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Abstract. For extreme-flood estimation, simulation-based
approaches represent an interesting alternative to purely sta-
tistical approaches, particularly if hydrograph shapes are re-
quired. Such simulation-based methods are adapted within
continuous simulation frameworks that rely on statistical
analyses of continuous streamflow time series derived from
a hydrological model fed with long precipitation time se-
ries. These frameworks are, however, affected by high com-
putational demands, particularly if floods with return peri-
ods> 1000 years are of interest or if modelling uncertainty
due to different sources (meteorological input or hydrologi-
cal model) is to be quantified. Here, we propose three meth-
ods for reducing the computational requirements for the hy-
drological simulations for extreme-flood estimation so that
long streamflow time series can be analysed at a reduced
computational cost. These methods rely on simulation of an-
nual maxima and on analysing their simulated range to down-
size the hydrological parameter ensemble to a small number
suitable for continuous simulation frameworks. The methods
are tested in a Swiss catchment with 10 000 years of synthetic
streamflow data simulated thanks to a weather generator. Our
results demonstrate the reliability of the proposed downsiz-
ing methods for robust simulations of rare floods with un-
certainty. The methods are readily transferable to other situ-
ations where ensemble simulations are needed.

1 Introduction

The quantification of extreme floods and associated return
periods remains a key issue for flood hazard management

(Kochanek et al., 2014). Extreme-value analysis was largely
developed in this field for the estimation of flood return pe-
riods (Katz et al., 2002); corresponding methods have been
recently extended to bivariate approaches that assign proba-
bilities jointly to flood peaks and flood volumes (Favre et al.,
2004; De Michele et al., 2005; Brunner et al., 2016) and to
trivariate approaches to assign probabilities jointly to flood
peaks, volume and duration (Zhang and Singh Vijay, 2007);
for a review of this field, see the work of Graler et al. (2013).

Most modern applications, however, require the estima-
tion of not only extreme peak flow, associated flood vol-
umes and duration but also of hydrograph shapes, in particu-
lar in the context of reservoir design or for safety checks of
hydraulic infrastructure (Kochanek et al., 2014; Gaál et al.,
2015; Zeimetz et al., 2018). The key is thus the construction
of design hydrographs with different shapes, peak flows and
volumes, with a corresponding probability of occurrence.
Such approaches can be roughly classified into methods that
identify the shape of these design hydrographs based on ob-
served data (Mediero et al., 2010) or based on theoretical
considerations (unit hydrographs) (Brunner et al., 2017) and
regionalization (Tung et al., 1997; Brunner et al., 2018a) or
methods that rely on streamflow simulations (Arnaud and
Lavabre, 2002; Kuchment and Gelfan, 2011; Paquet et al.,
2013).

Simulation-based methods for design or extreme-flood es-
timation have a long history in hydrology (for a review see
Boughton and Droop, 2003) and started with the classical
event-based simulation with selected design storms (Eagle-
son, 1972; Chow et al., 1988; American Society of Civil En-
gineers, 1996). Those event-based methods are based on the
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concept that the design storm and flood have the same return
period. Moreover, as they usually do not simulate antecedent
conditions prior to the event and do not account explicitly
for storm patterns (duration, spatial and temporal variability),
they may yield biased flood frequency distributions (Viglione
and Blöschl, 2009; Grimaldi et al., 2012a). Although some
modern extensions of this event-based concept account for
variable initial conditions prior to the event through sensi-
tivity tests (Filipova et al., 2019), most of the work using
event-based simulations assume default initial conditions. In-
deed, such event-based simulation is still in use, in partic-
ular in the context of probable maximum flood (PMF) es-
timation based on probable maximum precipitation (PMP)
(Beauchamp et al., 2013; Gangrade et al., 2019).

Modern extensions of this approach, however, use contin-
uous hydrological modelling for design flood estimation to
generate either (i) a range of initial conditions for use in com-
bination with design or randomly drawn storms (Paquet et al.,
2013; Zeimetz et al., 2018) or (ii) long discharge time series
from long observed-precipitation records or from synthetic
precipitation time series obtained with a weather generator
(Calver and Lamb, 1995; Cameron et al., 2000; Blazkova and
Beven, 2004; Hoes and Nelen, 2005; Winter et al., 2019).
The above approach (ii) is computationally intensive, espe-
cially if long time series are to be simulated using ensem-
bles of hydrological parameter sets or if very high return pe-
riods (> 1000 years) have to be robustly estimated. But in
exchange, return period analysis is straightforward for simu-
lated peak flows or volumes. Full hydrographs for risk analy-
sis are then obtained by either selecting a range of simulated
extreme events or by scaling up an estimated synthetic de-
sign hydrograph by quantiles of extreme peak and volume
estimated using frequency analysis (Pramanik et al., 2010;
Serinaldi and Grimaldi, 2011).

These fully continuous simulation schemes are particu-
larly useful for studies where recorded discharge time se-
ries are too short for extreme-flood analysis (Lamb et al.,
2016; Evin et al., 2018). Although such an approach is based
entirely on a continuous hydrological simulation, it is note-
worthy that such a fully continuous approach might still be
considered to be “semi-continuous” from a hydraulic per-
spective since corresponding studies often lack the final hy-
draulic routing step along the floodway (Grimaldi et al.,
2013). For clarity, we therefore use the term “continuous
hydrological simulation scheme” to distinguish it from the
abovementioned hydraulic approach. These continuous hy-
drological simulation frameworks are still rare for time se-
ries≥ 100 years due to heavy computational requirements
(Grimaldi et al., 2013). An example is the work of Arnaud
and Lavabre (2002), who use a continuous simulation frame-
work to generate an ensemble of possible extreme hydro-
graphs, which are then used as individual scenarios for haz-
ard management. Another option is to summarize all sim-
ulated flood hydrographs into probability distributions for
peak flow and flood volume (Gabriel-Martin et al., 2019).

High computational power is particularly needed in order
to provide estimations for high to extreme return periods (up
to 1000 years and higher) required for safety-related stud-
ies or for hydrological-hazard management. For such rare
events, the large number of simulations in fully continuous
frameworks can easily become prohibitive, in particular if
the framework should also account for different sources of
modelling uncertainty, such as input uncertainty (different
weather generators) or the uncertainty in the hydrological
model itself, which is often incorporated into the model pa-
rameter sets (using distribution of model parameters rather
than a single best set) (Cameron et al., 1999). Using multi-
ple parameter sets for a hydrological model is justified by the
parameter equifinality (Beven and Freer, 2001; Sikorska and
Seibert, 2018b). It has also been found that the model pa-
rameter uncertainty comprises important uncertainty sources
in design floods that are based upon hydrological simulations
(Brunner and Sikorska-Senoner, 2019). Other important un-
certainty sources in hydrological modelling are linked to
the calibration (discharge) data, input forcing (precipitation,
temperature, evaporation) data and model structure (Sikorska
and Renard, 2017; Westerberg et al., 2020).

Studies dealing with modelling or data uncertainties in
such continuous simulation frameworks are rare as most
previous studies have focused on the uncertainty related to
the hydrological-model parameters only (e.g. Blazkova and
Beven, 2002, 2004; Cameron et al., 1999). In addition to the
uncertainties from seven hydrological-model parameters, Ar-
naud et al. (2017) investigated how the uncertainty related to
six rainfall generator parameters propagates through the sim-
ulation framework using more than 1000 French basins with
hydrological observation series of 40 years (median over all
basins) and several hundreds of replicates. In their study they
found that the uncertainty in the rainfall generator domi-
nates the uncertainty in the simulated extreme-flood quan-
tiles. With the exception of the work of Arnaud et al. (2017)
using a simplified hydrological model, studies that deal with
meteorological- and hydrological-modelling uncertainty in
fully continuous simulation frameworks are currently miss-
ing. This is despite the fact that recent improvements in com-
putational power with cluster and cloud computing theoreti-
cally open up the unlimited possibility of analysing different
combinations of meteorological scenarios and parameter sets
of a hydrological model within such ensemble-based simu-
lation frameworks. Yet, computational constraints of hydro-
logical models, especially at a high temporal resolution (sub-
daily or hourly), and data storage still remain bounding fac-
tors for simulation of long time series or for simulation of
extreme floods with high return periods (up to 10 000 years).

Accordingly, for settings where full hydrological–
hydraulic models are used for continuous simulation, some
pre-selection of hydro-meteorological scenarios is often
needed, particularly for computationally demanding complex
hydrological or hydraulic models. How this selection should
be completed, i.e. based on which quantitative criteria, re-
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mains unclear. The meteorological scenarios have the par-
ticularity that all scenarios generated with the same weather
generator present different but equally likely realizations of
the assumed climate condition; in other words, they represent
the natural variability in the climate. Reducing the number of
meteorological-input scenarios is not possible without simu-
lating them with a hydrological model first as long as the
continuous simulation scheme is of interest, i.e. if full time
series are to be analysed without the possibility of extract-
ing single events. This is due to the non-linear response of
any hydrological model to meteorological input (scenario),
which translates into hydrological scenarios with different
statistical properties, albeit resulting from an ensemble of in-
put scenarios having the same statistical properties.

