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THE HESSIAN DISCRIMINANT

RODICA DINU - TIM SEYNNAEVE

We express the Hessian discriminant of a cubic surface in terms of
fundamental invariants. This answers Question 15 from the 27 questions
on the cubic surface.

Introduction

A cubic surface is P3 is the vanishing locus of a degree 3 polynomial

f (x0,x1,x2,x3) := ∑
0≤i≤ j≤k≤3

ci jkxix jxk ∈ C[x0,x1,x2,x3]

in 4 variables. The study of cubic surfaces is an important research topic in clas-
sical algebraic geometry. Recently, Anna Seigal [14] introduced a new invariant
of cubic surfaces called the Hessian discriminant HD. It is a homogeneous de-
gree 120 polynomial in the 20 variables ci jk, which is defined as a specialization
of the so-called Hurwitz form of the variety of rank 2 symmetric 4×4 matrices.

The main motivation for introducing the Hessian discriminant comes from
its relation with the rank of cubic surfaces. We recall that the (Waring) rank of a
homogeneous degree d polynomial f is the smallest number r for which f can
be written in the form

f = Ld
1 + · · ·+Ld

r ,
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where the Li are linear forms. The rank of a cubic surface V ( f ) is simply the
Waring rank of f ; for a general cubic surface the rank is equal to 5. It can be
shown that (the vanishing locus of) the Hessian discriminant is precisely the
Zariski closure of the set of rank 6 cubic surfaces. There is also a connection
between the Hessian discriminant and the more classical study of cubic surfaces:
it is related to the singular points of the Hessian surface.

By construction, the Hessian discriminant defines a hypersurface in P19

which is invariant under the action of PGL(3). In other words, HD is an in-
variant of cubic surfaces. The generators of the invariant ring of cubic surfaces
are known [10], so it is natural to ask how to express HD in terms of these
fundamental invariants. This was Question 15 in the 27 questions on the cubic
surface [8]. The main result of this article provides an answer to this question:

Theorem 4.1. HD = I3
40, where I40 is the degree 40 Salmon invariant.

In fact, it is not very hard to deduce this result from known facts about
cubic surfaces. However, the required results appear to be quite scattered in
the literature. In this article, we present a proof that only relies on two very
classical results: the classification of cubic surfaces by Schläfli [11], and the
computation of the invariant ring by Salmon [10]. We also spend some time
explaining connections with Hessian surfaces and with apolar schemes, and we
give an independent argument why we should expect HD to be a cube.

The organization of the article is as follows:
In Section 1, we review the definition of the Hurwitz form and the Hessian

discriminant. We also explain how to use software to verify whether a given
cubic lies on the Hessian discriminant, and explain connections with Hessian
surfaces and with apolar schemes.

In Section 2, we use the classical theory of normal forms for cubic sur-
faces to decide for every cubic surface outside of a certain codimension 2 locus
whether or not it lies on the Hessian discriminant.

In Section 3, we recall the invariant theory of cubic surfaces, and give a
computational proof that the vanishing locus of the invariant I40 is the Zariski
closure of the set of smooth rank 6 cubic surfaces.

Finally, in Section 4 we put together the results of the preceding two sections
to prove Theorem 4.1.
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1. The Hessian discriminant

1.1. The Hurwitz form

Let X be an irreducible variety in projective space Pn of codimension d ≥ 1 and
degree p≥ 2. Let G(d,Pn) denote the Grassmannian of dimension d subspaces
of Pn. Following [16], we defineHX ⊂G(d,Pn) to be the set of all subspaces L
for which L∩X does not consist of p reduced points.

If L is the row space of a matrix B = (bi, j)0≤i≤d,0≤ j≤n, then the entries bi, j

are the Stiefel coordinates of L, and the maximal minors of B are the Plücker
coordinates.

One can obtain the sectional genus of X by intersecting the variety with a
general subspace of codimension d−1 and then taking the arithmetic genus of
the obtained curve.

Theorem 1.1. [16, Theorem 1.1]HX is an irreducible hypersurface in G(d,Pn),
defined by an irreducible element HuX in the homogeneous coordinate ring of
G(d,Pn). If X is regular in codimension 1, then the degree of HuX in Plücker
coordinates equals 2p+2g−2, where g is the sectional genus of X .

