
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
1
2
8
3

|

d
o
w
n
l
o
a
d
e
d
:

4
.
4
.
2
0
2
4

A Logic of Blockchain Updates

Kai Brünnler Dandolo Flumini Thomas Studer∗

Abstract

Blockchains are distributed data structures that are used to achieve
consensus in systems for cryptocurrencies (like Bitcoin) or smart con-
tracts (like Ethereum). Although blockchains gained a lot of popu-
larity recently, there are only few logic-based models for blockchains
available. We introduce BCL, a dynamic logic to reason about block-
chain updates, and show that BCL is sound and complete with respect
to a simple blockchain model.

Keywords: blockchain, dynamic epistemic logic, modal logic

1 Introduction

Bitcoin [19] is a cryptocurrency that uses peer-to-peer technology to support
direct user-to-user transactions without an intermediary such as a bank or
credit card company. In order to prevent double spending, which is a common
issue in systems without central control, Bitcoin maintains a complete and
public record of all transactions at each node in the network. This ledger is
called the blockchain.

The blockchain is essentially a growing sequence of blocks, which contain
approved transactions and a cryptographic hash of the previous block in
the sequence. Because the blockchain is stored locally at each node, any
update to it has to be propagated to the entire network. Nodes that receive
a transaction [1, 4, 21]

1. first verify its validity (i.e., whether it is compatible with all preceeding
transactions);

∗Supported by the Swiss National Science Foundation grant 200021 165549.

1

2. if it is valid, then it is added to the blockchain and

3. sent to all other nodes.

Blockchain technology, as a general solution to the Byzantine Generals’ Prob-
lem [16], is now not only used for financial transactions but also for many
other applications like, e.g., smart contracts [7].

Herlihy and Moir [11] propose to develop a logic of accountability to
design and verify blockchain systems. In particular, they discuss blockchain
scenarios to test (i) logics of authorization, (ii) logics of concurrency, and (iii)
logics of incentives.

Halpern and Pass [10] provide a characterization of agents’ knowledge
when running a blockchain protocol using a variant of common knowledge.
Other charcterizations in terms of (probabilistic) epistemic logic are given
in [17, 18].

In the present paper, we are not interested in accountability or aspects
of common knowledge. We study the local, single agent perspective of a
blockchain. That is we investigate steps 1. and 2. of the above procedure
for receiving a transaction. Our approach is inspired by dynamic epistemic
logic [25]. A given state of the local blockchain entails knowledge about the
transactions that have taken place. We ask: how does this knowledge change
when a new block is received that might be added to the blockchain? We
develop a dynamic logic, BCL, with a semantics that is based on a blockchain
model. The update operators of BCL are interpreted as receiving new blocks.
It is the aim of this paper to investigate the dynamics of local blockchain
updates.

The deductive system for BCL includes reduction axioms that make it pos-
sible to establish completeness by a reduction to the update-free case [13].
However, since blockchain updates are performed only if certain consistency
conditions are satisfied, we use conditional reduction axioms similar to the
ones developed by Steiner to model consistency preserving updates [22].
Moreover, unlike traditional public announcements [25], blockchain updates
cannot lead to an inconsistent state, i.e., updates are total, like in [23].

We do not base BCL on an existing blockchain implementation but use a
very simple model. First of all, the blockchain is a sequence of propositional
formulas. Further, we maintain a list of provisional updates. Our blocks
consist of two parts: a sequence number (called the index of the block)
and a propositional formula. If a block is received, then the following case

2

distinction is performed where i is the index of the block and l is the current
length of the blockchain:

1. i ≤ l. The block is ignored.

2. i = l + 1. If the formula of the block is consistent with the blockchain
(i.e. it does not contradict blocks that are already accepted in the
blockchain), then it is added to the blockchain; otherwise the block
is ignored. If the blockchain has been extended, then this procedure is
performed also with the blocks stored in the list of provisional updates.

3. i > l + 1. The block is added to the list of provisional updates.

Although this is a simple model, it features two important logical properties
of blockchains: consistency must be preserved and blocks may be received in
the wrong order, in which case they are stored separately until the missing
blocks have been received.

The main contribution of our paper from the point of view of dynamic
epistemic logic is that we maintain a list of provisional updates. That means
we support updates that do not have an immediate effect but that may lead
to a belief change later only after certain other updates have been performed.
BCL is the first logic that features provisional updates of this kind.

The paper is organized as follows. The next section introduces our
blockchain model, the language of BCL, and its semantics. In Section 3,
we introduce a deductive system for BCL. We establish soundness of BCL
in Section 4. In Section 5, we show a normal form theorem for BCL, which
is used in Section 6 to prove completeness of BCL. The final section studies
some key principles of the dynamics of our blockchain logic and discusses
future work.

The present paper is an extended version of a paper presented at LFCS [5].
Note that the conference version did not include any proofs.

Acknowledgements
We would like to thank Eveline Lehmann and Nenad Savic for carefully
reading a previous version of this paper. We also thank the anonymous
referees of the LFCS version and of the current version of this paper for
many valuable comments.

3

2 A simple blockchain logic

The set of all natural numbers is denoted by N := {0, 1, 2, . . .}. The set of
positive natural numbers is denoted by N+ := {1, 2, . . .}. We use ω for the
least ordinal such that ω > n, for all n ∈ N.