We are therefore essentially left with finding ways to
reduce at least the computational requirements associated
with hydrological-model parameter uncertainty, apart from
reducing the length of time series, which for analysis of
extremes, is an unattractive option. Accordingly, in this
work, we propose an assessment of different data-based
methods to select a reduced-size ensemble of hydrological-
model parameters for the use within a continuous simula-
tion, ensemble-based hydro-meteorological framework. Our
specific research questions are as follows. (1) How can we
downsize (reduce) the hydrological-model parameter ensem-
bles for simulation of rare floods so that the variability and
the range of the full ensemble is preserved as closely as pos-
sible? (2) Can such a reduced hydrological-model parame-
ter ensemble be assumed to be reliable for the simulation
of rare floods during the reference period (used for param-
eter ensemble downsizing) as well as during an indepen-
dent validation period? (3) Which metrics would be suitable
to assess the performance of such a reduced hydrological-
model parameter ensemble against the reference (full) en-
semble? Specifically, three different methods of reducing a
full hydrological-modelling parameter ensemble to a hand-
ful of parameter sets are proposed and tested for deriving
the uncertainty ranges of simulated rare flood events (up
to 10 000 years return period). All three methods rely on
simulation of annual maxima and are tested on continu-
ous synthetic data (simulated with a hydrological model) of
10 000 years. Using synthetic instead of observed data is im-
portant here as only recently Brunner et al. (2018b) have
shown that the record length is one of the most important
sources of uncertainty in design floods. Hence, using a sim-
ulation setting with synthetic data as a start for our analy-
sis enables us (i) to provide long enough simulation periods
for rare-flood analysis with return periods≥ 100 years and
(ii) to be able to focus entirely on the uncertainty in the hy-
drological response, while other uncertainty sources of a hy-
drological model (due to model calibration) are not explic-
itly considered. Note that way the hydrological model is cal-
ibrated lies outside of the scope of this paper. The principal
idea underlying these selection methods is that the downsiz-
ing of the ensemble of hydrological-model parameters may

Figure 1. Framework overview. The infimum and supremum refer
to the largest interval bounding the ensemble simulation from below
and the smallest interval bounding it from above.

be performed with a reduced length of input time series that
is much shorter than the full simulation time frame and that
then can be applied to the full time window for analysis of
rare floods (up to return periods of 1000 years or more).

2 Methods

2.1 Study framework and objectives

The focus of this study is a fully continuous hydro-
meteorological ensemble-based simulation framework for
estimation of rare floods. The underlying streamflow time
series ensemble is built based on meteorological scenarios
and multiple hydrological-model runs using a number of cal-
ibrated model parameter sets. A meteorological scenario rep-
resents a single realization from a stochastic weather gener-
ator with constant model parameters. These meteorological
scenarios are equally likely model realizations that differ in
the precipitation and temperature patterns, and together they
represent the natural variability in the climate (and not the
model uncertainty in a weather generator). These realizations
are then used as inputs into a hydrological model to simu-
late the hydrological response. To account for hydrological-
modelling uncertainty, a range of different hydrological-
model parameter sets is used for each meteorological sce-
nario. These two sources of hydrological variability then ac-
cumulate along the modelling chain and can be represented
as an ensemble of possible hydrological responses (Fig. 1).

Within such a defined framework we first want to under-
stand how variable the hydrological response simulation is
and, second, develop methods to downsize the hydrological-
model parameter ensemble to a smaller subset that could be
dealt with within such a modelling chain for rare-flood simu-
lations. This subset should represent the entire range of vari-
ability in the hydrological response but with little computa-
tional effort and should also be transferable to independent
time periods. Hereafter, we call this subset the representative
parameter ensemble.

https://doi.org/10.5194/nhess-20-3521-2020 Nat. Hazards Earth Syst. Sci., 20, 3521–3549, 2020
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Downsizing of the ensemble of hydrological-model pa-
rameters is particularly needed if (i) the probability distri-
bution of the parameter sets is unknown because parameter
sets result from independent calibrations or regionalization
approaches, and only a limited number of sets can be run
with the hydrological model, or (ii) the distribution is known
(i.e. estimated from data), but due to time-consuming simu-
lations it is not possible to run the hydrological model for a
full ensemble of multiple meteorological scenarios.

The question of how many parameter sets are needed to
cover most of the simulation range is important. However,
here we set this value to a constant number and rather test
different selection approaches. Hence, for the purpose of our
work, we furthermore would like this representative parame-
ter ensemble to be composed of only three sets, which should
be representative of a lower (infimum), a middle (median)
and an upper (supremum) interval of the full hydrological en-
semble (Fig. 1). These intervals, together, should enable the
construction of predictive intervals for rare-flood estimates
that represent the full variability range of all ensemble mem-
bers. The infimum (from the Latin – smallest) and supre-
mum (from the Latin – largest) refer to the greatest lower
bound and the least upper bound (Hazewinkel, 1994), i.e. the
largest interval bounding the ensemble from below, here 5 %,
and the smallest interval bounding it from above, here 95 %.
Thus, the representative band should correspond to 90% pre-
dictive bands of a target variable. The choice of infimum and
supremum is favourable over the maximum and minimum
as the latter would imply a complete hydrological-model pa-
rameter ensemble range, whereas here we use the terms to
describe the range of a certain ensemble.

The key challenge for such a downsizing is the fact that
we would like to select hydrological-model parameter sets
(i.e. select in the parameter space) but based on how repre-
sentative the corresponding simulations are in the model re-
sponse space. Moreover, the downsized ensemble should not
only be representative of simulated time periods but also be
transferable to independent time periods. The first question to
answer is which model response space the selection should
focus on. In the context of rare-flood estimation, focusing
on the frequency distribution of annual maxima (AMs) is a
natural choice; we thus propose to use the representation of
AMs sorted by their magnitudes (i.e. frequency space) as the
reference model response space for parameter selection.

The next step is the development of selection methods to
select hydrological-model parameter sets that plot into cer-
tain locations in the model response space. Given the non-
linear relationship between model parameters and hydrolog-
ical responses, this selection has to be obtained via a post-
modelling approach; i.e. we have to first simulate all param-
eter sets and then decide which parameter sets fulfil certain
selection criteria in the model response space.

For that purpose, we developed three methods, which are
based on (a) ranking, (b) quantiling, and (c) clustering, de-
scribed in detail in Sect. 2.2. The main idea behind all three

methods is that the hydrological-parameter set selection is
made based on the full ensemble with all hydrological-model
simulations but using only a limited simulation period that is
much shorter than the time window of full meteorological
scenarios used within the simulation framework for which
rare floods are to be estimated.

Next, for the purpose of this study, let us define the follow-
ing variables:

– I is a number of hydrological-model parameter sets
available, with i = 1, 2, . . . being a parameter set index.

– θ i is the ith parameter set of a hydrological model.

– J is a number of annual maxima (years) per hydrologi-
cal simulation; y = 1, 2, . . . is a year of simulation (in-
dex of unsorted annual maxima); and j = 1, 2, . . . is an
index of sorted annual maxima.

– Xj is the j th sorted annual maximum, and Xy is the
unsorted annual maximum from the year y.

– M is a number of meteorological scenarios considered,
with m= 1, 2, . . . being a meteorological scenario in-
dex.

– Sm is the mth meteorological scenario.

– H(θ i |Sm) is the hydrological simulation computed us-
ing the ith parameter set of a hydrological model and
the mth meteorological scenario.

– Xy,i,m is the annual maximum for the year y extracted
from H(θ i |Sm).

– θ inf, θmed and θ sup are the representative parameter sets
of the hydrological model, i.e. infimum, median and
supremum that correspond to the intervals named in the
same way.

2.2 Developed methods for selecting the representative
parameter sets

For the sake of simplicity, let us choose a single meteoro-
logical scenario Sm for now. Using Sm as an input into a
hydrological model combined with I parameter sets results
in an ensemble of hydrological simulations, H(θ1,2, ...|Sm).
Now, the goal is to select a limited number (here three) of
hydrological-model parameter sets, i.e. θ inf, θmed and θ sup,
from the available pool of I sets (I � 3) based on the sim-
ulation of annual maxima (AMs). These AMs are extracted
from time series with continuous hydrological simulations,
i.e. H(θ1,2, ...|Sm), using a maximum approach that guar-
antees that the highest peak flow within each calendar year
for each hydrological simulation is selected (Fig. 2). This
assumption is made to cover the situation when different
model realizations (i.e. for i =1, 2, . . . ) lead to different flood
events being classified as the largest event within the year. In
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Figure 2. Overview of the modelling chain and the selection methods of the representative parameter sets; (a) delivery of hydrological-
simulation ensembles and ensemble ranges; (b) three methods (A–C) proposed for selecting the representative parameter sets based on
annual maxima (AMs) marked with red circles.

this case, we ensure that the largest flood event simulated
within each yth year and each ith parameter set is selected.
This means however that AMs selected for the same year y
but with a different hydrological-model parameter set may
originate from different flood events and even from a differ-
ent dominant flood process, e.g. heavy rainfall or intensive
snowmelt (Merz and Blöschl, 2003; Sikorska et al., 2015).
This could be the case when one hydrological-model param-
eter set better represents processes driven by the rainfall ex-
cess, while others better represent processes driven by the
snowmelt dynamics. For simplicity, we do not distinguish
events by their different flood genesis and pool all AMs to-
gether.

Using the above notations, the selection of representative
parameter sets can be summarized as follows.

