ has the embedded (closed/open) lift property.

Remark 3.3 In Proposition 3.4 below and in Lemma 4.2 we will be constructing the lift of
two (or more) simple closed curves intersecting at one point by considering the union of
these curves as a single curve.

In order to fix the notation, let us assume we want to lift two curves α, β : [0, 1] → �

intersecting in one point {p} = α ∩ β. Then we will denote by μ := α ◦ β the curve
parametrised as μ : [0, 1] → � with

μ
∣
∣[0,t0] = α̃ , μ

∣
∣[t0,1] = β̃

where α̃ = α( t
t0

) : [0, t0] → � and β̃ = β( t−t0
1−t0

) : [t0, 1] → � are appropriate reparametri-
sations of α and β respectively, so that μ(0) = μ(t0) = μ(1), for some t0 ∈ (0, 1).

The proposition below, which we will call Lifting Lemma, is analogous to Proposition 4.4
in Bernstein and Tinaglia’s paper [1].

Proposition 3.4 Lifting lemma
Let � ⊂ � be an embedded surface with the generalised simple lift property. Let us take

into consideration two closed, smooth curves

α : [0, 1] → � and β : [0, 1] → �

satisfying the following properties:

1. α ∩ β = {p}, where p = α(0) = β(0);
2. ∃U ⊂ � a two-sided pre-compact open set that contains both curves, i.e. α ∪ β ⊂ U;
3. for this choice of U ⊂ �, there exists a δ > 0 for which the embedded disk 	 =

	(α, β) ⊂ � given by Definition 3.1 contains open lifts for both α and β.

Then the curve μ := α ◦ β ◦ α−1 ◦ β−1 has a closed lift into this disk 	(α, β).
If, in addition, both α and β have embedded open lifts in	(α, β), then one of the following

curves has an embedded closed lift in 	(α, β):

μ , α ◦ β , β ◦ α−1 .

Proof Let us take into consideration the curve μ = α ◦ β ◦ α−1 ◦ β−1 as defined above.
Since � has the generalised simple lift property, then for any δ > 0 there exist:

i. a positive constant ε > 0;
ii. an embedded disk 	 = 	(α, β);
iii. μ

∧ : [0, 1] → Nδ(U ) a δ-lift of μ;

such that 	(α, β) ∩Nε(U ) is a δ-graph overU , μ
∧ ⊂ 	, and �, the connected component of

	(α, β) ∩ Nε(U ) containing μ
∧

, is a δ-cover of U .
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By assumption, we can consider the embedded disk 	(α, β) which contains opens lifts
of both α and β.

By re-parametrising appropriate restrictions of μ
∧

, we can write μ
∧ = α

∧ ◦ β
∧

◦ α−1
∧

◦ β−1
∧

,

where the α
∧

, β
∧

, α−1
∧

, β−1
∧

: [0, 1] → � are the δ-lifts of α, β, α−1 and β−1 respectively.
Let us now pick a small simply-connected neighbourhood V of the point p = μ(0) such

that V ⊂ U . By construction, 	(α, β) is an embedded disk, which means that we can order
by height the components of �−1

� (V )∩	(α, β), where �� is the usual projection map onto

�. We will denote these ordered components as �−1
� (V ) ∩ 	(α, β) = {V

∧

(1), . . . , V
∧

(n)} .
The number n of components will of course depend on the choice of δ > 0 and 	(α, β).

By construction, we then have:

��

(
α(0)
∧) = ��

(
α(1)
∧) = ��

(
β(0)
∧) = ��

(
β(1)
∧) = ��

(
α−1(0)
∧) =

= ��

(
α−1(1)
∧) = ��

(
β−1(0)
∧) = ��

(
β−1(1)
∧) = p .

Without loss of generality, one can assume μ
∧

to be the generalised simple δ-lift of μ

pointed at (p, q) with q = α(0)
∧

. Moreover, a priori, these points will all belong to different
components of �−1

� (V ) ∩ 	(α, β) and we will denote them as:

p
∧

(0) := α(0)
∧

= q ;
p
∧

(1) := α(1)
∧

= β(0)
∧

;

p
∧

(2) := β(1)
∧

= α−1(0)
∧

;

p
∧

(3) := α−1(1)
∧

= β−1(0)
∧

;

p
∧

(4) = β−1(1)
∧

;

so that p
∧

( j) ∈ V
∧

(l), where l is a function of j over the natural numbers, that is l = l( j) ∈ N.
Using this function l, we will study the signed number of sheets between the end points

of the lifts of the curves α, α−1, β and β−1:

m[α] := l(1) − l(0);
m[β] := l(2) − l(1);

m[α−1] := l(3) − l(2);
m[β−1] := l(4) − l(3) .