The polynomial HuX defined above is called the Hurwitz form of X . Inter-
esting examples of Hurwitz forms in computational algebraic geometry can be
consulted in [16].

To define the Hessian discriminant, we will need to consider the Hurwitz
form of the variety X2 of symmetric 4×4 matrices of rank at most 2. If we write
P9 for the space of all symmetric 4×4 matrices, then X2 ⊂ P9 is an irreducible
subvariety defined by the vanishing of the 3× 3 minors. It has dimension 6,
degree 10, and sectional genus 6. By Theorem 1.1, the Hurwitz form HuX2 is an
irreducible hypersurface of degree 30 in the Plücker coordinates of G(3,P9). In
[16], there is an algorithm to compute the polynomial HuX , but it does not finish
in a reasonable amount of time in this case.

1.2. The Hessian discriminant

For the rest of the paper, we fix a 4-dimensional C-vector space V . Let C =V ( f )
be a cubic surface in P3 = P(V ), defined by a quaternary cubic

f = ∑
0≤i≤ j≤k≤3

ci jkxix jxk ∈ C[x0,x1,x2,x3]3 = S3(V ∗).

The 20 coefficients ci jk determine a point in P(S3(C4)) ∼= P19. We will use the
notions of “cubic surfaces”, “quaternary cubics (up to scaling)”, and “points in
P19” interchangeably. If C is not a cone over a plane cubic, we can associate
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to f a 3-plane H( f ) in the space P9 = P(S2(V ∗)) of symmetric 4×4 matrices.
The points of H( f ) are called polar quadrics of f . There are several equivalent
ways to define H( f ). We leave it to the reader to check that they are indeed
equivalent.

• The Hessian of f is the 4×4 matrix of linear forms whose (i, j)-th entry
is ∂ 2 f

∂xi∂x j
. It defines an injective linear map i f : P3→ P9, sending a point

p = [x0 : x1 : x2 : x3] to the Hessian matrix evaluated in that point. We
define H( f ) to be the image of i f .

• We can also define H( f ) as the linear span of the four partial derivatives
∂ f
∂x0

, ∂ f
∂x1

, ∂ f
∂x2

, ∂ f
∂x3

, seen as points in P(S2(V ∗)). Note that these 4 points
are well-defined and not coplanar, unless after change of coordinates f is
a polynomial in 3 variables. This explains our assumption that C is not a
cone over a plane cubic.

• We can view f as a symmetric three-way tensor T = (Ti jk)i, j,k. (I.e. ci jk =
λTi jk, where λ is the number of distinct permutations of i, j,k. Then
f = ∑i, j,k Ti jkxix jxk.) For m ∈ {0,1,2,3}, the m-th slice of T is defined to
be the symmetric matrix obtained by fixing the first index to be m. Then
H( f ) is the linear span of the four slices of T . From this description we
see immediately the Stiefel coordinates of H( f ): they are the entries of
a 4× 10 matrix with colums indexed by pairs ( j,k) with j < k, whose
i,( j,k)-th entry is Ti jk.

Now we can take the Hurwitz polynomial HuX2 from the previous subsection,
and evaluate it in the Plücker coordinates of H( f ), where f is a general cubic
surface. The result is a degree 120 polynomial in the 20 variables ci jk, called the
Hessian discriminant HD. By construction, the Hessian discriminant vanishes
at f ∈ P19 if and only if H( f ) does not intersect the variety of rank 2 matrices
in 10 reduced points. Clearly, V (HD) is invariant under linear changes of co-
ordinates. It follows that HD is invariant under the natural action of SL(4) on
C[c000, . . . ,c333].

The following observation connects the Waring rank of cubic forms with the
Hessian discriminant:

Observation 1.2. (See [14, Section 2.4].) If f has Waring rank at least 6 and
defines a smooth cubic surface, then f lies on the Hessian discriminant.

It will be easy to verify this, once we have recalled the normal forms of
smooth cubic surfaces in Section 2.

In [15, Corollary 4.4], it is proven that the vanishing locus of the Hessian
discriminant is the Zariski closure of the set of all rank 6 cubic surfaces; in
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particular, all rank ≥ 6 cubics (not just the smooth ones) lie on the Hessian
discriminant.