1. Simulation of continuous streamflow times series: the
hydrological model is run with all available I param-

eter sets of a hydrological model over the simulation
period. This gives I different hydrological realizations
(simulation ensemble members) covering the same time
span.

2. Selection of annual maxima (AMs): for each ith hydro-
logical realization, annual maxima are selected as the
highest peak flow within each yth simulation year. This
results in a J set of AMs per i hydrological simulation.
The selection of AMs is repeated for all I hydrological
simulations.

3. Selection of three representative parameter sets based
on the simulation of AMs and following on from the
three methods detailed below.

https://doi.org/10.5194/nhess-20-3521-2020 Nat. Hazards Earth Syst. Sci., 20, 3521–3549, 2020



3526 A. E. Sikorska-Senoner et al.: Downsizing parameter ensembles

2.2.1 Ranking

a. AMs computed from I hydrological simulations (i.e.
using I hydrological-model parameter sets) are sorted
by their magnitude from the highest to the lowest within
each yth simulation year independently (Fig. 2a).

b. For each yth simulation year, AMs which correspond to
the 5th, 50th and 95th rank for that year are selected.

c. Parameter sets that correspond to the selected AM ranks
are then attributed as 5th, 50th and 95th parameter sets
per yth year independently.

d. The parameter sets selected in step (c) are compared
over all J simulation years, and the sets which are cho-
sen most often as the 5th, 50th and 95th ranks are re-
tained as the parameter sets θR5, θR50 and θR95 repre-
sentative of the entire simulation period and for the en-
tire hydrological-simulation ensemble.

2.2.2 Quantiling

a. For each ith hydrological-model parameter set,
AMs computed with this parameter set are sorted
by their magnitude over the entire simulation pe-
riod (J years), thus creating the ensemble of sorted
AMs simulated with different parameter sets.

b. The 5 %, 50 % and 95 % quantiles of these ensembles
are computed at each j th point in the frequency space,
resulting in quantiles Q5, Q50 and Q95 over the entire
simulation period (Fig. 2b).

c. Next, for each ith ensemble member, a metric RMSE is
computed such that for each j th point of the ith en-
semble member it measures distances from Q5, Q50
and Q95. This metric is somehow similar to the mean
square error and is computed for Q50 as

RMSE,Q50,i =
1
J

J∑
j=1

(
Q50,j −Hj (θ i |Sm)

)2 (1)

and in the same way for Q5 and Q95.

d. Finally, the ensemble members which lie closest to Q5,
Q50 and Q95, i.e. that received the smallest values
for RMSE,Q5 , RMSE,Q50 and RMSE,Q95 , respectively,
are chosen as the ensemble members representative of
the entire hydrological ensemble, and the parameter
sets corresponding to these members, i.e. θQ5 , θQ50

and θQ95 , are retained as representative.

2.2.3 Clustering

a. Similar to the quantiling method, for each ith parameter
set, AMs computed with this parameter set are sorted by
their magnitude over the entire simulation period, creat-
ing I ensemble members of sorted AMs simulated with
different parameter sets.

b. These members are next clustered into three represen-
tative groups (clusters) based on all J simulation years
using the k-means clustering with the Hartigan–Wong
algorithm (Hartigan and Wong, 1979), as implemented
in the function kmeans from the package “stats” (R Core
Team, 2019); see Fig. 2c.

c. Next, these clusters are sorted based on cluster means
by their magnitude by comparing percentiles in the up-
per tail of the distribution (here we used a 90th per-
centile). Use of a percentile from the upper tail is im-
portant as methods are focusing on rare floods. How-
ever, we found that the method was insensitive to the
percentile choice as long as it lies in the upper tail
(i.e. ≥ 80th percentile). Based on the percentiles com-
puted for each cluster mean, the lower, middle and up-
per clusters are defined. Next, for the lower cluster a
5th percentile, for the upper a 95th percentile and for
the middle a 50th percentile are computed, i.e. P 5, P 50
and P 95. Note that we use here percentiles instead of
cluster means to make this method comparable with the
other two methods and to better cover the variability in
the hydrological-model parameter sample. Use of the
5th and 95th percentiles appears to be a fair choice for
asymmetrically spread clusters, which is most often the
case as different parameter sets of a hydrological model
may emphasize different hydrological processes in the
catchment.

d. For each ith ensemble member, the metricRMSE is com-
puted in relation to three estimated cluster percentiles
as, e.g. for Q50,

RMSE,P50,i =
1
J

J∑
j=1

(
P 50,j −Hj (θ i |Sm)

)2 (2)

and in the same way for P 5 and P 95.

e. For each of these three clusters, the ensemble member
that lies closest to the cluster percentile, i.e. received the
smallest value of RMSE, is selected as the representative
member for that cluster, and the parameter sets which
correspond to these members, θP5 , θP50 and θP95 , are
retained as representative.

For visualizing the selection methods, we use the Gumbel
space (generalized extreme-value distribution Type I) with
the Gringorten’s method (Gringorten, 1963) to compute the
plotting positions of AMs in the Gumbel plots:

kj =
j − 0.44
J + 0.12

, (3)

where kj is a plotting position for the j th (sorted) AM in the
Gumbel space.
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Table 1. Comparison of three methods for selecting representative parameter sets based on annual maxima (AMs).

Criteria Ranking Quantiling Clustering

Selection window Year All simulation years All simulation years
Annual maxima (AMs) Unsorted over years Sorted over years Sorted over years
Sorting space Simulated AMs AMs frequency, quantiling AMs frequency, clustering
Sorting extent AMs over simulations AMs over years AMs over years
Selection criteria Ranks RMSE RMSE
Interpretation of pred. intervals No Yes Yes
Parameter grouping No No Yes

2.3 Estimation of the predictive intervals for rare-flood
simulations

While the three methods described in Sect. 2.2 vary in
the way the representative parameter sets are selected (see
Sect. 2.4 for a summary), each of these selection meth-
ods results in three (different) representative hydrological-
simulation ensemble members and can be thought of as
representing the lower (infimum), upper (median) and mid-
dle (supremum) interval of the full simulation range. The
hydrological-model parameter sets corresponding to these
are then noted as θ inf, θmed and θ sup. The simulations cor-
responding to these three parameter sets together create the
so-called predictive interval, which can be used for rare-
flood simulation studies. Here, these predictive intervals con-
structed based on representative parameter sets correspond to
90 % predictive intervals (PIs).

2.4 Comparison of three selection methods

The major difference between these three methods is that the
ranking method is evaluated based on individual simulation
years using simple ranking of flow maxima independently
of their frequency; i.e. it works on unsorted annual maxima.
Note that in this way, for each y simulation year, a different
rank order of the I hydrological-model parameter sets may
be achieved. In an extreme case, where for each year differ-
ent parameter sets are chosen, a choice of the representative
sets over all simulation years may become problematic due to
difficulties in identifying the parameter sets most frequently
selected over all simulation years. The derived predictive in-
tervals thus are sensitive to individual years of simulations,
and their interpretation may be difficult (as they do not result
from any flow frequency analysis).

In contrast to the ranking method, both other methods, i.e.
quantiling and clustering, are performed on sorted AMs over
all simulation years, i.e. in the flow frequency space. This
enables statistical statements to be made about the selected
parameter sets and about the predictive intervals constructed
with the help of these parameter sets (as they are constructed
on the entire simulation ensemble). Furthermore, selected pa-
rameter sets can be assumed to be representative over the en-
tire simulation period (see Table 1 for a detailed overview of

three methods). Finally, the clustering method splits all en-
semble members (hydrological simulations) into three clus-
ters, and so each parameter set can be attributed to corre-
sponding clusters. This could be useful if one would like to
extract more information on each cluster behaviour.

2.5 Assessment of the behaviour of the approach

Testing the methods for a time period different than the one
that was used for the parameter ensemble downsizing is cru-
cial for assessing how well the reduced ensembles substi-
tute the whole simulation ensemble for the selection of rep-
resentative parameter sets. Thus, we propose to assess the
behaviour of the developed approach by repeating the selec-
tion of the three representative parameter sets with the three
proposed methods with multiple (M) meteorological scenar-
ios. Using multiple meteorological scenarios first enables us
to account for the natural variability in the hydrological re-
sponse due to climate variability and, second, gives us the
possibility to evaluate the bias of the approach. Particularly,
with the help of multiple meteorological scenarios we ex-
plore how the choice of the representative parameter sets θ inf,
θmed and θ sup depends on the meteorological scenario.

2.5.1 Leave-one-out cross-validation

To evaluate the three selection methods, we perform a leave-
one-out cross-validation simulation study, in which a me-
teorological scenario Sr is removed from the analysis, and
the selection of the representative parameter sets is executed
based on all other remaining meteorological scenarios, i.e.
using allm= 1, 2, . . . M andm 6= r . The evaluation of selec-
tion methods is then executed against the one meteorological
scenario initially removed from the set. In detail, the follow-
ing steps are executed for each of the three methods indepen-
dently:

a. Pick up and remove one meteorological scenario Sr
from S1,2, ...M scenarios available.

b. Analyse all other meteorological scenarios {SM−r} =

{S1,2, ...M}r {Sr}, each containing I ensemble mem-
bers resulting from I hydrological-model parameter
sets, {H(θ i |Sm−r)}, for i = 1,2, . . . I , m= 1, 2, . . . M
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and m 6= r and based on the selected three representa-
tive parameter sets θ inf,m−r, θmed,m−r and θ sup,m−r as
described in Sect. 2.2.

c. Estimate the predictive intervals of these SM−r me-
teorological scenarios as the band spread between
H(θ inf,m−r|Sm−r) and H(θ sup,m−r|Sm−r), the interval
defined in step (b).

d. Evaluate the meteorological scenario Sr removed at
step (a) against the predictive intervals of SM−r meteo-
rological scenarios to assess how well the defined iden-
tified intervals represent the ensemble members of this
Sr meteorological scenario (see Sect. 2.6 for assessment
criteria).