By assumption, both α
∧

and β
∧

are open lifts, so that m[α], m[β] = 0, which also implies
m[α−1], m[β−1] = 0.

We will now prove that m[α] = −m[α−1] and m[β] = −m[β−1], and therefore that μ∧ is
closed.

Let us consider the two following cases separately:

• m[α] · m[β] > 0

Without loss of generality, we can assume in this case that both numbers are positive:
m[α],m[β] > 0. Then, using the fact that the disk 	(α, β) is embedded and that U is two-
sided, one can consider a disjoint family of parallel lifts of α, which we will denote by α

∧[i].
The first member of this family is α

∧[0] = α
∧

and the subsequent representatives of the family
are those lifts α

∧[i] of α such that α
∧[i](0) will belong to V

∧(
l(0) + i

)
, which is the lift that

starts i sheets above α(0)
∧

= q . By the embeddedness of 	(α, β) and the two-sidedness of
U , the signed number of graphs between α

∧[0](t) and α
∧[i](t) is constant in t , so that also the

lifts α
∧[i] also have endpoints i sheets above the endpoint of α

∧

.
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Fig. 1 T
2#T2 \ D

Clearly, the lifts α
∧[i] are well-defined as long as i ≤ m[β]. Furthermore, α

∧[m[β]] has end
point which is the same as the end point of β

∧

. Let us now take into consideration α
∧[m[β]]−1.

This is a lift of α−1 that starts at β(1)
∧

, which means that α
∧[m[β]]−1 and α−1

∧

must coincide.
This then implies that m[α] = −m[α−1].

Repeating the same argument for β
∧

[−m[α]] and β
∧

shows that m[β] = −m[β−1].
• m[α] · m[β] < 0

In this case, we can assume without loss of generality that m[α] > 0 and m[β] < 0.
Let us first assume that m[α] + m[β] + m[α−1] =: M ≥ 0, which means that the end

point of α−1
∧

is not below the initial point of α
∧

: it is M sheets above α
∧

. Repeating the same

argument as in the previous case, we can take into consideration the parallel lift of α−1
∧

whose

endpoint is the initial point of α
∧

, namely α−1
∧

[−M]. The lift α−1
∧

[−M]−1 will then be a lift
of α and it coincides with α

∧

, which implies as before that m[α] = −m[α−1]. Therefore the
initial assumption m[α] +m[β] +m[α−1] ≥ 0 leads to a contradiction, since by hypothesis
m[β] < 0.

It is then the case that m[α] + m[β] + m[α−1] =: M < 0. Again, we can take into

consideration the parallel lift of α
∧

whose start point coincides with the endpoint of α−1
∧

,

namely α
∧[M]. Therefore α

∧[M]−1 is the lift of α−1 with the same endpoint as α−1
∧

: α
∧[M]−1

and α−1
∧

coincide, and so m[α] = −m[α−1]. The same argument shows that in this case
m[β] = −m[β−1].

Finally, if α and β have embedded open lifts in 	(α, β), then, because they meet at only

one point in �, the curves α
∧ ◦ β

∧

, β
∧

◦ α−1
∧

and α−1
∧

◦ β−1
∧

are all embedded. Hence, the only
way that μ

∧

can fail to be embedded is if one of the first two is closed. ��
We will now proceed to study the topology of surfaces with the generalised simple lift

property.

4 The topology of embedded surfaces with the generalised simple lift
property

The geometrical example at the centre of this initial topological study is the double torus
minus a disk, that is the connected sum of two tori with a disk removed (see Fig. 1).

By the classification of compact surfaces, we know that compact orientable surfaces are
either the sphereS2 or the connected sumof n tori,T2# · · · #T2, while non-orientable surfaces
are given by the connected sum if n projective planes RP2# · · · #RP2. This classification
extends to non-compact surfaces by taking into consideration boundary components.
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Fig. 2 γ1

Remark 4.1 In order to simplify the notation, we will denote by T
2
n the connected sum of n

tori, and by RP2
n the connected sum of n projective planes.