1.3. The Hessian surface

In this section we investigate how the Hessian discriminant is related to the
singular locus the Hessian surface of a cubic surface. Nothing further in the
paper logically depends on this section.

The determinant locus of the Hessian of f defines a quartic surface Hess( f )
in P3, called the Hessian surface of f . It can be identified with the intersection
of H( f ) and the variety X3 of singular 4×4 matrices. Since the singular locus of
X3 is equal to X2, the locus H( f )∩X2 of rank 2 matrices in Hess( f ) is contained
in the singular locus of Hess( f ). For smooth cubic surfaces, this is an equality:

Proposition 1.3. For a smooth cubic surface, the singular locus Sing(Hess( f ))
of its Hessian surface is equal to H( f )∩X2.

It follows that a smooth cubic surface lies on the Hessian discriminant if and
only if its Hessian surface has strictly less than 10 singular points. This result
appears to be well-known, but we were not able to find a complete proof in the
literature. In Section 2.4, we will give a proof of Proposition 1.3 relying on the
classification of smooth cubic surfaces.

For singular cubic surfaces, the situation is somewhat more subtle: first
of all, the following result (which also appears to be folklore) shows that the
Hessian surface might have additional singular points.

Proposition 1.4. If a cubic surface f is singular at a point p, then p is a singular
point of Hess( f ).

Proof. Without loss of generality, we may assume that p = [1 : 0 : 0 : 0]. Then
f = x0g+h, where g and h are homogenous polynomials of respective degrees 2
and 3 containing only the variables x1,x2,x3. In particular it holds that ∂ 2 f

∂x0
2 = 0

and ∂ 2 f
∂x0∂xi

= ∂ 2g
∂xi

for i = 1,2,3. Hence the determinant of the Hessian matrix
is a homogeneous degree 4 polynomial that does not contain any monomials
divisible by x3

0, which implies that [1 : 0 : 0 : 0] is a singular point of Hess( f ).

An explicit example of a cubic surface whose Hessian surface has more than
10 (but finitely many) singularities is the Cayley cubic; see Section 2.3.

In [9, Proposition 4.5], it is shown that for a certain class of (possibly singu-
lar) cubic surfaces, the singular locus of the Hessian surface is precisely equal
to (H( f )∩X2)∪ Sing( f ). However, the following example shows that this is
not true for all cubic surfaces.
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Example 1.5. Consider the cubic surface defined by the equation

f :=
1
6

x3
0 + x1x2x3 = 0.

The Hessian matrix of f is equal to
x0 0 0 0
0 0 x3 x2
0 x3 0 x1
0 x2 x1 0

 ,

hence its Hessian surface a union of 4 planes defined by x0x1x2x3 = 0, whose
singular points are the 6 lines xi = x j = 0, 0 ≤ i < j ≤ 3. However, H( f )∩X2
only consists of the 3 lines x0 = xi = 0, i = 1,2,3, and Sing( f ) consists of 3
points [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1].

1.4. Computational methods

While computing an expression for the Hessian discriminant is a computation-
ally difficult task, it is easy to verify for a given cubic whether or not the Hes-
sian discriminant vanishes at that cubic: one simply needs to compute the ideal
defining the intersection of H( f )∩ X2, and check whether or not it is zero-
dimensional and radical. Some code in Macaulay2 [5] for computing this can
be found below:

R=QQ[x_0..x_3,z_0..z_9]

X={x_0,x_1,x_2,x_3};

A=genericSymmetricMatrix(R,z_0,4)

I2=minors(3,A)

hessRank2 = f ->(

hess = diff(transpose matrix{X},diff(matrix{X},f));

I=eliminate(X,ideal(flatten entries (A-hess)));

return (I+I2);

)

isOnHessianDiscriminant = f ->(

J=hessRank2(f);

return not ((codim J==9) and (J==radical J));

)

--Examples:

f=x_0*x_1*x_2+x_0*x_1*x_3+x_0*x_2*x_3+x_1*x_2*x_3

isOnHessianDiscriminant(f)

--false
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f=x_0^3+x_1^3+x_2^3+x_3^2*(3*x_0+3*x_1+3*x_2+x_3)

isOnHessianDiscriminant(f)

--true

Remark 1.6. The above algorithm can also be used to simultaneously compute
H( f )∩X for all f in a family of cubic surfaces. For more details, see Remark
2.5, as well as the supplementary code available at [1].