The simulation is repeatedM times to use each meteorologi-
cal scenario once. In other words, this test evaluates how well
the selection methods applied to all but one scenario can pre-
dict the full simulation range of the left-out scenario.

2.5.2 Multi-scenario evaluation

To further evaluate the three methods, we perform a simu-
lation study using multiple (M) meteorological scenarios. In
this study, the three selection methods are executed on one
meteorological scenario randomly (without replacement) se-
lected from the M available scenarios and evaluated against
all remaining scenarios. In detail, the following steps are ex-
ecuted for each of the three methods independently:

a. Pick up one meteorological scenario Sp out of the
S1,2, ...M scenarios available.

b. Analyse the I simulated hydrological ensemble mem-
bers of this scenario H(θ i |Sp), i = 1, 2, . . . I , resulting
from I hydrological-model parameter sets θ i for Sp, and
select three representative parameter sets corresponding
to θ inf,p, θmed,p and θ sup,p, as described in Sect. 2.2.

c. For all other remaining meteorological scenarios
{SM−p} = {S1,2, ...M}r {Sp}, take all hydrological en-
semble members {H(θ i |Sm)} for m= 1, 2, . . . M and
m 6= p that correspond to θ inf,p, θmed,p and θ sup,p. This
results inM−1 model simulations for θ inf,p, θmed,p and
θ sup,p, one per meteorological scenario.

d. Compute the 5th percentile for {H(θ inf,p|Sm)},
the 50th for {H(θmed,p|Sm)} and the 95th for
{H(θ sup,p|Sm)} for m= 1, 2, . . . M and m 6= p.
The computed 5th and 95th percentiles together are
assumed to describe the predictive intervals.

e. Evaluate the predictive intervals against all SM−p me-
teorological scenarios for assessing how well the iden-
tified prediction intervals represent the ensemble mem-
bers of these SM−p scenarios (see Sect. 2.6).

The steps (a)–(e) are repeated M times to use each mete-
orological scenario once. We call this evaluation a multi-
scenario evaluation because the evaluation is performed us-
ing multiple meteorological scenarios at once (SM−p) in
contrast to the leave-one-out cross-validation (Sect. 2.5.1),
where the evaluation is performed against only one meteoro-
logical scenario (Sr). This test quantifies how well the meth-
ods applied to a single scenario are transferable to all other
scenarios.

2.6 Evaluation criteria

2.6.1 Visual assessment

The simplest way of assessing the behaviour of these three
methods is a visual inspection of curves plotted in the fre-
quency space (e.g. using Gumbel distribution for plotting),
which can tell us how well the selected members reproduce
the simulation ensemble and particularly whether the assign-
ment of the representative parameter sets is correct or not.
For this purpose, we propose to plot all simulated hydro-
logical ensemble members together with the selected repre-
sentative members in the frequency space for each consid-
ered meteorological scenario m individually and to visually
assess the assignment of the three selected parameter sets,
θ inf,m, θmed,m and θ sup,m, and the corresponding intervals,
i.e.H(θ inf,m|Sm),H(θmed,m|Sm) andH(θ sup,m|Sm). The or-
der of the intervals’ assignment is assumed to be correct if it
holds in the frequency space that

H
(
θ inf,m|Sm

)
≤H

(
θmed,m|Sm

)
≤H

(
θ sup,m|Sm

)
. (4)

We further define a ratio of incorrectly attributed scenarios
with mixed-up intervals, i.e. for which Eq. (4) does not hold,
as a measure of the bias as

Rbias =

M∑
m=1

Rm

M
, (5)

where Rm is computed for the mth scenario as

Rm ={
0 if H

(
θ inf,m|Sm

)
<H

(
θmed,m|Sm

)
<H

(
θ sup,m|Sm

)
1 else . (6)

2.6.2 Quantitative assessment

To quantitatively compare the three selection methods, we
propose to compute the five following metrics:

I. The ratio of simulation points in the frequency space,
i.e. sorted annual maxima, lying outside the predictive
intervals is computed for each mth scenario as

Rspo,m =

I∑
i=1

J∑
j=1

Rspo,m,i,j

I · J
, (7)
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where Rspo,m,i is the ratio for each ith hydrological-
model parameter set of the meteorological scenario m
and is computed for each simulation point j (sorted an-
nual maximum) as

Rspo,m,i,j ={
0 if Hj

(
θ inf,m|Sm

)
≤Hj (θ i |Sm)≤Hj

(
θ sup,m|Sm

)
1 else . (8)

II. In the leave-one-out cross-validation, the ratio of
hydrological-simulation ensemble members lying out-
side the predictive intervals is computed for each
mth scenario as

Rhso,m =

I∑
i=1

Rhso,m,i

I
, (9)

whereRhso,m,i is the ratio computed for each ith ensem-
ble member as

Rhso,m,i ={
0 if H

(
θ inf,m|Sm

)
≤H (θ i |Sm)≤H

(
θ sup,m|Sm

)
1 else . (10)

III. In the multi-scenario evaluation, the ratio of meteoro-
logical scenarios lying outside the predictive intervals
is computed for each scenario p as

Rmso,p =

M∑
m

Rmso,m

M − 1
m= 1,2, . . .M and m 6= p, (11)

where Rmso,m is computed as

Rmso,m ={
0 if H

(
θ inf,m|Sm

)
≤H (θ i |Sm)≤H

(
θ sup,m|Sm

)
∀i = 1,2, . . . I

1 else . (12)

IV. Relative band spread of PIs (R1PIs) is computed for
both tests and compares the spread of PIs constructed
with the representative parameter sets versus 90 % PIs
of the full hydrological ensemble. In detail, R1PIs is
computed for each mth scenario as

R1PIs,m =

J∑
j

SPIs,repr.,m

SPIs,full,m
m= 1,2, . . .M

and j = 1,2, . . . J, (13)

where SPIs,repr.,m and SPIs,full,m are band spreads of the
90 % PIs constructed with the representative parameter
sets and with the full hydrological ensemble. The band
spread is computed as a difference between the upper
(or supremum) and the lower (or infimum) interval at
each j th simulation point in the frequency space.

V. Overlapping pools of PIs (ROPPIs) are computed for
both tests in the frequency space by taking the Gumbel
variate and discharge values of sorted AMs as coordi-
nates of the PI pools. In detail,ROPPIs of PIs constructed
with the representative parameter sets is computed for
each mth scenario as

ROPPIs,m =

J∑
j

(
kj − kj−1

)
2

(
H
(
θ sup,m,j

)
+H

(
θ sup,m,j−1

)
−H

(
θ inf,m,j

)
−H

(
θ inf,m,j−1

))
m= 1,2, . . .M

and j = 2,3, . . . J. (14)

In a similar way, ROPPIs is computed for the full hydro-
logical ensemble using the pool restricted by the 90 %
PIs, i.e. taking the 5 % and 95 % intervals as pool bor-
ders.

With respect to Rspo, the question arises of how to de-
fine the ratio of simulation points outside the predictive
intervals if multiple hydrological simulations (leave-one-
out cross-validation) or multiple meteorological scenarios
(multi-scenario evaluation) are considered. Here we propose
to use the 50th percentile to characterize the ratio of the ma-
jority of simulation points lying outside the computed pre-
dictive intervals for each of the methods.

In a similar way, for Rhso and Rmso an addi-
tional condition must be defined, i.e. how many out of
J hydrological-simulation points for Rhso or how many out
of I hydrological-simulation ensemble members for Rmso
must lie outside the defined predictive intervals so that the
hydrological simulationH(θ i |Sm) or the meteorological sce-
nario Sm is considered to be outside these intervals. For this
purpose we define the rejection threshold rthr (dimensionless)
that has to be reached so that the meteorological scenario or
hydrological simulation is assumed to be outside the predic-
tive intervals. In this work, we consider the two following
values for rthr: {0.50, 0.10}.

With regards to R1PIs, we propose to compute the rela-
tive band spread as a mean over all sorted AMs at first. Also,
to focus more on rare floods, we propose to compute means
of rare floods limited by different Gumbel variates. Here we
computed R1PIs for the upper half of AMs (R1PIs,j≥51),
for the uppermost 10 AMs (R1PIs,j≥91) and the uppermost
5 AMs (R1PIs,j≥96).

These five metrics are computed for all three methods and
for all M meteorological scenarios, and the median values
over theseM scenarios are taken as a measure for comparing
the three methods.
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Figure 3. Location of the Dünnern at Olten catchment with a river network extracted from Swiss Map Vector 25 (SwissTopo, 2008).