Lemma 4.2 Let � be an embedded surface with the generalised simple lift property. Then
two smooth, non-separating Jordan curves γ1 and γ2 intersecting transversally at exactly
one point in � cannot both have a closed δ- lift into any 	 = 	(γ1, γ2), for any δ > 0.

Proof Let γ1, γ2 : [0, 1] → � be two smooth non-separating Jordan curves intersecting
transversally at a single point p, that is p = γ1(0) = γ1(1) = γ2(0) = γ2(1).

Arguing by contradiction, let us assume that both curves admit closed δ-lifts on an embed-
ded disk 	(γ1, γ2). In other words, there exists a choice of δ > 0 and U ⊂ � pre-compact
open subset containing both γ1 and γ2, such that the embedded disk 	 = 	(γ1, γ2) given
by Definition 3.1 contains γ1

∧

and γ2
∧

two closed δ-lifts of γ1 and γ2 respectively.
Let us then consider the generalised simple lift of γ1 ∪ γ2 on 	(γ1, γ2) pointed at (p, q).

We have therefore constructed two simple closed curves γ1
∧

and γ2
∧

contained in an embedded
disk 	 = 	(γ1, γ2) that intersect transversally in a single point q ∈ 	(γ1, γ2).

This represents a contradiction to themod 2 degree theorem applied to the Jordan-Brouwer
separation theorem. This contradiction finishes the proof of the lemma.

��
In the following claims, the surface � ⊂ � that we are considering is homeomorphic to

T
2#T2 \ D and γ1 : [0, 1] → � denotes the smooth, non-separating Jordan curve in Fig. 2 .

We will prove that a surface with the generalised simple lift property cannot contain an open
subset homeomorphic to a double torus minus a disk by proving that γ1 cannot have either
a closed or an open lift in an embedded disk 	 for a specific choice of five non-separating
Jordan curves γ1, γ2, γ3, γ4, γ5 (see Fig. 3).

Claim 4.3 Let � ⊂ � be an embedded surface homeomorphic to T2#T2 \ D with the gener-
alised simple lift property, and let us take into consideration the five smooth, non-separating
Jordan curves γ1, γ2, γ3, γ4, γ5 : [0, 1] → � given in Fig. 3. Then γ1 does not admit a closed
δ-lift on the embedded disk 	 = 	(γ1, γ2, γ3, γ4, γ5) given by Definition 3.1, for any δ > 0
and for any U ⊂ � pre-compact open set that contains the curves.

Proof Given the five smooth Jordan curves γ1, γ2, γ3, γ4, γ5 : [0, 1] → � pictured in Fig. 3,
for an arbitrary δ > 0 and for an arbitrary pre-compact open set U ⊂ � that contains these
five curves γi , we are considering the embedded disk 	 = 	(γ1, γ2, γ3, γ4, γ5) for which
the connected component of 	 ∩ Nε(U ) that contains the δ-lifts γi

∧

is a δ-cover of U (see
Definition 3.1).

Arguing by contradiction, let us assume that γ1 admits a closed δ-lift on such a disk
	 = 	(γ1, γ2, γ3, γ4, γ5).
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γ3

γ1

γ2

γ4
γ5

Fig. 3 The five loops taken into consideration

By Lemma 4.2, we already know that γ2 cannot admit a closed δ-lift on this disk, since γ1
and γ2 intersect transversally at a single point, and γ1 has a closed lift on 	 by assumption.

Let us now consider the third curve γ3 : [0, 1] → �.
If γ3 admitted an open lift on 	 then we would have two Jordan curves intersect-

ing transversally at a single point {p} = γ2 ∩ γ3, and both admit an open δ-lift on
	 = 	(γ1, γ2, γ3, γ4, γ5). Moreover, we can take as a two-sided pre-compact subset that
contains γ2 and γ3 the original subset U ⊂ � used to construct 	. By the lifting lemma
(Proposition 3.4), we know that the curve α := γ2 ◦ γ3 ◦ γ −1