1.5. Apolarity

There is a beautiful connection between the 3-plane H( f ) associated to f and
apolar schemes of f . Although not logically necessary for the proof of our main
theorem, it can provide some insight in the nature of the singularities of the
Hessian surface of a smooth cubic.

We will identify the symmetric algebra S(V ) of V with the polynomial ring
C[y0,y1,y2,y3]. For every d,m ∈ N, there is a natural pairing

◦ : C[y0,y1,y2,y3]d×C[x0,x1,x2,x3]m→ C[x0,x1,x2,x3]m−d

defined by g◦ f = g( ∂

∂x0
, ∂

∂x1
, ∂

∂x2
, ∂

∂x3
) f (x0,x1,x2,x3).

Note that H( f ) can be identified with the image of the map V → S2(V ∗) :
g 7→ g◦ f .

Definition 1.7. For f in C[x0,x1,x2,x3], we define the annihilator of f to be the
ideal

Ann( f ) = {g|g◦ f = 0} ⊆ C[y0,y1,y2,y3].

If I ⊆Ann( f ) is a saturated ideal, we say that I is an apolar ideal to f , and V (I)
is an apolar scheme to f . In other words, Y ⊆ P(V ∗) is an apolar scheme to f if
every polynomial that vanishes on Y also annihilates f .

Observation 1.8. Denote the coordinates on P9 = P(S2(V ∗)) by zi j. Then
defining equations ∑i≤ j ai jzi j = 0 of H( f ) are in one-to-one correspondence
with degree 2 elements ∑i≤ j ai jyiy j of Ann( f ): ∑i≤ j ai jyiy j is in Ann( f ) if and

only if ∑i≤ j ai j
∂ 2 f

∂xi∂x j
= 0, if and only if ∑i≤ j ai jzi j vanishes on H( f ). As a

corollary of this, if Y is an apolar scheme to f , then H( f ) is contained in the
linear span of v2(Y ), the image of Y under the second Veronese embedding
v2 : P(V ∗)→ P(S2(V ∗)). Indeed: every linear equation ∑i≤ j ai jzi j on v2(Y )
comes from a quadratic equation ∑i≤ j ai jyiy j on Y , which by the above also
vanishes on H( f ).
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2. Normal forms for cubics

It is possible to classify the cubic surfaces up to linear transformation, and use
this to provide a list of normal forms so that every quaternary cubic can be
brought in one of the normal forms by a linear change of coordinates. This was
first done by Schläfli [11], we refer the interested reader to [12] for an overview.

We first recall the classification of smooth cubic surfaces:

Theorem 2.1 (See [13, §§84 - 91]). Every smooth cubic surface can after a
linear change of coordinates be written in one of the following 4 normal forms:

1. Sylvester’s pentahedral form:

c0x3
0 + c1x3

1 + c2x3
2 + c3x3

3 + c4(−x0− x1− x2− x3)
3 = 0, (2.1)

with ci ∈ C∗, and ∑i± 1√
ci
6= 0.

2. General rank 6 cubic surfaces:

x3
1 + x3

2 + x3
3− x2

0(µx0 +3λ1x1 +3λ2x2 +3λ3x3) = 0 (2.2)

with λi ∈ C∗, µ ∈ C, and µ +2(λ
3
2

1 +λ
3
2

2 +λ
3
2

3 ) 6= 0.

3. Special rank 6 cubic surfaces:

2µ0x3
0 + x3

1 + x3
2−3x0(µ1x0x1 + x0x2 + x2

3) = 0, (2.3)

with µ1(µ0±µ
3
2

1 ±1) 6= 0.

4. Cyclic cubic surfaces:

x3
0 + x3

1 + x3
2 + x3

3−3λx1x2x3 = 0, (2.4)

with (λ 3 +8)(λ 3−1) 6= 0.

