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Abstract This paper proposes a spectral domain likelihood function for the Bayesian estimation of
hydrological model parameters from a time series of model residuals. The spectral domain error model is
based on the power-density spectrum (PDS) of the stochastic process assumed to describe residual errors.
The Bayesian spectral domain likelihood (BSL) is mathematically equivalent to the corresponding Bayesian
time domain likelihood (BTL) and yields the same inference when all residual error assumptions are satisfied
(and all residual error parameters are inferred). However, the BSL likelihood function does not depend on
the residual error distribution in the original time domain, which offers a theoretical advantage in terms of
robustness for hydrological parameter inference. The theoretical properties of BSL are demonstrated and
compared to BTL and a previously proposed spectral likelihood by Montanari and Toth (2007), using a set of
synthetic case studies and a real case study based on the Leaf River catchment in the U.S. The empirical
analyses confirm the theoretical properties of BSL when applied to heteroscedastic and autocorrelated error
models (where heteroscedasticity is represented using the log-transformation and autocorrelation is repre-
sented using an AR(1) process). Unlike MTL, the use of BSL did not introduce additional parametric uncer-
tainty compared to BTL. Future work will explore the application of BSL to challenging modeling scenarios
in arid catchments and ‘‘indirect’’ calibration with nonconcomitant input/output time series.

1. Introduction

Bayesian and other likelihood-based inference methods have a strong tradition in hydrological modeling,
with the overall goal of providing reliable hydrological predictions and uncertainty estimates [e.g., Kuczera,
1983; Beven and Binley, 1992; Kuczera and Parent, 1998; Bates and Campbell, 2001, and many others]. The
key ingredient of likelihood-based inference is the likelihood function, which should provide a probabilistic
description of the uncertainty in the model predictions [e.g., Box and Tiao, 1992]. In the simplest case, the
likelihood function aims to describe the statistical properties of the model residual errors, i.e., the time series
of differences between observed responses (e.g., streamflow) and corresponding model predictions [e.g.,
Box and Tiao, 1992; Kuczera and Parent, 1998].

A major concern is that, in hydrology, probabilistic inference methods have often been used with ostensibly
wrong assumptions (e.g., as noted by Beven and Binley [1992], Kavetski et al. [2006], Honti et al. [2013], and
others). For example, it is still common for hydrological calibration applications to assume independent and
identically distributed Gaussian model residuals, and relatively few studies rigorously assess how well these
assumptions are actually satisfied [e.g., Engeland et al., 2005; Schaefli et al., 2007]. Recent work is addressing
these shortcomings, contributing more statistically reliable error models and likelihood functions [e.g.,
Kuczera, 1983; Kavetski et al., 2006; Schaefli et al., 2007; Thyer et al., 2009; Schoups and Vrugt, 2010; Smith
et al., 2010; Pianosi and Raso, 2012; Evin et al., 2014; McInerney et al., 2017, and many others].

In this paper, we explore new perspectives for hydrological parameter inference by introducing a Bayesian
Spectral Likelihood (BSL), based on a statistical description of the model residuals in the spectral domain, i.e., in
the Fourier-transformed-domain rather than in the time domain. The term ‘‘spectral domain’’ rather than ‘‘fre-
quency domain’’ is used to emphasize that the proposed likelihood is based on the power-density spectrum.

This work is not the first attempt to use spectral methods in hydrological modeling. For example, Montanari
and Toth [2007] applied the Whittle likelihood [Whittle, 1953] to calibrate hydrological model parameters.
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Other studies used spectral likelihoods or spectral signatures in more informal settings. Quets et al. [2010]
used the sum of squared differences between the Fourier amplitudes, or between the Fourier amplitudes
and phases of observed and simulated streamflow time series, to calibrate the SWAT model. A similar
approach was followed by Pauwels and De Lannoy [2011] and De Vleeschouwer and Pauwels [2013]. Moussu
et al. [2011] used the root-mean-squared difference between the estimated autocorrelation functions of the
observed and simulated streamflow series to calibrate two conceptual rainfall-runoff models of a karst sys-
tem. Winsemius et al. [2009] and Hartmann et al. [2013] used the streamflow autocorrelation function as a
signature to assess the model performance in a multicriteria model identification setting. Schaefli and Zehe
[2009] proposed to assess hydrologic model performance in terms of the Kolmogorov-Smirnoff distance
between the estimated wavelet power spectra of observed and simulated streamflow series. Several studies
proposed to use spectral calibration for nonconcomitant (or indirect) calibration, where input and output
observations are not available over the same time period [Montanari and Toth, 2007; De Vleeschouwer and
Pauwels, 2013].