2 ◦ γ −1
3 admits a closed δ-lift

on 	 = 	(γ1, γ2, γ3, γ4, γ5), and that one of the curves α, γ2 ◦ γ3 and γ3 ◦ γ −1
2 has an

embedded closed lift on 	.
If either γ2◦γ3 or γ3◦γ −1

2 has an embedded closed lift on	, then we reach a contradiction
by applying the same reasoning used in Lemma 4.2, since γ1 (which we are assuming has a
closed lift on	) and the given curve intersect transversally in a single point: {p} = γ1∩γ2◦γ3
or {p} = γ1 ∩ γ3 ◦ γ −1

2 .
If instead α = γ2 ◦ γ3 ◦ γ −1

2 ◦ γ −1
3 admits an embedded closed lift, then one can find

three values t1, t2, t3 ∈ (0, 1) for which p = γ1(t1) = γ2(t2) = γ −1
2 (t3). Following the

construction of the lifting lemma,we consider the two-sided subsetU ⊂ �which in particular
contains γ1, γ2 and γ3, and pick a small simply-connected neighbourhood V of p contained
in U , so that we can construct a family of parallel components of the lifts of V that can be
ordered by height: �−1

� (V ) ∩ 	 = {V
∧

(1), . . . , V
∧

(n)}. We can now consider the generalised

simple δ-lift γ1
∧ ∪ α

∧

of γ1 ∪ α pointed at (p, p
∧

), where p
∧ = γ1(t1)

∧

= γ2(t2)
∧

∈ Nε(p) ∩
	(γ1, γ2, γ3, γ4, γ5).

The fact that p
∧

is the only point of intersection results from the following remark. γ1
∧

is

indeed a one-cover of γ1, while on the other hand γ −1
2 (t3)
∧

∈ α
∧

belongs to a components of

�−1
� (V ) ∩ 	 that is different to that of p

∧ = γ1(t1)
∧

= γ2(t2)
∧

. In fact, if we denote by V
∧

(l1)
the component of �−1

� (V ) ∩ 	 that contains p
∧

, we have that the component that contains

γ −1
2 (t3)
∧

will have height l2 given by:

l2 = l1 + m[γ3] = l1

since γ3
∧

is an open lift on 	(γ1, γ2, γ3, γ4, γ5).
Therefore, we constructed two closed curves γ1

∧

and α
∧

which intersect transversally on
the disk 	 = 	(γ1, γ2, γ3, γ4, γ5) in a single point p

∧

, which represents a contradiction to
the mod 2 degree theorem applied to the Jordan Brouwer separation theorem.

Therefore, the γ3 must have a closed δ-lift on 	 = 	(γ1, γ2, γ3, γ4, γ5).
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Let us now take into consideration the loop γ4 which intersects γ2 transversally in
one single point. Arguing like before, we obtain that γ4 will have a closed δ-lift on
	 = 	(γ1, γ2, γ3, γ4, γ5) too.

Wehave then constructed two smooth non-separating Jordan curves γ3 and γ4 that intersect
transversally in one single point and both have a closed δ-lift on the disk 	. By Lemma 4.2,
this represents a contradiction to the Jordan Brouwer separation theorem.

This implies that the initial curve γ1 cannot have a closed δ-lift on the embedded disk
	 = 	(γ1, γ2, γ3, γ4, γ5). ��

Claim 4.4 Let � ⊂ � be an embedded surface homeomorphic to T2#T2 \ D with the gener-
alised simple lift property, and let us take into consideration the five smooth, non-separating
Jordan curves γ1, γ2, γ3, γ4, γ5 : [0, 1] → � given in Fig. 3. Then γ1 does not admit an open
δ-lift on the embedded disk 	 = 	(γ1, γ2, γ3, γ4, γ5) given by Definition 3.1, for any δ > 0
and for any U ⊂ � pre-compact open set that contains the curves.

Proof Just like in the previous claim, we are working with the same five curves in Fig. 3,
and for any arbitrary δ > 0 and for an arbitrary pre-compact open set U ⊂ � that contains
these curves γi we are considering the embedded disk 	 = 	(γ1, γ2, γ3, γ4, γ5) given by
Definition 3.1, for which the connected component of 	 ∩Nε(U ) that contains the δ-lifts γi

∧

is a δ-cover of U .
Arguing by contradiction like before, we will now assume that γ1 admits an open δ-lift

on such a disk 	 = 	(γ1, γ2, γ3, γ4, γ5).
Let us consider the curve γ2 : [0, 1] → � which intersects γ1 transversally in a single

point. We will be considering the two cases of γ2 admitting either an open or a closed δ-lift
on 	 = 	(γ1, γ2, γ3, γ4, γ5), and we will prove that both of them yield a contradiction.