Let σ = 〈σ1, . . . , σn〉 be any finite sequence. We define its length by
len(σ) := n. For an infinite sequence σ = 〈σ1, σ2, . . .〉 we set len(σ) := ω. For
a (finite or infinite) sequence σ = 〈σ1, σ2, . . . , σi, . . .〉 we set (σ)i := σi for
i ≤ len(σ). The case i > len(σ) can be safely ignored. The empty sequence is
denoted by 〈〉 and we set len(〈〉) := 0. We can append x to a finite sequence
σ := 〈σ1, . . . , σn〉, in symbols we set σ ◦ x := 〈σ1, . . . , σn, x〉. We will also
need the set of all components of a sequence σ and define

set(σ) := {x | there is an i such that x = σi}.

In particular, we have set(〈〉) := ∅. Moreover, we use the shorthand x ∈ σ
for x ∈ set(σ).

We start with a countable set of atomic propositionsAP := {P0, P1, . . .}.
The set of formulas Lcl of classical propositional logic is given by the following
grammar

A ::= ⊥ | P | A→ A ,

where P ∈ AP .
In order to introduce the language LB for blockchain logic, we need an-

other countable set of special atomic propositions AQ := {Q1, Q2, . . .} that
is disjoint with AP . We will use these special propositions later to keep track
of the length of the blockchain. The formulas of LB are now given by the
grammar

F ::= ⊥ | P | Q | F → F | 2A | [i, A]F ,

where P ∈ AP , Q ∈ AQ, A ∈ Lcl, and i ∈ N+. The operators of the form
[i, A] are called blockchain updates (or simply updates).

Note that in LB we cannot express higher-order knowledge, i.e., we can
only express knowledge about propositional facts but not knowledge about
knowledge of such facts. Since in the present paper we only deal with the local
(i.e. single agent) perspective on blockchains, higher-order knowledge and
introspection are not important. Of course, for the multi-agent perspective
on blockchains, higher-order notions, in particular common knowledge, are
essential epistemic concepts [4, 17, 18].

4

For all languages in this paper, we define further Boolean connectives
(e.g. for negation, conjunction, and disjunction) as usual. Moreover, we
assume that unary connectives bind stronger than binary ones.

For Lcl we use the semantics of classical propositional logic. A valuation v
is a subset of AP and we define the truth of an Lcl-formula A under v, in
symbols v |= A as usual. For a set Γ of Lcl-formulas, we write v |= Γ if v |= A
for all A ∈ Γ. The set Γ is satisfiable if there is a valuation v such that v |= Γ.
We say Γ entails A, in symbols Γ |= A, if for each valuation v we have

v |= Γ implies v |= A.

Now we introduce the blockchain semantics for LB.

Definition 1. A block is a pair [i, A] where A is a formula of Lcl and i is
an element of N+. We call i the index and A the formula of the block [i, A].
We define functions ind and fml by ind[i, A] := i and fml[i, A] := A.

Definition 2. A model M := (I,BC,PU, v) is a quadruple where

1. I is a set of Lcl-formulas

2. BC is a sequence of Lcl-formulas

3. PU is a finite sequence of blocks

4. v is a valuation, i.e. v ⊆ AP

such that
I ∪ set(BC) is satisfiable (1)

and
for each block [i, A] ∈ PU we have i > len(BC) + 1. (2)

The components of a model (I,BC,PU, v) have the following meaning:

1. I models initial background knowledge.

2. BC is the blockchain.

3. PU stands for provisional updates. The sequence PU consists of those
blocks that have been announced but that could not yet be added to
the blockchain because their index is too high. Maybe they will be
added to BC later (i.e., after the missing blocks have been added).

5

4. v states which atomic propositions are true.

We assume that for each index, eventually a block will be added to the
blockchain. If a missing block remained missing forever, then the blockchain
would remain fixed from then on.

We need some auxiliary definitions in order to precisely describe the dy-
namics of the blockchain.

Definition 3.

1. Let PU be a finite sequence of blocks. Then we let find(i,PU) be the
least j ∈ N+ such that there is an Lcl-formula A with [i, A] = (PU)j.

2. Let σ = 〈σ1, . . . , σi−1, σi, σi+1, . . .〉 be a sequence. We set

remove(i, σ) := 〈σ1, . . . , σi−1, σi+1, . . .〉.

3. Given a set of Lcl-formulas I, a sequence of Lcl-formulas BC, and a
finite sequence of blocks PU, the chain completion complete(I,BC,PU)
is computed according to Algorithm 1.

Algorithm 1 Chain Completion Algorithm: complete

Input: (I,BC,PU)
1: n← len(BC) + 1
2: while [n,A] ∈ PU for some formula A do
3: i← find(n,PU)
4: B ← fml((PU)i)
5: remove(i,PU)
6: if I ∪ set(BC) ∪ {B} is satisfiable then
7: BC← BC ◦B
8: n← len(BC) + 1
9: end if

10: end while
11: for i ∈ len(PU), . . . , 1 do
12: if ind((PU)i) < n then
13: remove(i,PU)
14: end if
15: end for
16: return (BC,PU)

6

Let us comment on the chain completion procedure. The numbers refer
to the lines in Algorithm 1.

1: n is the index a block must contain so that it could be added to the
blockchain BC.

2: [n,A] ∈ PU for some formula A means that PU contains a block
that could be added to BC.