The families of cubics with these normal forms have respective codimensions
0,1,2,3 in P19. Cubics of the form (2.1) have Waring rank 5, cubics of the form
(2.2) or (2.3) have rank 6, and cubics of the form (2.4) have rank 5 if λ 6= 0, and
rank 4 if λ = 0.

A detailed discussion on normal forms for singular cubic surfaces can be
found in [2]. For our purposes, it suffices to know the following result:

Theorem 2.2 (See [2, Lemma 2]). A general singular cubic surface can be
written in the form

x3(x2
1− x0x2)+ x1(x0− (1+ρ0)x1 +ρ0x2)(x0− (ρ1 +ρ2)x1 +ρ1ρ2x2) = 0,

(2.5)
where ρi ∈ C\{0,1} are pairwise different.
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In fact, all we need to know to prove our main theorem is the following:

Corollary 2.3. Every cubic, outside of a certain codimension > 1 set in P19, can
after a linear change of coordinates be written in one of the forms (2.1), (2.2) or
(2.5).

2.1. Sylvester’s pentahedral form

Proposition 2.4 (See also [4, Chapter 9.4.2]). No cubic of the form (2.1) lies
on the Hessian discriminant, as long as all ci are nonzero.

Proof. Write x4 =−x0−x1−x2−x3. The set of rank 2 quadratic forms in H( f )
is given by

{cix2
i − c jx2

j |i≤ j}.

This can easily be verified by hand, or computationally by using the algorithm
described below. Since we assumed that all ci are nonzero, we find that H( f )∩
X2 consists of 10 distinct points, proving the result.

Remark 2.5. We can use our Macaulay2 code to simultaneously analyze H( f )∩
X2 for all cubics f of the form (2.1), including the ones where one of the
ci is zero (if two or more of them are zero then H( f ) is not defined). The
code (available at [1]) computes a primary decomposition of the ideal defin-
ing H( f )∩X2 (where the ci are variables). The primary decomposition of our
ideal has 40 components. 30 of these contain one of the paramaters c0, . . . ,c4
(each parameter in 6 components); the other 10 do not contain any linear com-
bination of the parameters. This means that if exactly one of the parame-
ters is zero, the intersection H( f )∩X2 consists of 6 lines, whereas if all the
ci are nonzero, it consists of 10 points. After identifying H( f ) with P3 us-
ing the Hessian matrix (as in Sections 1.2 and 1.3), the 10 points in H( f ) are
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [1 : −1 : 0 : 0], [1 : 0 : −1 :
0], [1 : 0 : 0 :−1], [0 : 1 :−1 : 0], [0 : 1 : 0 :−1], [0 : 0 : 1 :−1].

Remark 2.6. Proposition 2.4 can also be shown using apolarity: for a general
cubic surface

f := L3
1 +L3

2 +L3
3 +L3

4 +L3
5 = 0

(with the Li in general position) there is an apolar scheme Y = {L1, . . . ,L5}.
This can easily be verified directly, but also follows from the so-called apolarity
lemma [6, Lemma 1.15], which states that a homogeneous degree d polynomial
f can be written as a linear combination of powers Ld

1 , . . . ,L
d
s of linear forms if

and only if {L1, . . . ,Ls} is an apolar scheme to f . It now follows from Observa-
tion 1.8 that H( f ) is contained in the linear span 〈v2(Y )〉 of the second Veronese
embedding of Y .
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Clearly, 〈v2(Y )〉∩X2 contains the 10 lines through the 〈L2
i ,L

2
j〉, and (using

the fact that Li are in general position) it is easy to verify that this is in fact an
equality. Now, H( f )∩X2 is the intersection of 〈v2(Y )〉∩X2 with a hyperplane H.
Since H( f ) does not contain any of the L2

i (indeed: this would imply that there
is a g such that g◦Li = 0 for 4 out 5 of the Li, contradicting the general position),
H intersects every line 〈L2

i ,L
2
j〉 in one point, and these points are distinct. These

are the 10 points of H( f )∩X .

2.2. Rank six cubics

Proposition 2.7 (See also [13, §91]). For a cubic f of the form (2.2), the
scheme-theoretic intersection H( f )∩X2 consists of 4 simple and 3 double points.
In particular, f lies on the Hessian discriminant.