3 Experimental set-up

3.1 Study catchment

For testing the methods developed here, a small close-to-
natural catchment is preferable, i.e. with only little anthro-
pogenic influence, in which hydrological responses are trans-
parent, and the generation of rare floods (peaks) is not af-
fected by human constructions (dams, bridges). For this pur-
pose, the Dünnern stream at Olten catchment with an area of
196 km2 is selected, located in the Jura region in Switzerland
(Fig. 3). The Dünnern stream is a tributary of the Aare river
and belongs to the basin of the Rhine river. The mean eleva-
tion of the Dünnern at Olten catchment is 711 m a.s.l., with
an elevation span from 400 to 760 m a.s.l. The flow regime
is defined as nival pluvial jurassien (Weingartner and As-
chwanden, 1992; Schürch et al., 2010), with high flows in
winter and spring and low flows in autumn. With no direct
human influence within the entire catchment known, it can
be assumed to be close to natural (BAFU, 2017). This catch-
ment is part of a large-scale extreme-flood modelling effort
in Switzerland for the entire Aare catchment (Viviroli et al.,
2020).

3.2 Hydrological model and calibration data

To simulate the hydrological catchment responses to mete-
orological scenarios, the HBV model (Hydrologiska Byråns
Vattenbalansavdelning) is used. The HBV model is a semi-
distributed bucket-type model, and it consists of four main
routines: (1) precipitation excess, snow accumulation and
snowmelt; (2) soil moisture; (3) groundwater and streamflow
responses; and (4) run-off routing using a triangular weight-

ing function. Due to the presence of the snow component, the
HBV model is applicable to mountainous catchments (e.g.
Jost et al., 2012; Addor et al., 2014; Breinl, 2016; Griessinger
et al., 2016; Sikorska and Seibert, 2018b).

In this study, the version HBV light (Seibert, 1997; Seib-
ert and Vis, 2012) with 15 calibrated parameters is used; see
Table A1 for details on model parameters and their calibra-
tion ranges. Such a set-up of the HBV light was previously
successfully applied in Swiss catchments (e.g. Sikorska and
Seibert, 2018a; Brunner et al., 2018c; Brunner and Sikorska-
Senoner, 2019; Müller-Thomy and Sikorska-Senoner, 2019;
Westerberg et al., 2020). Model inputs are time series of pre-
cipitation and air temperature and long-term averages of sea-
sonally varying estimates of potential evaporation, all being
area-average values for the entire catchment. These inputs
are next redistributed along predefined elevation bands us-
ing two different constant altitude-dependent correction fac-
tors for precipitation and temperature. The model output is
streamflow at the catchment outlet at time steps identical to
input data (hourly in this study).

For the study catchment, meteorological inputs (hourly
precipitation totals, hourly air temperature means, average
hourly evaporation sums) for the HBV model are derived
from observed records from meteorological stations and are
averaged to the mean catchment values using the Thiessen
polygon method. The recorded continuous hourly stream-
flow data at the catchment outlet (Olten station) cover the
period 1990–2014.

Nat. Hazards Earth Syst. Sci., 20, 3521–3549, 2020 https://doi.org/10.5194/nhess-20-3521-2020



A. E. Sikorska-Senoner et al.: Downsizing parameter ensembles 3531

3.3 Identification of multiple HBV parameter sets

To derive multiple parameter sets of the HBV model, we
propose a heuristic approach that relies on multiple inde-
pendent model calibration trials using a genetic-algorithm
(GA) approach (Appendix A). By using independent model
runs, the possibility of being trapped in the same local op-
timum should be reduced. The genetic algorithm is used to-
gether with a multi-objective function Fobj with three scores:
the Kling–Gupta efficiency (RKGE), the efficiency for peak
flows (RPEAK) and a measure based on the mean absolute
relative error (RMARE). RPEAK is defined in a similar way
to the Nash–Sutcliffe efficiency but using peak flows instead
of the entire time series. While both RKGE and RPEAK focus
on high (peak) flows, RMARE is sensitive to low flows. See
Appendix B for equations.
Fobj is obtained through weighing these metrics as fol-

lows:

Fobj = 0.3RKGE+ 0.5RPEAK+ 0.2RMARE. (15)

The weights in Fobj are chosen following our previous
experience in modelling Swiss catchments (Sikorska et al.,
2018; Westerberg et al., 2020). The available observational
datasets are split into a calibration (1990–2005) and a valida-
tion (2006–2014) period. Evaluation of the model in the in-
dependent period is important as the model is applied to sim-
ulate time series outside the calibration period. To set up the
initial conditions, 1 year of model simulations is discarded
from the calibration simulation, and the remaining are used
for model performance computation. For the validation pe-
riod, the initial conditions are taken from the calibration sim-
ulation.

Here, the genetic algorithm is run 100 times, resulting in
100 independent optimal parameter sets (see Fig. C1). These
100 parameter sets represent similarly likely solutions to
model hydrological responses in this catchment and can be
explained by the equifinality of hydrological-model parame-
ters (Beven and Freer, 2001). The median model efficiency
measured with Fobj over all 100 runs is 0.7 in the calibra-
tion and in the validation periods, which can be assumed to
be a good model performance on an hourly scale. Also, di-
agnostics of the Nash–Sutcliffe efficiency and the peak effi-
ciency demonstrate that the model performs well in the range
of high flows, which are mostly important for simulation of
rare floods studied in this paper (see Fig. C2).

Note that the way to derive 100 parameter sets described
above is one possible approach, and other calibration meth-
ods could be used (e.g. Monte Carlo or bootstrapping).

3.4 Generation of synthetic meteorological scenarios
using a weather generator

Meteorological scenarios of synthetic precipitation and tem-
perature data for the Dünnern at Olten catchment are gen-
erated with the weather generator model GWEX developed

by Evin et al. (2018) and referred to in their paper as
GWEX_Disag. This stochastic model is a multi-site precip-
itation and temperature model that reproduces the statisti-
cal behaviour of weather events on different temporal and
spatial scales. The major property of GWEX is that it uses
marginal heavy-tailed distributions for generating extreme-
precipitation and extreme-temperature conditions. Moreover,
it has been developed to generate long-term (≈ 1000 years)
meteorological scenarios. GWEX_Disag generates precipi-
tation amounts at a 3 d scale and then disaggregates them to
a daily scale using a method of fragments (for details on the
precipitation model, see the work of Evin et al., 2018, and for
details on the temperature model, see the work of Evin et al.,
2019).

The meteorological scenarios used in this study are a sub-
set from the long-term meteorological scenarios developed
for the entire Aare river basin using recorded data from
105 precipitation stations and from 26 temperature stations in
Switzerland (Evin et al., 2018, 2019). For this larger-scale re-
search project, GWEX_Disag was set up using daily precip-
itation and temperature data from the period 1930–2015 and
hourly records of precipitation and temperature from 1990–
2015 for the Aare river basin. The daily values generated
with GWEX_Disag were then disaggregated to hourly val-
ues using the meteorological analogues method, which for
each day in the simulated dataset finds an analogue day in
observed data, i.e. with a known hourly time structure. Next,
catchment means were computed using the Thiessen polygon
method (using three stations located close by).

For the present study, 100 different meteorological scenar-
ios (precipitation and temperature) covering the same time
frame of 100 years at an hourly time step are available for the
Dünnern at Olten catchment (see Fig. D1 for an overview of
meteorological scenarios). The simulated data are assumed
to be representative of current climate conditions, i.e. neither
variation due to climate or land use change nor river modifi-
cation is considered. Thus, differences between scenarios are
exclusively due to the natural variability in the meteorolog-
ical time series and modelled by the GWEX_Disag weather
generator.

3.5 Generation of synthetic hydrological-simulation
ensembles

Finally, for our analysis, 100 meteorological scenarios with
continuous data of 100 years of precipitation and tempera-
ture and 100 calibrated parameter sets of the HBV model are
available. This number of 100 was chosen as a compromise
between minimizing the intensive model calibrations and the
simulations at an hourly time step and maximizing the in-
formation content of the hydrological-parameter sample and
the climate variability. We have chosen the same number
of 100 for meteorological scenarios, parameter sets and sim-
ulation years to not favour any of these components in the
methods’ comparison. These 100 meteorological scenarios
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are used as input into the HBV model to generate streamflow
time series with 100 different HBV parameter sets. To set up
the initial conditions of the model, a 1-year warming-up pe-
riod is always used prior to the simulation period. To get an
overview of the variability in such hydrological ensembles,
see Fig. D2.

From each of these continuous hydrological simulations,
100 annual maxima (AMs; one per calendar year) are se-
lected (see Fig. 4). This results in the following analysis set-
up:

– I = 100 and i = 1, 2, . . . 100;

– J = 100, y = 1, 2, . . . 100 and j = 1, 2, . . . 100;

– M = 100 and m= 1, 2, . . . 100,

with 100× 100× 100 combinations of the annual maxi-
mum× hydrological-model parameter set×meteorological
scenario.

These series of AMs are next used to test the developed
methods of selecting the representative parameter sets from
the ensemble of 100 available sets.

4 Results

4.1 Representative parameter sets

The representative parameter sets selected with each of the
three methods are summarized over all 100 meteorological
scenarios in Table 2, which presents the three most frequently
chosen hydrological parameter sets for each method.

Although different parameter sets are usually selected by
different methods, in a few cases the same set is chosen with
more than one selection method. Among the first three most
frequently chosen sets, the same parameter set is selected as
the median set once for all three methods and several times
for at least two methods.