Let us first assume γ2 admits a closed δ-lift on 	 = 	(γ1, γ2, γ3, γ4, γ5). By Lemma 4.2,
this implies that both γ3, γ4 : [0, 1] → � will have an open δ-lift on 	, since each one of
them intersects transversally γ2 in a single point.

Let us then consider γ5 : [0, 1] → �, which intersects γ3 transversally in a single point.
Wewill see that γ5 cannot admit either an open or a closed δ-lift on	 = 	(γ1, γ2, γ3, γ4, γ5).

If γ5 admitted an open lift, the curves γ3 and γ5 would satisfy the hypotheses of the lifting
lemma, and we could then apply the same argument as in the previous claim to the two curves
γ2 and γ3 ◦ γ5 ◦ γ −1

3 ◦ γ −1
5 , both of which have a closed lift on 	 and intersect transversally

at a single point, hence obtaining a contradiction.
If instead γ5 admitted a closed lift, then the two curves γ3 and γ4 would satisfy the

hypotheses of the lifting lemma, and we could apply still the same argument as in Claim 4.3
to the two curves γ5 and γ3 ◦ γ4 ◦ γ −1

3 ◦ γ −1
4 , both of which have a closed lift on 	 and

intersect transversally at a single point, and hence obtain a contradiction.
These arguments imply that such a curve γ5 cannot have either an open or a closed lift on

	, which is a contradiction, meaning that γ2 cannot admit a closed lift.
Let us now study the case where this curve γ2 : [0, 1] → � admits an open δ-lift on

	 = 	(γ1, γ2, γ3, γ4, γ5).
This implies that γ3 : [0, 1] → � cannot have a closed lift on 	. In fact, if it did, we

would be able to apply the lifting lemma to γ1 and γ2, and following the same reasoning as
in Claim 4.3 to the curves γ3 and γ1 ◦ γ2 ◦ γ −1

1 ◦ γ −1
2 , we would obtain a contradiction.

Moreover, the fact that γ3 : [0, 1] → � admits an open lift on 	 also implies that
γ5 : [0, 1] → � has an open lift on 	. This simply follows from the fact that we would
be able to apply the lifting lemma to the two curves γ2 and γ3. So if γ5 had a closed lift on
	, we would obtain two curves γ2 ◦ γ3 ◦ γ −1

2 ◦ γ −1
3 and γ5 intersecting transversally at one
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single point, both admitting a closed δ-lift on 	, which is a contradiction as already shown
in the previous claim.

We are therefore left to study the scenario where the four curves γ1, γ2, γ3 and γ5 all have
an open lift on 	 = 	(γ1, γ2, γ3, γ4, γ5).

By applying the lifting lemma to the pairs of curves {γ1, γ2} and {γ3, γ5} respectively,
we obtain two curves with a closed lift on 	 = 	(γ1, γ2, γ3, γ4, γ5), namely α := γ1 ◦ γ2 ◦
γ −1
1 ◦ γ −1

2 and β := γ3 ◦ γ5 ◦ γ −1
3 ◦ γ −1

5 .
As already pointed out in the previous claim, considering the first couple of curves {γ1, γ2},

one of the curves α, γ1 ◦ γ2 and γ2 ◦ γ −1
1 has an embedded closed lift, and likewise for the

other couple {γ3, γ5}. In this proof, we will take into consideration only the most complicated
case where α and β are the loops with the embedded closed lift on 	. One should argue just
like in Claim 4.3 for the other cases.

Let us take into consideration the point of intersection {p} = α ∩ β. One should notice
that there exist four values t1, t2, t3, t4 ∈ (0, 1) such that

p = γ2(t1) = γ −1
2 (t2) = γ3(t3) = γ −1

3 (t4) .