3–5: Find the next formula B that could be added to BC and remove the
corresponding block from PU.

6: I∪ set(BC)∪ {B} is satisfiable means that B is consistent with the
current belief. This test guarantees that (1) will always be satisfied.

7,8: Update the blockchain BC with B.

11–15: Remove all blocks from PU whose index is less than or equal to
the current length of the blockchain BC. Because the blockchain
never gets shorter, these block will never be added. Removing them
guarantees that (2) will be satisfied after executing the algorithm.

Note if BC and PU satisfy condition (2) in the definition of a model, then
the chain completion algorithm will return BC and PU unchanged.

Lemma 1. Let I be a set of Lcl-formulas and let BC be a sequence of Lcl-
formulas such that I ∪ set(BC) is satisfiable. Let PU be an arbitrary finite
sequence of blocks. For (BC′,PU′) := complete(I,BC,PU) we find that

1. I ∪ set(BC′) is satisfiable and

2. for each block [i, A] ∈ PU′ we have i > len(BC′) + 1.

Proof. By assumption,

I ∪ set(BC) is satisfiable (3)

holds for the arguments passed to the algorithm. Moreover, the condition in
line 6 guarantees that (3) is a loop invariant of the while loop in lines 2–10,
i.e., it holds after each iteration. Since BC is not changed after line 10, (3)
also holds for the final result, which shows the first claim of the lemma.

7

It is easy to see that
n = len(BC) + 1 (4)

also is a loop invariant of while loop in lines 2–10. In particular, (4) holds
after line 10 and thus the for loop in lines 11–15 removes all blocks [i, A] from
PU with i < len(BC) + 1. Moreover, after the while loop in lines 2–10 has
terminated, its loop condition must be false, which means that PU cannot
contain a block [i, A] with i = len(BC) + 1. This finishes the proof of the
second claim.

Definition 4. Let M := (I,BC,PU, v) be a model and [i, A] be a block. The
updated model M[i,A] is defined as (I,BC′,PU′, v) where

(BC′,PU′) := complete(I,BC,PU ◦ [i, A]).

Remark 1. Note that M[i,A] is well-defined: by Lemma 1 we know that M[i,A]

is indeed a model.

Definition 5. Let M := (I,BC,PU, v) be a model. We define the truth of an
LB-formula F in M, in symbols M |= F , inductively by:

1. M 6|= ⊥;

2. M |= P if P ∈ v for P ∈ AP;

3. M |= Qi if i ≤ len(BC) for Qi ∈ AQ;

4. M |= F → G if M 6|= F or M |= G;

5. M |= 2A if I ∪ set(BC) |= A;

6. M |= [i, A]F if M[i,A] |= F .

A formula 2A means that A follows from the blockchain, i.e. A is a
logical consequence from the propositions stored in the blockchain. We can
consider 2 to be an epistemic operator since the blockchain represents our
knowledge about which transactions have happened.

We define validity only with respect to the class of models that do not
have provisional updates.

Definition 6. We call a model M = (I,BC,PU, v) initial if PU = 〈〉. A
formula F is called valid if M |= F for all initial models M.

8

3 The deductive system BCL

In order to present an axiomatic system for our blockchain logic, we need to
formalize an acceptance condition stating whether a received block can be
added to the blockchain. That is we need a formula Acc(i, A) expressing that
the formula A is consistent with the current beliefs and the current length of
the blockchain is i− 1. Thus if Acc(i, A) holds, then the block [i, A] will be
accepted and added to the blockchain. The truth definition for the atomic
propositions Qi ∈ AQ says that Qi is true if the blockchain contains at least i
elements. That means the formula Q(i − 1) ∧ ¬Qi is true if the blockchain
contains exactly i − 1 elements. This leads to the following definition of
Acc(i, A) for i ∈ N+:

Acc(i, A) :=

{
¬Qi ∧ ¬2¬A if i = 1

Q(i− 1) ∧ ¬Qi ∧ ¬2¬A if i > 1

As desired, we find that if Acc(i, A) is true, then the chain completion algo-
rithm can append the formula A to the blockchain (see Lemma 2 later).

An LB-formula is called compliant if the blockchain updates occur in the
correct order. Formally, we use the following definition.

Definition 7. An LB-formula F is called compliant if no occurrence of a
[i, A]-operator in F is in the scope of some [j, B]-operator with j > i.

Now we can define a deductive system for BCL. It is formulated in the
language LB and consists of the following axioms:

9

(PT) Every instance of a propositional tautology
(K) 2(F → G)→ (2F → 2G)
(D) ¬2⊥
(Q) Qi→ Qj if i > j
(A1) [i, A]⊥ → ⊥
(A2) [i, A]P ↔ P for P ∈ AP
(A3.1) Acc(i, A)→ ([i, A]Qi↔ >) for Qi ∈ AQ
(A3.2) ¬Acc(i, A)→ ([i, A]Qi↔ Qi) for Qi ∈ AQ
(A3.3) [i, A]Qj ↔ Qj for Qj ∈ AQ and i 6= j

(A4)
[i1, A1] . . . [ik, Ak](F → G)↔

([i1, A1] . . . [ik, Ak]F → [i1, A1] . . . [ik, Ak]G)
(A5.1) Acc(i, A)→ ([i, A]2B ↔ 2(A→ B))
(A5.2) ¬Acc(i, A)→ ([i, A]2B ↔ 2B)

(A6)
[h1, C1] . . . [hk, Ck][i, A][j, B]F ↔

[h1, C1] . . . [hk, Ck][j, A][i, B]F
for i 6= j

We need a little arithmetic: Axiom (Q) is used to compare indexes. But
we do not need anything else.