Proof. The scheme H( f )∩X2 is supported at the 7 points x2
1−λ1x2

0, x2
2−λ2x2

0,
x2

3 − λ3x2
0, λ1x2

2 − λ2x2
1, λ1x2

3 − λ3x2
1, λ2x2

3 − λ3x2
2, x0(µx0 + 2λ1x1 + 2λ2x2 +

2λ3x3), where the first three are double points. This can be verified using our
code [1].

Remark 2.8. After identifying H( f ) with P3, the 7 points in H( f ) are [0 : 1 :
0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [0 : λ2 : −λ1 : 0], [0 : λ3 : 0 : −λ1], [0 : 0 : λ2 :
−λ3], [1 : 0 : 0 : 0], where the first 3 are double points.

Remark 2.9. There is an intuitive explanation why H( f )∩X2 contains 3 double
points. As we will see in Section 3.1, a cubic of the form (2.2) can be obtained
as a limit of cubics of the form ∑

5
i=1 L3

i , where in the limit the points L4,L5 ∈ P3

crash together. In Remark 2.6 we saw that for cubics in pentahedral form, the
10 points in H( f )∩X2 are in bijection with the 10 lines between the 5 points
L2

i ∈ P9. Now if 2 of our points crash together, these 10 lines become 4 single
lines and 3 double lines. We will now make this more precise.

For a general rank 6 cubic surface

f := L3
1 +L3

2 +L3
3 +L2

4M = 0

(with L1,L2,L3,L4,M in general position) let Z be the nonreduced scheme of
length 2 supported at L4 in direction M, i.e. I(Z) = I(L4)

2 + I(〈L4,M〉). Then
Y = L1∪L2∪L3∪Z is a length 5 apolar scheme of f . Hence H( f )⊂ 〈v2(Y )〉.

Note that v2(Y ) = 〈L2
1,L

2
2,L

2
3,L

2
4,L4M〉. From this we can see that 〈v2(Y )〉∩

X2 contains the 4 lines 〈L2
1,L

2
2〉, 〈L2

1,L
2
3〉, 〈L2

2,L
2
3〉 and 〈L2

4,L4M〉, as well as three
double lines defined by I(〈L2

i ,L
2
4〉)2+ I(〈L2

i ,L
2
4,L4M〉). As before, from the fact

that Li and M are general we can see that 〈v2(Y )〉∩X2 consists precisely of these
lines.
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Now, H( f )∩X2 is the intersection of 〈v2(Y )〉 ∩X2 with a hyperplane H.
Since H( f ) does not contain any of the L2

i , H intersects every of our 7 lines in
1 (possibly fat) point. These are the 7 points of H( f )∩X2.

Remark 2.10. For cubics of the form (2.3), we can use our code to show that
H( f )∩X2 consists of 3 triple points and one single point. After identifying
H( f ) with P3, the 4 points in H( f ) are [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [0 :
1 : −µ1 : 0], where the first 3 are triple points. In particular, cubics of the form
(2.3) also lie on the Hessian discriminant, and we recover Observation 1.2.

2.3. Generic singular cubics

Proposition 2.11. A general singular cubic does not lie on the Hessian discrim-
inant.

Proof. It suffices to find one singular cubic that does not lie on the Hessian
discriminant. One way of doing this is by generating a random one of the form
(2.5) and using our code. Here we will instead exhibit a very specific example:
the Cayley cubic, given by

f := x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0,

with 4 singular points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1].
Then H( f ) is the linear span of the quadratic forms

x1x2 + x1x3 + x2x3,x0x2 + x0x3 + x2x3,x0x1 + x0x3 + x1x3,x0x1 + x0x2 + x1x2,

and H( f )∩X2 consists of the following 10 distinct points:

x0(x1 + x2 + x3),x1(x0 + x2 + x3),x2(x0 + x1 + x3),x3(x0 + x1 + x2),

(x0− x1)(x2 + x3),(x0− x2)(x1 + x3),(x0− x3)(x1 + x2),

(x1− x2)(x0 + x3),(x1− x3)(x0 + x2),(x2− x3)(x0 + x1).

This shows that the f does not lie on the Hessian discriminant.