The variability in the selected hydrological parameter sets
is presented in Fig. 5. As can be seen from the figure, some
parameters presented smaller and others larger variability in
selected sets. It also appears that different values are selected
for the infimum, median and supremum set but not always.
Among the three selection methods, the ranking method
(marked in green) has the largest spread of parameter val-
ues for most of the parameters. The clustering (blue) and
quantiling (yellow) selection methods seem to choose more
extreme parameter values for both, i.e. infimum and supre-
mum sets. Looking at different model routines no clear pat-
terns could be seen regarding the choice of parameter sets.
It appears however that the representative parameters from
the response (blue) and soil moisture (yellow) routines have
a smaller spread than those from the snow routine (grey) as
they are more often outside and further away from the in-
terquartile ranges (grey boxplots).

4.2 Infimum, median and supremum intervals

Using the selected representative sets, representative inter-
vals for rare-flood estimations are constructed for each of the
100 meteorological scenarios and each of the three selection
methods. Examples of these intervals for two meteorologi-
cal scenarios are presented in Figs. 6 and 7. Note that apart
from selecting representative intervals, the clustering method
leads to grouping all ensemble members into three selected
clusters.

According to a first visual assessment, these three methods
lead to slightly different constructed frequency intervals par-
ticularly in the upper tail of the distribution, i.e. for the most
rare (highest) flows, which are of highest interest. Moreover,
the ranking method leads to less symmetrically spread inter-
vals, with the median and infimum intervals lying close to
each other. The other two methods lead to more symmetri-
cally spread intervals.

For the quantitative assessment, the ratio of scenarios in-
correctly attributed, i.e. with intervals being mixed up (Rbias),
varies between the three methods and is the highest for the
ranking method (Rbias = 0.54). For the clustering method,
the three intervals are always correctly ordered for all
100 meteorological scenarios tested (Rbias = 0.0). For the
quantiling method, this ratio is equal to Rbias = 0.02 and thus
is also very low. Hence, we can conclude that both clustering
and quantiling methods provide correctly attributed intervals
with a bias ≤ 2 %. For the ranking method, the correctness
of the interval attribution is poor, and in more than 50 % of
the meteorological scenarios, the simulations corresponding
to the selected parameter sets lead to mixed-up frequency in-
tervals.

4.3 Evaluation of the three selection methods

The behaviour of the three selection methods is further eval-
uated with the 100 meteorological scenarios using the leave-
one-out cross-validation test (Sect. 2.5.1) and the multi-
scenario evaluation method (Sect. 2.5.2) and corresponding
metrics (Sect. 2.6.2). Examples for two meteorological sce-
narios are presented in Fig. 8 for the leave-one-out cross-
validation test and in Fig. 9 for the multi-scenario evalua-
tion. From the visual assessment, it is difficult to judge the
methods as they seem to perform similarly well. However,
the range of the predictive intervals obtained with 99 meteo-
rological scenarios (one left out) is considerably narrower for
ranking and quantiling on one hand and much wider for clus-
tering on the other hand (Fig. 8). Accordingly, the correspon-
dence between the prediction interval and the full simulation
range of the left-out scenario differs between the methods
(Fig. 9).

This is reflected in the quantitative assessment of the meth-
ods’ behaviour, summarized in Table 3. Namely, the leave-
one-out cross-validation reveals that the quantiling method
receives the highest values for both evaluation criteria, i.e.
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Figure 4. Set-up of the experimental study.

Table 2. The three representative parameter sets θ inf, θmed and θ sup most frequently selected with three methods. The i stands for the set
index and ct. for the number of counts. The expression

∑
ct. stands for the sum of counts for the first three most frequently selected sets.

Bold font indicates parameter set indices which are selected as representative with at least two methods among the three sets most frequently
chosen.

Method Ranking Quantiling Clustering

Repr. set θ inf θmed θ sup θ inf θmed θ sup θ inf θmed θ sup

Par. set i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct.

1st 97 21 1 11 20 25 47 78 2 22 19 32 47 62 2 13 34 48
2nd 16 15 2 7 19 13 66 10 93 11 86 15 97 35 46 11 22 33
3rd 6 12 14 7 57 9 67 4 46 9 69 11 66 2 62 11 98 7∑

ct. 48 25 47 92 42 58 99 35 88

the ratio of simulation points lying outside the predictive in-
tervals (Rspo) and the ratio of hydrological-simulation en-
semble members lying outside the predictive intervals (Rhso),
both presented as median values over all scenarios. Thus,
this method performed the poorest among all three methods
tested here. Yet, with Rspo ≤ 0.14 for the 50th percentile and
Rhso ≤ 0.05 for the threshold rthr ≥ 0.50, even this method
can be qualified as behaving well based on the leave-one-
out cross-validation. For the ranking and the clustering meth-
ods, similar values for these two metrics are achieved, with
slightly lower values for the ranking method.

In summary, it can be said that all criteria values are rela-
tively low for all three methods, and thus the computed cri-
teria values can only be used to order the methods by their
behaviour, while none of the methods are rejected.

In contrast to the above findings, the multi-scenario evalu-
ation reveals different results, with Rspo being the lowest for
clustering and the largest for the ranking method. Similarly,
the ratio of meteorological scenarios lying outside the pre-
dictive intervals (Rmso) is the lowest for clustering and the
highest for the ranking method (rthr in Table 3).

Also, here all computed criteria values are relatively low,
with Rspo ≤ 0.05 for the 50th percentile and Rmso = 0 for the
threshold rthr ≥ 0.50 for the poorest-behaving method (rank-
ing). Hence, again here all three methods can be qualified as
behaving well based on the multi-scenario evaluation.

Analysis of overlapping PI pools (ROPPIs) and relative
band spreads (R1PIs) shows that in the cross-validation test
all methods provide bands that are wider than the 90% PIs
computed using the full simulation ensemble. This should
not be surprising as the selection of relative parameter sets
is based on a larger sample of hydrological-model realiza-
tions (i.e. 99 scenarios) than the full ensemble for model as-
sessment (i.e. single scenario). However, these metrics show
large differences in the multi-scenario test, in which the clus-
tering method outperforms the other two selection meth-
ods, particularly when the focus lies on rare floods (com-
pare R1PIs,j≥51, R1PIs,j≥91 and R1PIs,j≥96 in Table 3). The
quantiling was the second-best method, while the ranking
performed the worst. These observations are also confirmed
when looking at the variability in these two metrics for dif-
ferent return periods (Fig. 10). A better performance of the
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Figure 5. Box plots showing the variability in the hydrological parameter sets selected as the representative parameter sets over 100 mete-
orological scenarios chosen with three methods. The white box plots illustrate the entire parameter ensemble (i.e. 100 sets); outliers are not
presented. I: infimum; M: median; and S: supremum set. Units as in Table A1. The blue box surrounds parameters from the response routine,
the grey box from the snow routine and the yellow from the soil moisture routine. MAXBAS is the only parameter from the routing routine,
and CET is a potential-evaporation correction factor.

clustering method can be again noticed in the range of rare
floods. While quantiling performed worse than clustering, it
was still better than the ranking method.

As it appears from the above, the rejection or acceptance
of one of the three methods tested here is not straightfor-

ward. Apart from the ranking method, which was linked to a
huge bias, both other methods, i.e. quantiling and clustering,
performed similarly well. Yet, these methods provide quite
different intervals (of a different spread). The validity and
usefulness of these methods for selecting the representative
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Figure 6. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological
scenario m= 14). The top panel presents intermediate steps of selecting the representative sets and the bottom panel the finally constructed
intervals, i.e. infimum, median and supremum. The dashed lines (top panel) indicate the computed representative intervals (i.e. steps a–c in
ranking and clustering and a–b in quantiling), and the solid lines (bottom panel) indicate the hydrological-simulation members corresponding
to the parameter sets selected as representative (step d in ranking and quantiling and e in clustering).

Figure 7. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological
scenario m=93); description as in Fig. 6.

parameter sets are thus further discussed below in Sect. 5.1.
The detailed analysis of the relative band spread and the over-
lapping pools indicated however that the clustering method
performed the best, particularly in the range of rare floods.
The quantiling method was scored as the second best, while
the ranking method performed poorest.

5 Discussion

5.1 Behaviour of three selection methods

The results from our experimental study demonstrate that
generally all three methods are capable of selecting represen-
tative parameter sets that yield reliable predictive intervals in
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Figure 8. Example of leave-one-out cross-validation for the three selection methods and two meteorological scenarios. PIs represent the
90 % predictive intervals.

Figure 9. Example of multi-scenario evaluation for the three selection methods and two meteorological scenarios. PIs represent the 90 %
predictive intervals.

the frequency domain, i.e. all three methods are fit for pur-
pose for extreme-flood simulation, with the ranking method
performing, however, clearly less well than the others (larger
bias, as visible in Sect. 4.2). As the developed methods rely
on selecting three representative sets as infimum, median and
supremum, they respect the maximum variability between in-
dividual ensemble members for a given meteorological sce-
nario.

In the validation tests, the behaviour scores of the three
methods, however, were attributed differently depending on
the evaluation criteria. To further compare the methods, we
provide a detailed discussion of the major differences below
and present a synthesis of how the methods rank on average
(averaged across all scenarios) for the quantitative evaluation
criteria, which we support with further qualitative evaluation
criteria (Table 4).
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Table 3. Metrics of the behaviour of the approach for three methods of selecting representative parameter sets and the predictive intervals in
the leave-one-out cross-validation and in the multiple-scenario evaluation. The values represent the median values over all 100 scenario runs.