Note that in (A6), we may choose k to be 0, in which case the axiom has
the form [i, A][j, B]F ↔ [j, A][i, B]F for i 6= j.

In order to formulate the rules of BCL, we need the following notation. Let
H(P) be a formula that may contain occurrences of the atomic proposition P .
By H(F), we denote the result of simultaneously replacing each occurrence
of P in H(P) with the formula F . The rules of BCL are:

(MP)
F F → G

G
(NEC)

A
2A

(SUB)
F ↔ G

H(F)↔ H(G)

where (SUB) can only be applied if H(F)↔ H(G) is a compliant formula.

Remark 2. Our semantics includes the case of infinite blockchains: in a
given model (I,BC,PU, v), the sequence BC may have infinite length. If we
want to exclude such models, then we have to add an infinitary rule

Qi for all i ∈ N+

⊥

to BCL. This rule states that some Qi must be false, which means that BC
has finite length.

10

4 Soundness

Before we can establish soundness of BCL, we have to show some preparatory
lemmas.

Lemma 2. Let M := (I,BC, 〈〉, v) be an initial model. Further let

(I,BC′,PU′, v) := M[i,A]

for some block [i, A].

1. If M |= Acc(i, A), then BC′ = BC ◦ A. In particular, this yields
len(BC′) = i and for each j with j 6= i,

M |= Qj if and only if M[i,A] |= Qj.

2. If M 6|= Acc(i, A), then BC′ = BC.

Proof. Assume M |= Acc(i, A). That means

len(BC) + 1 = i and I ∪ set(BC) ∪ {A} is satisfiable.

Hence we find

complete(I,BC, 〈〉 ◦ [i, A]) = (BC ◦ A, 〈〉).

Therefore BC′ = BC ◦ A. This immediately yields

len(BC′) = i = len(BC) + 1

and for each j with j 6= i,

M |= Qj if and only if M[i,A] |= Qj.

Assume M 6|= Acc(i, A). This implies

len(BC) + 1 6= i or I ∪ set(BC) ∪ {A} is not satisfiable.

Hence for (BC′,PU′) := complete(I,BC, 〈〉 ◦ [i, A]), we find BC′ = BC.

Lemma 3. Each axiom of BCL is valid.

Proof. We only show some cases. Let M := (I,BC, 〈〉, v) be an initial model.

11

1. ¬2⊥. By the definition of a model, we have that I ∪ set(BC) is satisfi-
able. Hence I ∪ set(BC) 6|= ⊥, which means M 6|= 2⊥.

2. Qi→ Qj for i > j. Assume M |= Qi. That means i ≤ len(BC). Hence,
for j < i, we have j ≤ len(BC), which gives M |= Qj.

3. Acc(i, A) → ([i, A]Qi ↔ >). Assume M |= Acc(i, A). Using Lemma 2,
we get M[i,A] |= Qi. Thus M |= [i, A]Qi↔ > as desired.

4. ¬Acc(i, A) → ([i, A]Qi ↔ Qi). Assume M 6|= Acc(i, A). We use again
Lemma 2 to obtain M |= [i, A]Qi↔ Qi.

5. [i, A]Qj ↔ Qj for Qj ∈ AQ and i 6= j. If M 66|= Acc(i, A), we obtain
M |= [i, A]Qj ↔ Qj as in the previous case. If M |= Acc(i, A), then
again by Lemma 2, M |= [i, A]Qj ↔ Qj for i 6= j.

6. Acc(i, A)→ ([i, A]2B ↔ 2(A→ B)). Assume M |= Acc(i, A) and let

(I,BC′,PU′, v) := M[i,A].

By Lemma 2 we get BC′ = BC◦A. Thus set(BC′) = set(BC)∪{A}. By
classical logic we find

I ∪ set(BC) ∪ {A} |=CL B if and only if I ∪ set(BC) |=CL A→ B,

which yields M |= [i, A]2B ↔ 2(A→ B).

7. ¬Acc(i, A) → ([i, A]2B ↔ 2B). Assume M 6|= Acc(i, A). From
Lemma 2, we immediately get M |= [i, A]2B ↔ 2B.

Lemma 4. Let M = (I,BC,PU, v) be an arbitrary model and let [i, A] be a
block such that i > len(BC) + 1. Then we have M[i,A] = (I,BC,PU ◦ [i, A], v).

Proof. Let
(BC′,PU′) := complete(I,BC,PU ◦ [i, A]).

Since M is a model, condition (2) is satisfied. Therefore, we find that

BC′ = BC and PU′ = PU ◦ [i, A],

which is M[i,A] = (I,BC,PU ◦ [i, A], v).

12

Lemma 5. Let M = (I,BC, 〈〉, v) be an initial model and let [i, A] be a block
such that i ≤ len(BC) + 1. Then M[i,A] is an initial model, too.

Proof. Let PU = 〈[i, A]〉 and

(BC′,PU′) := complete(I,BC,PU).