Let us now take as a two-sided pre-compact open set U ⊂ � that contains both curves
α and β, the original subset U ⊂ � used to construct 	 = 	(γ1, γ2, γ3, γ4, γ5). Following
the construction in the lifting lemma, we can pick a small simply-connected neighbourhood
V ⊂ U of p, so that we can produce a family of parallel components on 	 of the lifts of V
that can be ordered by height: �−1

� (V ) ∩ 	 = {V
∧

(1), . . . , V
∧

(n)}.
All the curves γi

∧

are the open lifts, so that - still following the notation of the lifting lemma
-m[γ j ] = 0 ∀ j = 1, . . . , 4 , which means that there are two cases: eitherm[γ1] ·m[γ5] > 0,
or m[γ1] · m[γ5] < 0.

In the first case, we will consider the generalised simple lift α
∧ ∪ β

∧

based at (γ2(t1) =
γ3(t3), p

∧

) on the disk 	, which means there exists at least a point p
∧ ∈ Nε(p) ∩ 	 such that

p
∧ ∈ γ2

∧∩ γ3
∧

.
We are left to prove that this point p

∧

is the only point of intersection between α
∧

and β
∧

.
By construction, γ2(t1)

∧

and γ3(t3)
∧

belong to the same component of �−1
� (V ) ∩ 	, namely

V
∧

(l1). The other two points γ −1
2 (t2)
∧

and γ −1
3 (t4)
∧

will then belong to two other components

V
∧

(l2) and V
∧

(l3) respectively. Moreover, since the number of components between α
∧[k](0)

and α
∧[k](t) does not depend on k, we have that the heights of these two components will be:

l2 = l1 − m[γ1] ,
l3 = l1 + m[γ5] .

Hence l3 − l2 = m[γ1] +m[γ5] = 0 , since we assumed m[γ1] ·m[γ5] > 0, which means
that p

∧

is indeed the only point of intersection between the two closed lifts α
∧

and β
∧

, which is
a contradiction.

In the second case, where m[γ1] · m[γ5] < 0, we can repeat the same argument as
before, applying it to the generalised simple lift of α

∧ ∪ β
∧

based at ((γ2)(t1) = γ −1
3 (t4), p

∧

)

instead. By using the same notation as the first case, γ2(t1)
∧

and γ −1
3 (t4)
∧

will belong to the

same component of �−1
� (V ) ∩ 	, V

∧

(l1). The other two points γ −1
2 (t2)
∧

and γ3(t3)
∧

will then

belong to the components V
∧

(l2) and V
∧

(l3) respectively. Therefore, the heights of these two
components will be given by:

l2 = l1 − m[γ1] ,
l3 = l1 − m[γ5] .

123



Geometriae Dedicata (2020) 204:285–298 295

Therefore l3 − l2 = m[γ1] − m[γ5] = 0 , since we assumed m[γ1] · m[γ5] < 0, which
means that p

∧

is indeed the only point of intersection between the closed lifts α
∧

and β
∧

, so we
obtain another contradiction.

Hence we have proved that the curve γ2 : [0, 1] → � cannot have either an open or a
closed lift on the disk 	, which is a contradiction, implying that γ1 cannot admit an open
δ-lift on 	 = 	(γ1, γ2, γ3, γ4, γ5). ��
From these claims, we obtain the following result.

Proposition 4.5 Given an embedded surface� ⊂ �with the generalised simple lift property,
� cannot contain an open subset that is homeomorphic T2#T2 \ D.

Proof The result follows directly from Claims 4.3 and 4.4. ��
By the classification of compact surfaces, we have that orientable surfaces are homeo-

morphic to S
2 or the connected sum of n tori, T2

n , while non-orientable compact surfaces
are homeomorphic to the connected sum of n projective planes, RP2

n . Moreover, one should
notice that in the non-orientable case we have the following homeomorphisms:

• RP2
2

∼= K where K is the Klein bottle, and
• RP2

3
∼= T

2#RP2 ∼= K#RP2;

which means that RP2
2k

∼= T
2
k−1#K and RP2

2k+1
∼= T

2
k#RP2.

Proposition 4.5 then gives the following result.

Corollary 4.6 If � ⊂ � is an embedded compact surface and has the generalised simple
lift property, then it must be topologically S

2, T2, RP2, RP2
2

∼= K, RP2
3

∼= T
2#RP2 or

RP2
4

∼= T
2#K.

5 Minimal laminations

Let us now apply the results of the previous section to the case of minimal laminations. Let
us first recall some facts about laminations.