Leave-one-out cross-validation Multi-scenario evaluation

Metric Ranking Quantiling Clustering Ranking Quantiling Clustering

Rspo [–], 50th percentile 0.02 0.13 0.065 0.048 0.02 0
Rhso [–], rthr ≥ 0.50 0.02 0.05 0.02 – – –
Rhso [–], rthr ≥ 0.10 0.26 0.57 0.41 – – –
Rmso [–], rthr ≥ 0.50 – – – 0 0 0
Rmso [–], rthr ≥ 0.10 – – – 0.20 0.091 0.03
R1PIs [–], mean 1.26 1.01 1.30 0.58 0.57 0.67
R1PIs,j≥51 [–] 1.23 1.16 1.56 0.59 0.70 0.81
R1PIs,j≥91 [–] 1.18 1.15 1.62 0.51 0.68 0.82
R1PIs,j≥96 [–] 1.21 1.21 1.67 0.49 0.67 0.80
ROPPIs [–] 1.21 1.19 1.64 0.52 0.65 0.79

Figure 10. Evaluation of the leave-one-out cross-validation and the multi-scenario test for the three selection methods using the relative band
spread (R1PIs) and the relative overlapping pools (ROPPIs), both computed with reference to the 90 % PIs of the full hydrological-simulation
ensemble.

From the visual assessment, i.e. based on the method
bias (Rbias), it clearly appears that the ranking method is the
most biased method (with more than half of all meteorologi-
cal scenarios having mixed-up intervals), while the other two
methods can be considered to be unbiased with correctly at-
tributed intervals for 98 % (quantiling) or more (clustering)
of all meteorological scenarios considered here (Sect. 4.2,
unbiasedness in Table 4). As expected, these findings are fur-
ther confirmed by the results from the multi-scenario evalu-
ation that yield the best behaviour for the clustering method
and the worst for the ranking method (Sect. 4.3), particularly
if the focus lies on rare floods as assessed by the relative band
spread and the overlapping pools.

Interestingly, the leave-one-out cross-validation study, in
contrast to the multi-scenario evaluation, attributes the low-
est criteria value to the ranking method, i.e. ranks it as the
best method (Table 4). This requires a careful interpreta-
tion and understanding of how the predictive intervals are
constructed in both evaluation studies. In the leave-one-out
cross-validation study, the representative parameter sets are
selected, and the predictive intervals are constructed based
on 99 meteorological scenarios and then evaluated against
the full simulation range corresponding to the left-out sce-
nario. In the multi-scenario evaluation, the representative pa-
rameter sets are selected based on a single scenario, and
the predictive intervals are then assessed by applying these
three selected sets (selected based upon a single scenario) to
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Table 4. Synthesis of scoring ranks attributed to the three methods for selecting representative parameter sets (based on quantitative metrics).
The ranks are attributed descending from the best (1) to the worst (3) behaviour. The median scoring rank (last line) corresponds to the
median over all criteria.

Score criteria Ranking Quantiling Clustering

Unbiasedness (not mixed-up intervals) 3 2 1
Leave-one-out cross-validation 1 3 2
Multi-scenario evaluation 3 2 1
Independence from meteorological scenario 3 1 1
Independence from simulation years 3 1 1
Ease in application 1 3 3
Interpretability of prediction intervals 3 1 1

Median scoring rank 3 2 1

the other 99 meteorological scenarios. Hence, by comparing
findings from these two evaluation studies, it appears that the
ranking method performs poorly if using a single scenario
for selecting the representative sets (multi-scenario evalua-
tion). In exchange, the ranking method outperforms the two
other methods when a high number of meteorological scenar-
ios are used for selecting the representative parameter sets
(leave-one-out cross-validation). This means that the rank-
ing method strongly depends on the meteorological scenario
choice, while the other two methods result in representative
parameter sets that are transferable to other meteorological
scenarios. We hence introduce here a criterion independence
from meteorological scenario, which defines how strongly
the selected sets depend on the meteorological scenario used
for selection of representative parameter sets.

In a similar way, independence from simulation years will
define how strongly the selected sets depend on the simula-
tion years used for selection of the representative parameter
sets. To make statements on that, one needs to recall how
the selection methods are constructed: the ranking method,
in fact, depends strongly on the selected simulation period
(and hence on the meteorological scenario) because the se-
lection of the representative parameter sets is performed on
unsorted annual maxima for each simulated year indepen-
dently. The other two methods are performed over the entire
simulation period, which makes them less strongly depen-
dent on individual simulation years. Nevertheless, the rank-
ing method can be considered to be the (computationally and
methodologically) easiest in application due to its selection
criteria relying purely on ranking within individual simula-
tion years. We call this criterion an ease in application. The
other two methods need to be performed in the frequency
space on sorted annual maxima over the entire simulation pe-
riod and, in the case of the clustering method, require some
additional computational effort (which remains low, how-
ever, compared to the hydrological simulation). The use of
the frequency space in selecting the representative parameter
sets helps, however, to interpret the constructed prediction
intervals and to directly assign return periods to them. This

speaks for their higher interpretability of prediction intervals
as compared to the ranking method, in which interpretation
of intervals is very limited (as they are selected without any
flow frequency analysis).

Overall based on scoring results from Table 4, it appears
that the clustering method behaves the best (with a median
scoring rank of 1) due to its unbiasedness and due to a good
performance achieved for all evaluation criteria, for both the
leave-one-out cross-validation and the multi-scenario evalu-
ation. Finally, this method was proven to perform the best if
the focus lies on rare-flood simulations.

5.2 Limitations and perspectives

We should emphasize that the presented methods are inde-
pendent of the selected hydrological-model calibration ap-
proach or from the selected hydrological-response model and
are thus readily transferable to any similar simulation set-
ting. Despite the fact that the calibration of a hydrological
model lies beyond the scope of this paper, it is assumed that
(at least) 100 parameter sets of a hydrological model can
be made available for selecting the representative parameter
sets. For that purpose, a hydrological model should be cali-
brated with observed data of a long enough record that covers
rare floods so that rare floods could be realistically simulated.
In this work, to derive 100 parameter sets, we proposed a
heuristic approach that relies on multiple independent model
calibration trials using a genetic-algorithm approach and a
multi-objective function. This method represents an interest-
ing solution to systematic sampling of the posterior param-
eter distributions (e.g. via Markov chain Monte Carlo sam-
pling) or to any Monte Carlo method relying on a very high
number of model runs. Its strength is that it can be applied for
selecting parameter sets from independent model calibration
settings (with different scores, calibration periods, etc.).

Note however that for the purpose of deriving 100 param-
eter sets, a continuous hydrological model does not neces-
sarily require continuous calibration data, and it could be
also calibrated to discrete data (e.g. using hydrological signa-
tures; Kavetski et al., 2018). If no observed data or only too
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short records are available, model parameters can be acquired
through regionalization approaches (see the work of Brunner
et al., 2018a, for an overview of regionalization methods).
The developed methods are of use for applications when a
hydrological model should be employed for simulations of
rare floods. If the use of a hydrological model is not pos-
sible, i.e. neither information for calibration nor sufficient
information for parameter regionalization is available, these
methods cannot be applied. Moreover, although the methods
are tested with a bucket-type hydrological model, the most
valuable application of the proposed methods would be to
computationally more demanding hydrological models that
can profit even more from a reduced computational demand.

Furthermore, the proposed approach is tested here using
synthetic hydrological data, i.e. using streamflow simulations
of the hydrological model in response to meteorological sce-
narios. We chose to use synthetic instead of real observed
data to work with long enough continuous simulations that
cover rare events and to minimize the focus of the model
error arising from the calibration data and procedure. By us-
ing synthetic data as a reference (instead of observed data),
the latter error can be neglected here. The proposed methods
should be tested with more catchments and other models to
verify the scoring of methods that was achieved in this study.

Selection methods proposed in this study enable one to
choose representative parameter sets of a hydrological model
and based on those to construct uncertainty predictive inter-
vals (PIs) for extreme-flood analysis in the frequency space.
Here, we tested the methodology using 100 meteorological
scenarios that should represent the natural climate variabil-
ity and in this way should provide independent conditions
for methods’ evaluation. Such a method for constructing PIs
from a hydrological model ensemble is a powerful tool that
opens several avenues for further detailed uncertainty anal-
ysis. For instance, one may be interested in contributions of
different uncertainty sources into the total PIs constructed,
e.g. coming from the hydrological model or the natural cli-
mate variability. As these two components are not linearly
additive, their separation is not straightforward.

In addition, any ensemble simulation also encompasses
other uncertainty sources of the modelling chain, such as
those resulting from the weather generator, from the struc-
ture of the selected hydrological model, from the prediction
of very rare flood events, etc. (Lamb and Kay, 2004; Schu-
mann et al., 2010; Kundzewicz et al., 2017). To assess in-
dividual contributions of interest, a simple sensitivity analy-
sis based on the variance variability could be recommended
here, in which one uncertainty source is propagated through
the method at once while other sources are kept at their mode
or median values and in which the resulting PI spread is com-
pared.