If i = len(BC) + 1, then [i, A] is removed from PU in line 5 of Algorithm 1.
If i < len(BC) + 1, then [i, A] is removed from PU in line 13. In both cases
we find PU′ = 〈〉, which means that M[i,A] is initial.

Lemma 6. Let (I,BC,PU, v) be a model and F be an LB-formula such that
for each [i, A] occurring in F we have i > len(BC) + 1. Then

(I,BC,PU, v) |= F if and only if (I,BC, 〈〉, v) |= F.

Proof. By induction on the structure of F and a case distinction on the
outermost connective. The only interesting case is F = [i, A]G. Since we
have i > len(BC) + 1 by assumption, we find by Lemma 4 that

(I,BC,PU, v)[i,A] = (I,BC,PU ◦ [i, A], v).

Thus we get

(I,BC,PU, v) |= [i, A]G if and only if (I,BC,PU ◦ [i, A], v) |= G. (5)

Using I.H. twice yields

(I,BC,PU ◦ [i, A], v) |= G if and only if (I,BC, 〈[i, A]〉, v) |= G. (6)

Again since i > len(BC) + 1 we find that

(I,BC, 〈[i, A]〉, v) = (I,BC, 〈〉, v)[i,A]

and thus

(I,BC, 〈[i, A]〉, v) |= G if and only if (I,BC, 〈〉, v) |= [i, A]G. (7)

Taking (5), (6), and (7) together yields the desired result.

Now we can show that the rule (SUB) preserves validity.

13

Lemma 7. Let H(P), F,G be LB-formulas such that H(F)↔ H(G) is com-
pliant. We have that

if F ↔ G is valid, then H(F)↔ H(G) is valid, too.

Proof. We show the validity of H(F)↔ H(G) by induction on the structure
of H(P). We distinguish the following cases.

1. H does not contain P . Thus H = H(F) = H(G) and H(F) ↔ H(G)
is trivially valid.

2. H = P . We have H(F) = F and H(G) = G. Thus H(F) ↔ H(G) is
valid by assumption.

3. H = H ′ → H ′′. Follows immediately by I.H.

4. H = 2H ′ By I.H., we find that H ′(F) ↔ H ′(G) is valid. Since LB

does not include nested 2-operators, H ′(P) is an Lcl-formula. Since
H(F)↔ H(G) is a formula, F and G must be Lcl-formulas, too. Hence,
H ′(F)↔ H ′(G) is an Lcl-formula and we obtain |=CL H

′(F)↔ H ′(G).
Hence we have M |= 2H ′(F) if and only if M |= 2H ′(G) for any
model M, which yields that H(F)↔ H(G) is valid.

5. H = [i, A]H ′. Let M := (I,BC, 〈〉, v) be an initial model. We distinguish
the following cases:

(a) i ≤ len(BC) + 1. By Lemma 5, we find that M[i,A] is an initial
model. Thus by the I.H. we infer M[i,A] |= H ′(F) ↔ H ′(G), from
which we infer

M |= [i, A]H ′(F)↔ [i, A]H ′(G)

by the validity of (A4).

(b) i > len(BC) + 1. By Lemma 4, we find that

M[i,A] = (I,BC, 〈[i, A]〉, v).

Since H(F) is compliant, we obtain for each [j, B] occurring in
H(F), that j > len(BC) + 1. Hence we obtain by Lemma 6 that

M[i,A] |= H ′(F) if and only if (I,BC, 〈〉, v) |= H ′(F). (8)

14

By I.H. we get

(I,BC, 〈〉, v) |= H ′(F) if and only if (I,BC, 〈〉, v) |= H ′(G). (9)

SinceH(G) is compliant, we find thatH ′(G) satisfies the condition
of Lemma 6. Thus we can use that lemma again to obtain

(I,BC, 〈〉, v) |= H ′(G) if and only if M[i,A] |= H ′(G). (10)

Taking (8), (9), and (10) together yields

M |= [i, A]H ′(F)↔ [i, A]H ′(G).

We have established that the axioms of BCL are valid and that (SUB)
preserves validity. It is easy to see that the rules (MP) and (NEC) also
preseve validity. Soundness of BCL follows immediately.

Corollary 1. For each formula F we have

` F implies F is valid.

Remark 3. The reduction axiom (A3.3) does not hold in non-initial models.
Indeed, let M := (∅, 〈〉, 〈[2,>]〉, ∅). We find that M[1,P] = (∅, 〈P,>〉, 〈〉, ∅).
Hence M[1,P] |= Q2, which is M |= [1, P]Q2. But we also have M 6|= Q2.

Remark 4. The above remark also implies that a block necessitation rule
would not be sound, that is the validity of F does not entail the validity
of [i, A]F . Indeed, the axiom [1, P]Q2 ↔ Q2 is valid; but the formula
[2,>]([1, P]Q2↔ Q2) is not valid as shown in the previous remark.

Remark 5. The rule (SUB) would not preserve validity if we drop the con-
dition that the conclusion must be compliant. Indeed, let us again consider
the valid formula [1, P]Q2↔ Q2. Without the compliance condition, the rule
(SUB) would derive [2, P ′][1, P]Q2↔ [2, P ′]Q2, which is not a valid formula.

5 Normal form

Remember that a formula is compliant if the blockchain updates occur in the
correct order. In this section, we establish a normal form theorem for our
simple blockchain logic.