Remark 2.12. After identifying H( f ) with P3, the 10 points in H( f ) are [1 :
1 : 1 : −1], [1 : 1 : −1 : 1], [1 : −1 : 1 : 1], [−1 : 1 : 1 : 1], [1 : −1 : 0 : 0], [1 : 0 :
−1 : 0], [1 : 0 : 0 :−1], [0 : 1 :−1 : 0], [0 : 1 : 0 :−1], [0 : 0 : 1 :−1]. It can easily
be verified that these 10 points, together with the 4 singular points of f , are
precisely the 14 singular points of the Hessian surface of f .
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2.4. Proof of Proposition 1.3

We now have the required background to give a proof of Proposition 1.3.

Proof of Proposition 1.3. We can verify the proposition separately for the four
cases in Theorem 2.1. For the first three cases, the singularities of the Hessian
surface were computed in [3, §§1.5, 5.2, 5.3]; they agree with the points in
H( f )∩X2 that we obtained in Remarks 2.5,2.8 and 2.10. For the final case, the
Hessian matrix is equal to

3


2x0 0 0 0
0 2x1 −λx3 −λx2
0 −λx3 2x2 −λx1
0 −λx2 −λx1 2x3

 ,

Hence the Hessian surface Hess( f ) is the union of the plane L defined by x0 = 0
and cone C defined by (4− λ 3)x1x2x3− λ 2(x3

1 + x3
2 + x3

3) = 0. If λ 6= 0, one
checks (using the assumption λ 3 +8 6= 0) that Sing(Hess( f )) = (L∩C)∪{[1 :
0 : 0 : 0]}; if λ = 0 then Sing(Hess( f )) is the union of the six lines xi = x j = 0.
In both cases we see that every singular point in the Hessian surface of f gives
a rank ≤ 2 matrix, proving our result.

3. Fundamental invariants

The natural action of SL(4) on V induces an action on the space S3(V ∗) of
quaternary cubics, which in turn induces an action on the polynomial ring R =
C[c000, . . . ,c333] in the 20 coefficients of a quaternary cubic. Then the invariant
ring RSL(4) is the ring of all polynomials in the coefficients of a cubic surface that
are invariant under a (determinant 1) linear change of coordinates. It was shown
by Salmon [10] that RSL(4) is generated by polynomials I8, I16, I24, I32, I40, I100,
where Id has degree d. The first 5 are algebraically independent and I2

100 can
be written as a polynomial in I8, I16, I24, I32, I40. Using the connectedness of
SL(4), one can show that the fundamental invariants Id are irreducible. The
expressions for Id in terms of ci jk are hard to obtain and too long to write down
here. However, it is easy to write them down for cubics in Sylvester normal
form.
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For a cubic of the form (2.1), we write

σ1 = c0 + c1 + c2 + c3 + c4

σ2 = c0c1 + c0c2 + c0c3 + c0c4 + c1c2 + c1c3 + c1c4 + c2c3 + c2c4 + c3c4

σ3 = c0c1c2 + c0c1c3 + c0c1c4 + c0c2c3 + c0c2c4

+c0c3c4 + c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4

σ4 = c0c1c2c3 + c0c1c2c4 + c0c1c3c4 + c0c2c3c4 + c1c2c3c4

σ5 = c0c1c2c3c4.

Then we can write the fundamental invariants as follows:

I8 = σ
2
4 −4σ3σ5

I16 = σ
3
5 σ1

I24 = σ
4
5 σ4

I32 = σ
6
5 σ2

I40 = σ
8
5 .

Remark 3.1. The tuple [I8, I16, I24, I32, I40] gives a point in weighted projective
space P(1,2,3,4,5). We will denote this point by Inv(C).

3.1. Computing invariants for cubics of higher rank

A general cubic of the form (2.2) has Waring rank 6 [14], i.e. cannot be written
as a sum of 5 cubes. However, since a generic quaternary cubic can be brought
in Sylvester normal form, any quaternary cubic C can be arbitrarily closely ap-
proximated by cubics in Sylvester normal form.

We do this for cubics of the form (2.2). Fix a cubic C with equation

f (x0,x1,x2,x3) := x3
1 + x3

2 + x3
3− x2

0(µx0 +3λ1x1 +3λ2x2 +3λ3x3) = 0.