Definition 5.1 A subset L ⊂ � is a smooth lamination if for each p ∈ L, there is a radius
rp > 0, maps φp, ψp : Brp (p) → B1(0) ⊂ R

3 and a closed set Tp ⊂ (−1, 1) with 0 ∈ Tp

such that:

(1) φp(p) = ψ(p) = 0;
(2) φp is a smooth diffeomorphism and D1(0) ⊂ φp

(L ∩ Brp (p)
)
;

(3) ψp is a Lipschitz diffeomorphism and B1(0) ∩ {x3 = t}t∈Tp = ψp(L ∩ Brp (p));
(4) φ−1

p (D1(0)) = ψ−1
p (D1(0)) .

We refer to maps φp satisfying properties 1) and 2) as smoothing maps of L and to maps
ψp satisfying properties 1) and 3) as straightening maps of L.

A smooth lamination L ⊂ � is proper in � if it is closed, that is L = L. Any embedded
smooth surface is a smooth lamination that is proper if and only if the surface is proper.

Definition 5.2 Let L ⊂ � be a non-empty smooth lamination. A subset L ⊂ L is a leaf of
L if L is a connected, embedded surface and for any p ∈ L , ∃ rp > 0 and a smoothing map
φp so that D1 = φp(L ∩ Brp (p)) . For each p ∈ L, we will denote by L p the unique leaf of
L containing p.

A smooth lamination L is a minimal lamination if each one of its leaves is minimal.

123



296 Geometriae Dedicata (2020) 204:285–298

The following is the natural compactness result for sequences of properly embedded min-
imal surfaces with uniformly bounded second fundamental form (see for instance Appendix
B in [6] for a proof).

Theorem 5.3 Let {�i }i∈N be a sequence of smooth minimal surfaces, properly embedded in
�. If for each compact subset U ⊂ � there is a constant C(U ) < ∞ so that

sup
U∩�i

|A�i | ≤ C(U ) ,

then, ∀ α ∈ (0, 1), up to passing to a subsequence, the �i s converge in C∞,α
loc (�) to L, a

smooth proper minimal lamination in �.

Remark 5.4 While the straightening maps converge in Cα , their Lipschitz norms are uni-
formly bounded on compact subsets of �. This follows from the Harnack inequality and is
used in the proof of Theorem 5.3 (see Appendix B of [6] and Theorem 1.1 in [16]).

In view of the result in Theorem 5.3, one can define the so-called singular points of a
sequence S := {�i }i∈N of properly embedded smooth minimal surfaces �i .

Definition 5.5 Given the sequence S = {�i }, we define the regular points to be the set of
points

reg(S) :=
{

p ∈ � | ∃ ρ > 0 such that lim sup
i→∞

sup
Bρ(p)∩�i

|A�i | < ∞
}

and the singular points of S to be the set

sing(S) :=
{

p ∈ � | ∀ ρ > 0 such that lim sup
i→∞

sup
Bρ(p)∩�i

|A�i | = ∞
}

.

Clearly, reg(S) is an open subset of�, while sing(S) is closed in�. In general, sing(S) ⊂
�\reg(S) is a strict inclusion, however, by Lemma I.1.4 in [6] there exists a subsequence
S ′ of S so that � = reg(S ′) ∪ sing(S ′). Without loss of generality, we will then consider
sequences S that admit this decomposition.

This work will be centred around limit laminations of minimal disk sequences, so it will
be convenient to introduce the following definition (inspired by [17]).

Definition 5.6 Let us take a closed set K ⊂ � in our ambient Riemannian three-manifold�.
Let us introduce a smooth properminimal laminationL in�\K and a sequenceS = {�i }i∈N
of properly embedded minimal disks in �.

We will refer to the quadruple (�, K ,L,S) as a minimal disk sequence if

i. sing(S) = K , and
ii. �i \ K converge to L in C∞,α

loc (� \ K ), for some α ∈ (0, 1).

The case where the �i are assumed to be disks has been extensively studied and some
structural results have been proved on the possible singular sets K and limit laminations L of
a minimal disk sequence (�, K ,L,S). For example, in [3–6] Colding and Minicozzi show
that K must be contained in a Lipschitz curve and that for any point p ∈ K there exists a
leaf of L that extends smoothly across p.