15

Definition 8. A base formula is a formula that has one of the following
forms (which include the case of no blockchain updates):

1. [i1, A1] . . . [im, Am]⊥

2. [i1, A1] . . . [im, Am]P with P ∈ AP ∪AQ

3. [i1, A1] . . . [im, Am]2B

Formulas in normal form are given as follows:

1. each compliant base formula is in normal form

2. if F and G are in normal form, then so is F → G.

Remark 6. As an immediate consequence of this definition, we obtain that
for each formula F ,

if F is in normal form, then F is compliant.

The following theorem states that for each formula F , there is a provably
equivalent formula in normal form. The proof is by induction on the structure
of F .

Theorem 1. For each LB-formula F , there is an LB-formula G in normal
form such that ` F ↔ G.

Proof. We do an induction on the structure of F and distinguish the following
cases:

1. The cases when F = ⊥, F ∈ AP ∪AQ, or F = 2B are trivial.

2. F = G → H. By I.H., there are G′ and H ′ in normal form such that
` G↔ G′ and ` H ↔ H ′. Hence for F ′ := G′ → H ′, we find ` F ↔ F ′

and F ′ is in normal form.

3. F = [i1, A1] . . . [ik, Ak]G with G not of the form [ik+1, Ak+1]G
′. Subin-

duction on G. We distinguish:

(a) G = ⊥, G = P ∈ AP ∪AQ, or G = 2B. In this case, F is a base
formula. Using axiom (A6), we find a compliant base formula F ′

such that ` F ↔ F ′.

16

(b) G = G′ → G′′. Then by axiom (A4)

` F ↔ ([i1, A1] . . . [ik, Ak]G′ → [i1, A1] . . . [ik, Ak]G′′).

Moreover, by I.H., there are H ′ and H ′′ in normal form such that

` H ′ ↔ [i1, A1] . . . [ik, Ak]G′

and
` H ′′ ↔ [i1, A1] . . . [ik, Ak]G′′.

We find that H := H ′ → H ′′ is in normal form and ` F ↔ H.

6 Completeness

We first show that BCL is complete for modal formulas. The modal lan-
guage LM consists of all update-free LB-formulas. Formally, LM is given by
the following grammar

F ::= ⊥ | P | Q | F → F | 2A ,

where P ∈ AP , Q ∈ AQ, and A ∈ Lcl.
We need the collection BCL2 of all BCL axioms that are given in LM. The

usual satisfaction relation for Kripke models is denoted by |=2.

Lemma 8. For each LM-formula F we have

F is valid implies ` F .

Proof. We show the contrapositive. Assume 6` F . Since F is a modal formula,
there is a Kripke model K with a world w such that

K, w 6|=2 F (11)

and
K, w |=2 G for all G ∈ BCL2. (12)

Based on the Kripke model K, we construct an initial update model M =
(I,BC, 〈〉, v) as follows. Note that because of (12), we have K, w |=2 Qi→ Qj
if j < i. Let k be the least i ∈ N+ such that K, w 6|=2 Qi if it exists and
k := ω otherwise. We set:

17

1. I := {A ∈ Lcl | K, w |=2 2A};

2. BC :=

{
〈>, . . . ,>〉 such that len(BC) = k − 1 if k < ω

〈>,>, . . .〉 if k = ω

3. v := {P ∈ AP | K, w |= P}.
This definition of BC means that BC is an infinite sequence of > if k = ω.

For each LM-formula G we have

K, w |=2 G if and only if M |= G. (13)

We show (13) by induction on the structure of G and distinguish the following
cases:

1. G = P ∈ AP . Immediate by the definition of v.

2. G = Qi ∈ AQ. If k = ω, we have K, w |=2 Qi and, since len(BC) = ω,
also M |= Qi. If k < ω, we have K, w |=2 Qi iff i ≤ k − 1 = len(BC) iff
M |= Qi.

3. G = ⊥. Trivial.

4. G = G1 → G2. By induction hypothesis.

5. G = 2A. If K, w |= 2A, then M |= 2A by the definition of I. If
M |= 2A, then I ∪ set(BC) |= A. By the definition of BC, this is I |= A.
Because I is deductively closed, we get A ∈ I, which yields K, w |= 2A.

By (11) and (13) we conclude M 6|= F as desired.

We establish completeness for compliant formulas using a translation from
compliant formulas to provably equivalent update-free formulas. We start
with defining a mapping h that eliminates update operators.

Definition 9. The mapping h from {[i, A]F | F ∈ LM} to LM is inductively
defined by:

h([i, A]⊥) := ⊥
h([i, A]P) := P for P ∈ AP

h([i, A]Qi) := Acc(i, A) ∨Qi
h([i, A]Qj) := Qj for Qj ∈ AQ and i 6= j

h([i, A](F → G)) := h([i, A]F)→ h([i, A]G)

h([i, A]2B) := (Acc(i, A) ∧2(A→ B)) ∨ (¬Acc(i, A) ∧2B)

18

The mapping h corresponds to the reduction axioms of BCL. Thus it is
easy to show the following lemma by induction on the structure of F .

Lemma 9. Let F be an LB-formula of the form [i, A]G such that G ∈ LM.
We have that ` F ↔ h(F).