For every ε ∈ C∗, we define a cubic Cε with equation

fε(x0,x1,x2,x3) :=
1

λ 3
1 ε3

(ελ1x1)
3 +

1
λ 3

2 ε3
(ελ2x2)

3 +
1

λ 3
3 ε3

(ελ3x3)
3 +

(
1
ε
−µ)x3

0 +
1
ε
(−x0− ελ1x1− ελ2x2− ελ3x3)

3 = 0.

Note that limε→0 fε = f .
For every fixed ε , we can compute Inv(Cε) ∈ P(1,2,3,4,5) (see our code at

[1]). Taking the limit ε → 0 gives us

Inv(C) = [µ2−4(λ 3
0 +λ 3

1 +λ 3
2 ) : λ 3

0 λ 3
1 +λ 3

0 λ 3
2 +λ 3

1 λ 3
2 : 2λ 3

0 λ 3
1 λ 3

2 :

λ 3
0 λ 3

1 λ 3
2 (λ

3
0 +λ 3

1 +λ 3
2 ) : 0],
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as was already computed in [3, Theorem 6.6]. In particular, we can deduce the
following result (see also [4, Chapter 9.4.5]):

Proposition 3.2. For a general smooth cubic of rank 6, it holds that I40 = 0.

4. Proof of the main theorem

Theorem 4.1. Let HD be the degree 120 polynomial in c000, . . . ,c333 obtained
by evaluating the Hurwitz form HuX of the variety of rank 2 matrices in the
Plücker coordinates of H( f ), where f defines a general cubic surface. Then
HD = I3

40, where I40 is the degree 40 Salmon invariant.

Proof. We will show that V (HD) = V (I40). Then the result follows from the
fact that deg(HD) = 3deg(I40).

The set of cubics that can be brought in the form (2.2) is of codimension
one (see Theorem 2.1), lies on the Hessian discriminant by Proposition 2.7, and
satisfies I40 = 0 by Proposition 3.2. This, together with irreducibility of I40,
implies that V (HD)⊇V (I40).

Now if this were a strict inclusion, this would mean that HD = I40 · g, and
so V (HD) = V (I40)∪V (g), with V (g) 6= V (I40). Then V (g) is a codimension
one set of cubics lying on the Hessian discriminant. But Corollary 2.3, and
Propositions 2.4 and 2.11 show that the set of cubics on V (HD) that cannot
be brought in the form (2.2) is of codimension greater than one, so we reach a
contradiction.

As pointed out in [7], there is an intuitive reason why HD must be a cube:
it follows from the fact that as soon as f lies on the Hessian discriminant, the
number of points in H( f )∩X2 drops from 10 to 7, and not to 9 as expected.
This should somehow mean that “ f is a triple zero of HD”. We can make this
intuition precise using the following general lemma about the Hurwitz form:

Lemma 4.2. Let X ⊆ Pn be a variety of codimension d and degree p, and
let HuX be its Hurwitz form in Stiefel coordinates. Denote H = V (HuX) ⊆
Pd(n+1)−1, and assume that for a general point L in H, it holds that L ∩ X
has exactly 1 double point and p− 2 simple points. Let furthermore P` be
a linear subspace of Pd(n+1)−1 such that for a general point L in H∩ P`, it
holds that L∩X has exactly k double points and p− 2k simple points. Then
deg(H) = k deg(H∩P`), where H∩P` is the set-theoretic intersection. Hence
HuX |P` is a k-th power.

Proof. We consider the incidence correspondence

Φ = {(p,L)|p ∈ L∩X is a double point} ⊆ Pn×Pd(n+1)−1,
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and

Φ
′ = Φ∩ (Pn×P`).

For a subvariety Y of Pa×Pb, we write deg2(Y ) for the number of points in the
intersection of Y with a general linear space Pa×M of the correct codimension.

Then

deg(H) = deg2(Φ) = deg2(Φ
′) = k deg(H∩P`).

Corollary 2.3 and Propositions 2.4, 2.7 and 2.11 imply that if we choose
X = X2 and P` = {H( f )| f ∈ S3(V ∗)}, the conditions of Lemma 4.2 are satisfied,
hence HD must be a cube.
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