When � = R
3, they further show that either K = ∅ or L is a foliation of R3 \ K by

parallel planes and that K consists of a connected Lipschitz curve which meets the leaves of
L transversely. Using this result, Meeks and Rosenberg showed in [14] that the helicoid is
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the unique non-flat properly embedded minimal disk in R
3. This uniqueness was then used

by Meeks in [13] to prove that if � = R
3 and K = ∅, then K is a line orthogonal to the

leaves of L, which is precisely the limit of a sequence of rescalings of a helicoid.
For an arbitrary Riemannian three-manifold, such a simple description is not possible.

In [2], Colding and Minicozzi construct a sequence of properly embedded minimal disks in
the unit ball B1(0) ⊂ R

3 which has K = {0} and whose limit lamination consists of three
leaves: two non-proper disks that spiral into the third, which is the punctured unit disk in
the x3-plane. Inspired by this example, more cases have been constructed where the singular
set K consists of any closed subset of a line [7,9,11,12], as well as examples where K is
curved [15]. Finally, Hoffman and White [10] have also constructed minimal disk sequences
in which K = ∅ and the limit lamination L has a leaf which is a proper annulus in �.

Proposition 5.7 Leaves of a minimal disk sequence in � have the generalised simple lift
property.

Proof Given L a leaf of L, if L is a disk, the curves γi in L are themselves their own simple
δ-lifts in any pre-compact open set U ⊂ L that contains them. Hence the proposition holds
trivially, with q = p.

In the more general case, when L is not a disk, it is sufficient to prove the existence of
a generalised simple lift of a single curve γ . By Proposition B.1 in Appendix B of [6], we
obtain a bound on the Lipschitz norms of the straightening maps, which implies that for each
pre-compact open subset U ⊂ L , there is a constant C = C(U ) such that Cλ ∈ (0, 1), and
then for each �i ∈ S, Nλ(U ) ∩ �i is a (possibly empty) Cλ-graph over U . Given a curve
γ : [0, 1] → L contained in an open pre-compact subsetU ⊂ L , let us denote by l the length
of γ and d the diameter of U . For any δ > 0, choose ε > 0 such that Cε < min{1, δ}. Let
μ = 3

4 exp(−2C(l+d)) and pick�μ ∈ S such thatNμε(p)∩�μ = ∅, where p = γ (0). Let
� be a component of �μ ∩Nε(U ) which contains a point q ∈ Nμε(p) ∩ �. We have chosen
ε > 0 so that �μ ∩Nε(U ) is a δ-graph overU . We claim that � is a δ-cover ofU containing
a δ-lift of γ . This follows by showing that any curve in U of length at most 2(l + d) starting
at p has a lift in � starting at q . By construction, this lift is necessarily a δ-lift.

Indeed, if σ : [0, T ] → U is parametrised by arclength, and σ
∧ : [0, T ′] → � satisfies

�L(σ
∧

(t)) = σ(t) for some 0 < T ′ < T , then
∣
∣
∣
∣
d

dt
dist�

(
σ(t), σ

∧

(t)
)
∣
∣
∣
∣ ≤ C dist�

(
σ(t), σ

∧

(t)
)

and so

dist�
(
σ(t), σ

∧

(t)
) ≤ exp(Ct) · dist�(p, q) < εμ exp(Ct) < ε ,

where the last inequality follows from the fact that t ≤ T ≤ l + d . Furthermore, if t < T ,
then the lift σ

∧

(t) may be extended past t provided dist�
(
σ(t), σ

∧

(t)
)

< ε, which proves that
leaves of a minimal disk sequence have the generalised simple lift property as claimed. ��

This result then implies:

Proposition 5.8 If L is an embedded compact surface obtained as a leaf of a minimal disk
sequence (�, K ,S,L) then it must be topologically S

2, T2, RP2, RP2
2

∼= K, RP2
3

∼=
T
2#RP2 or RP2

4
∼= T

2#K.

Remark 5.9 By applying a lifting argument, one can further rule out the sphere S2 and the
projective plane RP2.
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Combining together Proposition 5.8 and the previous remark, we then obtain the following
result.

Corollary 5.10 An embedded compact surface L obtained as a leaf of aminimal disk sequence
(�, K ,S,L) must be topologically T2, RP2 ∼= K, RP2

3
∼= T

2#RP2 or RP2
4

∼= T
2#K.
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