We define a translation t from LB to LM

Definition 10. The mapping t : LB → LM is inductively defined by:

t(⊥) := ⊥
t(P) := P for P ∈ AP ∪AQ

t(F → G) := t(F)→ t(G)

t(2A) := 2A

t([i, A]F) := h([i, A]t(F))

Lemma 10. For each compliant formula F , we have

` F ↔ t(F).

Proof. The proof is by induction on the structure of F . There are two inter-
esting cases.

1. F = G→ H. By I.H. we find ` G↔ t(G) and ` H ↔ t(H). Thus we
have

` (G→ H)↔ (t(G)→ t(H)),

which yields the desired result by t(G)→ t(H) = t(G→ H).

2. F = [i, A]G. By I.H. we find ` G ↔ t(G). Since [i, A]G is compliant
by assumption, we can use (SUB) to infer [i, A]G ↔ [i, A]t(G). By
Lemma 9, we know

` [i, A]t(G)↔ h([i, A]t(G)).

We finally conclude ` [i, A]G ↔ h([i, A]t(G)), which yields the claim
since by definition

t([i, A]F) = h([i, A]t(F)).

Theorem 2. For each compliant LB-formula F we have

F is valid implies ` F .

19

Proof. Assume that F is a valid and compliant LB-formula. By Lemma 10,
we know ` F ↔ t(F). Hence by soundness of BCL, we get that t(F) is valid,
too. Since t(F) is an LM-formula, Lemma 8 yields ` t(F). Using Lemma 10
again, we conclude ` F .

Combining Theorem 1 and Theorem 2 immediately yields completeness
for the full language.

Theorem 3. For each LB-formula F we have

F is valid implies ` F .

Proof. Assume that F is a valid LB-formula. By Theorem 1, we find a
compliant LB-formula G such that

` F ↔ G. (14)

Hence by soundness of BCL, we know that G is valid, too. Applying Theo-
rem 2 yields ` G. We finally conclude ` F by (14).

7 Conclusion

We have presented BCL, a dynamic logic to reason about updates in a sim-
ple blockchain model. Our semantics does not have the full complexity of
the blockchains used in Bitcoin or Ethereum (see, e.g., [4] for a detailed
description of blockchain algorithms), yet it exhibits two key properties of
blockchains: blockchain extensions must preserve consistency and blocks may
be received in the wrong order. Note, however, that although receiving blocks
in the wrong order is an important logical possibility, it only happens rarely
in practice: in the Bitcoin protocol the average generation time of a new
block is 10 minutes; the average time until a node receives a block is only
6.5 seconds [8].

In order to illustrate the dynamics of our simple blockchain logic, we state
some valid principles of BCL:

Persistence: 2A → [i, B]2A. Beliefs are persistent, i.e., receiving a new
block cannot lead to a retraction of previous beliefs.

Consistency: [i, B]¬2⊥. Receiving a new block cannot result in inconsis-
tent beliefs.

20

Success: Acc(i, A) → [i, A]2A. If a block [i, A] is acceptable, then A is
believed after receiving [i, A].1

Failure: (Qi ∨ ¬Q(i− 1))→ ([i, B]2A↔ 2A). If the current length of the
blockchain is not i− 1, then receiving a block [i, B] will not change the
current beliefs.

Proof. 1. Persistence: 2A → [i, B]2A. Let M := (I,BC, 〈〉, v) be an
initial model and assume M |= 2A. That is I ∪ set(BC) |= A. Let
(I,BC′,PU′, v) := M[i,B]. We find that set(BC) ⊆ set(BC′). Therefore,
I ∪ set(BC′) |= A, hence we have M[i,B] |= 2A and M |= [i, B]2A.

2. Consistency: [i, B]¬2⊥. We let M := (I,BC, 〈〉, v) be an initial model.
Further, we set (I,BC′,PU′, v) := M[i,B]. By Lemma 1 we know that
I ∪ set(BC′) is satisfiable, i.e., I ∪ set(BC′) 6|= ⊥. Hence M[i,B] |= ¬2⊥,
which is M |= [i, B]¬2⊥.

3. Success: Acc(i, A) → [i, A]2A. Let M := (I,BC, 〈〉, v) be an initial
model and assume M |= Acc(i, A). Let (I,BC′,PU′, v) := M[i,A]. By
Lemma 2, we know BC′ = BC◦A. Thus I∪ set(BC′) |= A and, therefore
M[i,A] |= 2A, which is M |= [i, A]2A.

4. Failure: (Qi ∨ ¬Q(i − 1)) → ([i, B]2A ↔ 2A). Again, let M :=
(I,BC, 〈〉, v) be an initial model and assume M |= Qi ∨ ¬Q(i − 1). We
find that M 6|= Acc(i, B). Indeed,

M |= Qi implies M 6|= Acc(i, B)

and
M |= ¬Q(i− 1) implies i > 1 and M 6|= Acc(i, B).

Let (I,BC′,PU′, v) := M[i,B]. By Lemma 2, we know BC′ = BC. There-
fore, M[i,B] |= 2A if and only if M |= 2A, which yields

M |= [i, B]2A↔ 2A.

There are several open issues for future work. Let us only mention two
of them. Although blockchains are called chains, the data structure that is

1We call this prinicple success; but it is not related to the notion of a successful formula
as studied in dynamic epistemic logic, see, e.g., [24].