Downsizing the hydrological-model parameter sample can
only aim to understand and characterize the hydrological part
of the full hydrological ensemble resulting from a combi-
nation of multiple parameter sets and multiple meteorologi-

cal scenarios. The variability in hydrological-model parame-
ters arises from the parameter equifinality (Beven and Freer,
2001), and it can be overcome by using several hydrological-
model parameter sets that should encompass the parametric
and (implicitly) also other uncertainty sources. Our selection
methods thus enable one to choose representative parameter
sets from the hydrological-response point of view and in this
way to cover the variability in hydrological responses with a
reduced number of hydrological-model runs needed. These
methods are however not applicable for characterizing the
climate variability (nor for downsizing the number of mete-
orological scenarios needed).

Moreover, in developing the selection methods, we did not
distinguish between different flood types such as heavy rain-
fall excess or intensive snowmelt events (Merz and Blöschl,
2003; Sikorska et al., 2015). Also, as we focused only on
large annual floods (annual maxima), we did not represent
the flood seasonality in our analysis. Yet, some recent works
emphasize the need to include such information on the flood
type (Brunner et al., 2017) or on flood seasonality (Brun-
ner et al., 2018c) into bivariate analysis of floods or to rep-
resent a mixture of both flood type and flood seasonality
in flood frequency analysis (Fischer et al., 2016; Fischer,
2018). Thus, the proposed selection methods could poten-
tially be extended to account for different flood types dur-
ing representative parameter selection, e.g. using automatic
methods of flood type attribution from long discharge se-
ries (Sikorska-Senoner and Seibert, 2020). For that purpose,
peak-over-threshold (POT) selection criteria of flood peaks
could be more appropriate instead of a block selection (an-
nual maximum) used here in constructing the simulated dis-
tributions of hydrological responses in order to cover a range
of different flood processes.

Finally, we downsize the hydrological-model parameter
sample to three sets which represent the predictive inter-
vals of the full ensemble of hydrological responses fairly
well given different meteorological scenarios. This number
of three sets is motivated by the fact that it can be readily
processed within a fully continuous ensemble-based frame-
work using numerous climate settings. This is common prac-
tice in flood frequency analysis, and the three sets emulate
the common practice of communicating median values along
with prediction limits (Cameron et al., 2000; Blazkova and
Beven, 2002; Lamb and Kay, 2004; Grimaldi et al., 2012b).
For safety studies, these representative intervals should be
additionally statistically proved.

Optionally, one could further downsize the hydrological-
model parameter sample to two sets (i.e. infimum and supre-
mum), which would represent the intervals only. Downsizing
to more than three parameter sets (e.g. five or more) could
have the advantage of containing more information on un-
certainty intervals, e.g. in the case that they are asymmetric,
and should be explored in further studies.

Possible applications of these selection methods include
all studies where computational requirements are an issue,
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e.g. rare-flood analysis in safety studies concerning dams or
bridge breaks; climate scenarios of these; and evaluation of
rare floods due to changes in climatic variables using several
emission scenarios and different uncertainty source propa-
gation. Finally, these methods could be used for quantifying
different uncertainty source contributions in rare-flood esti-
mates but with less effort from the hydrological model as
due to parametric uncertainty propagation.

6 Conclusions

In this study, we propose and test three methods for select-
ing the representative parameter sets of a hydrological model
to be used within fully continuous ensemble-based simula-
tion frameworks. The three selection methods are based on
ranking, quantiling and clustering of simulation of annual
maxima within a limited time window (100 years) that is
much shorter than the full simulation period of thousands of
years underlying the simulation framework. Based on a syn-
thetic case study, we demonstrate that these methods are re-
liable for downsizing a hydrological-model parameter sam-
ple composed of 100 parameter sets to three representative
sets that represent most of the full simulation range in the
frequency space. Among the tested methods, the clustering
method that selects parameter sets based on cluster analysis
in the frequency space appears to outperform the others due
to its unbiasedness, its transferability between meteorologi-
cal scenarios and a better performance for rare floods. The
ranking method, which is the only tested method that com-
pletes the parameter selection on non-sorted annual maxima,
can clearly not be recommended for typical settings since
it (i) tends to result in mixed-up prediction intervals in the
frequency space and (ii) depends too strongly on the sim-
ulation period used for parameter selection and thus lacks
transferability to other periods or other meteorological sce-
narios. Possible applications of these methods include all
fully continuous simulation schemes for rare-flood analysis
and particularly those for which computational constraints
arise, such as safety studies or scenario analysis.
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Appendix A: Details on the HBV model parameters and
model calibration

For searching the best hydrological-model parameter sets
within the defined parameter ranges (Table A1), a genetic-
algorithm and Powell optimization (GAP) approach (Seib-
ert, 2000) is used. This approach is executed in two major
steps. Firstly, the GA optimization is performed and relies
on an evolutionary mechanism of selection and recombina-
tion of a user-defined number of parameter sets (i.e. parame-
ter population) randomly selected within the defined param-
eter ranges. The principle idea of this searching relies on re-
generating the parameter sets from the subgroup of param-
eter sets selected using the defined objective function Fobj
as a criterion to choose the parameters that give the highest
value of Fobj at the previous step of the model calibration.
The search for the best parameter set is terminated at a user-
defined maximum number of model interactions and results
in a selected optimal parameter set. Secondly, the optimal pa-
rameter set obtained at the previous step is used as a starting
point for a local optimization search using Powell’s quadrat-
ically convergent method (Press et al., 2002). The parameter
set finally achieved from the local optimization is retained as
the best set. In this study, the total number of model interac-
tions is set to 2500 for the GA and 500 for the local Powell’s
optimization.

Table A1. Parameter ranges for the calibration of the HBV model.

Parameter Unit Min. Max. Description

PERC mm h−1 0 1 Percolation parameter
UZL mm 0 100 Groundwater run-off threshold parameter
K0 h−1 1× 10−4 0.2 Recession coefficient
K1 h−1 1× 10−5 0.1 Recession coefficient
K2 h−1 1× 10−8 0.05 Recession coefficient∗

MAXBAS h 1 100 Length of triangular weighting function
CET ◦C−1 0 0.5 Correction factor for potential evaporation
TT ◦C −2.5 2.5 Threshold temperature
CFMAX mm h−1 ◦C−1 1× 10−3 5 Degree–hour factor
SFCF – 0.4 1.6 Snowfall correction factor
CFR – 0 0.1 Refreezing correction factor
CWH – 0 0.2 Water-holding capacity
FC mm 50 550 Maximum moisture storage in soil box
LP – 0 1 Threshold for reduction in evaporation
BETA – 1 10 Shape coefficient

∗ For recession coefficients the following condition must be fulfilled: K0>K1>K2.
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Appendix B: Equations used in the multi-objective
function

RKGE = 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (B1)

where r , α and β are the correlation, a measure of the relative
variability in the simulated and observed values, and a bias.

RPEAK = 1−

∑(
Qo,peak−Qs,peak

)2∑(
Qo,peak−Qo,peak

)2 , (B2)

whereQo,peak andQs,peak are observed and simulated values
for flood peaks, and Qo,peak is the average value of Qo,peak.

RMARE = 1−
1
n

∑ |Qo−Qs|

Qo
, (B3)

where n is the number of observation points, and Qo and
Qs are observed and simulated discharge.

For further details on RKGE see the work of Gupta et al.
(2009), for details on RPEAK see the work of Seibert (2003),
and for details on RMARE see the work of Dawson et al.
(2007).

Appendix C: Model calibration results

The optimized hydrological-model parameter sets are pre-
sented in Fig. C1, whereas diagnostics of the model perfor-
mance during the calibration and validation periods are pre-
sented in Fig. C2.
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Figure C1. Violin plots (blue) summarizing 100 optimized parameter sets of the HBV model for the Dünnern at Olten catchment vs. initial
calibration ranges (grey). Units as in Table A1.

https://doi.org/10.5194/nhess-20-3521-2020 Nat. Hazards Earth Syst. Sci., 20, 3521–3549, 2020



3544 A. E. Sikorska-Senoner et al.: Downsizing parameter ensembles

Figure C2. Flow duration curves and model performance metrics for calibration and validation periods over all 100 optimized parameter
sets.
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Appendix D: Scenario variability

The variability in the precipitation depth (annual daily max-
ima) and temperature (annual daily minima and maxima) of
100 meteorological scenarios used in this study is presented
in Fig. D1. It can be seen that, in comparison to the obser-
vations, the meteorological scenarios are generally slightly
colder (µ= 22.9 ◦C and σ = 1.5 ◦C vs.µ= 25.8 ◦C and σ =
1.4 ◦C for the annual daily maxima and µ=−11.9 ◦C and
σ = 3.1 ◦C vs. µ=−7.3 ◦C and σ = 3.5 ◦C for the annual
daily minima) and wetter (µ= 46.1 mm and σ = 12.4 mm
vs. µ= 45.9 mm and δ = 12.0 mm for the annual maximal
daily precipitation depths). The variability in resulting hy-
drological scenarios is presented in Fig. D2 together with
observations.

Figure D1. Variability in 100 meteorological scenarios used in this study vs. observations.

Figure D2. Variability in 100 hydrological scenarios used in this study; (a) hydrological ensemble with all meteorological scenarios and
all hydrological-model parameters; (b) hydrological ensemble with all hydrological-model parameters but for the median meteorological
scenario only. PIs represent the 90 % predictive intervals.
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