21

actually used is more tree-like and there are different options how to choose
the valid branch: Bitcoin currently uses the branch that has the greastest
proof-of-work effort invested in it [19] (for simplicity we can think of it as the
longest branch); but it is well-known that the GHOST rule [21] (used, e.g., in
Ethereum [26]) provides better security at higher transaction throughput.
We plan to extend BCL so that it can handle tree-like structures and the
corresponding forks of the chain. In particular, this requires some form of
probability logic to model the fact that older transactions are less likely
reversed [9, 19, 21].

In a multi-agent setting, each agent (node) has her own instance of the
blockchain. Justification logics [2, 3, 15] could provide a formal approach
to handle this. Evidence terms could represent blockchain instances and
those instances can be seen as justifying the agents’ knowledge about the
accepted transactions. This approach would require to develop new dynamic
justification logics [6, 20, 14]. Moreover, if the underlying blockchain model
supports forks of the chain, then we need justification logics with probability
operators [12].

References

[1] A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies. O’Reilly Media, Inc., 2014.

[2] S. N. Artemov. Explicit provability and constructive semantics. Bulletin
of Symbolic Logic, 7(1):1–36, Mar. 2001.

[3] S. N. Artemov and M. Fitting. Justification Logic: Reasoning with Rea-
sons. Cambridge University Press, 2019.

[4] K. Brünnler. Blockchain kurz & gut. O’Reilly, 2018.

[5] K. Brünnler, D. Flumini, and T. Studer. A logic of blockchain updates.
In S. Artemov and A. Nerode, editors, Logical Foundations of Computer
Science, pages 107–119. Springer, 2018.

[6] S. Bucheli, R. Kuznets, and T. Studer. Realizing public announcements
by justifications. Journal of Computer and System Sciences, 80(6):1046–
1066, 2014.

22

[7] V. Buterin. Ethereum: A next-generation smart contract and decentral-
ized application platform, 2013. Retrieved 2 Feb. 2017.

[8] C. Decker and R. Wattenhofer. Information propagation in the Bit-
coin network. In 13th IEEE International Conference on Peer-to-Peer
Computing, pages 1–10, 2013.

[9] C. Grunspan and R. Pérez-Marco. Double spend races. ArXiv e-prints,
1702.02867, 2017.

[10] J. H. Halpern and P. Rafael. A knowledge-based analysis of the
blockchain protocol. In K. Lang, editor, TARK 2017, number 251 in
EPTCS, pages 324–335, 2017.

[11] M. Herlihy and M. Moir. Blockchains and the logic of accountability:
Keynote address. In LICS ’16, pages 27–30, 2016.

[12] I. Kokkinis, P. Maksimović, Z. Ognjanović, and T. Studer. First steps to-
wards probabilistic justification logic. Logic Journal of IGPL, 23(4):662–
687, 2015.

[13] B. Kooi. Expressivity and completeness for public update logics via
reduction axioms. Journal of Applied Non-Classical Logics, 17(2):231–
253, 2007.

[14] R. Kuznets and T. Studer. Update as evidence: Belief expansion. In
S. N. Artemov and A. Nerode, editors, Logical Foundations of Com-
puter Science, International Symposium, LFCS 2013, San Diego, CA,
USA, January 6–8, 2013, Proceedings, volume 7734 of Lecture Notes in
Computer Science, pages 266–279. Springer, 2013.

[15] R. Kuznets and T. Studer. Logics of Proofs and Justifications. College
Publications, 2019.

[16] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[17] B. Marinković, P. Glavan, Z. Ognjanović, D. Doder, and T. Studer.
Probabilistic consensus of the blockchain protocol. In G. Kern-Isberner
and Z. Ognjanović, editors, Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pages 469–480. Springer, 2019.

23

[18] B. Marinković, P. Glavan, Z. Ognjanović, and T. Studer. A temporal
epistemic logic with a non-rigid set of agents for analyzing the blockchain
protocol. Journal of Logic and Computation, 29(5):803–830, 2019.

[19] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[20] B. Renne. Public communication in justification logic. Journal of Logic
and Computation, 21(6):1005–1034, Dec. 2011. Published online July
2010.

[21] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in
bitcoin. In R. Böhme and T. Okamoto, editors, Financial Cryptography
and Data Security 2015, Revised Selected Papers, pages 507–527, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[22] D. Steiner. A system for consistency preserving belief change. In S. Arte-
mov and R. Parikh, editors, Proceedings of Rationality and Knowledge,
18th ESSLLI, pages 133–144. Association for Logic, Language and In-
formation, 2006.

[23] D. Steiner and T. Studer. Total public announcements. In S. Artemov
and A. Nerode, editors, LFCS 2007, volume 4514 of LNCS, pages 498–
511. Springer, 2007.

[24] H. van Ditmarsch and B. Kooi. The secret of my success. Synthese,
151(2):201–232, 2006.

[25] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2007.

[26] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger, EIP-150 revision, 2017. Retrieved 2 Feb. 2017.

Addresses

Kai Brünnler
Bern University of Applied Sciences, Biel, Switzerland
kai.bruennler@bfh.ch

Dandolo Flumini
ZHAW School of Engineering, Winterthur, Switzerland
dandolo.flumini@zhaw.ch

24

Thomas Studer
University of Bern, Bern, Switzerland
thomas.studer@inf.unibe.ch

25

	1