The main motivation for this paper is to present the key theoretical aspects of spectral parameter inference,
especially in light of recent interest in spectral model calibration and performance assessment. Our paper
addresses the current research gap that the majority of hydrological calibration approaches based on spec-
tral techniques do not explicitly articulate the probabilistic assumptions underlying their choice of objective
(likelihood) function; this limitation complicates the derivation of probability limits on the estimated model
parameters and predictions. The properties of BSL are investigated using a series of synthetic and real data
case studies, and are compared to the properties of the corresponding (standard) time domain likelihood
and of the spectral domain likelihood used previously by Montanari and Toth [2007]. The method of Monta-
nari and Toth [2007] is of particular relevance to this work, because to our knowledge it is the only spectral
calibration method in the hydrological literature that uses a spectral likelihood function with an explicit
probabilistic interpretation.

The BSL approach introduced in this work is obtained by expressing the probability density function (pdf)
of residual errors of a hydrological model in terms of their Fourier power-density spectrum [e.g., Jenkins and
Watts, 1968]. This spectral domain probabilistic characterization is presented in considerable detail because,
despite spectral analysis being widely used in time series analysis, it remains relatively rare in hydrology,
and existing literature generally does not describe the pdf of the entire power-density spectrum.

The remainder of the paper is structured as follows. Section 2 presents all required definitions and the deri-
vation of BSL for common stochastic error models. This section also briefly outlines the relationship of BSL
to the likelihood presented by Montanari and Toth [2007]. Section 3 details the case studies and the analysis
methodology. Section 4 presents and discusses the case study results. Section 6 summarizes the key conclu-
sions of the paper, outlines some important open questions, and suggests future research directions.

2. Theoretical Development

2.1. Bayesian Time Domain Likelihood (BTL)
Consider a hydrological model H

Ŷ 5Hðh;XÞ; (1)

where X5ðX tÞt51;::;N are the system inputs (e.g., rainfall and potential evapotranspiration) at time steps t51; ::;
N; Ŷ 5ðŶ tÞt51;::;N is the system output predicted by the model (e.g., streamflow), and h is a vector of model
parameters. An overview of all used mathematical notations is given in Table 1.

In practice, the true system input X is unknown, and we only have observed inputs ~X , which are affected by
sampling and measurements errors. In this paper, we represent total predictive uncertainty using residual
errors, which are assumed to aggregate the effects of all sources of error including data uncertainty and
model structural errors. We do not attempt error decomposition, i.e., to model individual sources of error
using separate error models [e.g., Kavetski et al., 2006; Renard et al., 2011].

The simulated system output Ŷ 5ðŶ tÞt51;::;N differs from the observed system output, ~Y 5ð~Y tÞt51;::;N , for sev-
eral reasons: (i) errors in the observed system inputs, e.g., raingauge sampling errors [Renard et al., 2011;
McMillan et al., 2011]; (ii) errors in the observed system output, e.g., rating curve errors [Thyer et al., 2009;
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McMillan and Westerberg, 2015]; (iii) structural errors in the model equations, e.g., due to the inability of
lumped models to represent spatially distributed processes, incomplete representation of dominant hydro-
logical processes, etc. [Beven and Binley, 1992; Kuczera et al., 2006]; (iv) parameter errors, including those
due to the uncertainty arising from finite-length and uncertain calibration data, due to limitations of param-
eter optimization algorithms, etc.

Consider the vector of model residuals e,

e5qð~Y Þ2qðŶ Þ; (2)

where we allow for a response transformation qðÞ (e.g., logarithmic, see McInerney et al. [2017]).

Table 1. Mathematical Notations Used for the Methodsa

Notation Type Description

p( ) Function Probability density
E[ ] Function Expectation
t Variable Time step of a discrete-time process
Dt Parameter Length of the discrete time step
‘ Variable Time lag (autocorrelation function)
N Parameter Number of time steps
x Variable Angular frequency index of continuous Fourier transform
xf Parameter Fundamental frequency, 5 2p

NDt
xj Variable Frequency discrete-time Fourier transform (jth multiple of xf)
j Variable Frequency index of discrete Fourier transform
H Process Hydrological process model
X Process True hydrological system input
~X Process Observed system input

Y Process True system output
~Y Process Observed system output

E Stochastic process Model residual process
Z Stochastic process General stochastic process
z Deterministic process General deterministic process

ZðNÞ Stochastic process Discrete-time process of length N

e Deterministic process Error process realization
d Deterministic process Realization of error process innovations
q Parameter AR(1) autoregressive parameter
le Parameter Error process mean
re Parameter Error process variance
ld Parameter Innovation process mean
rd Parameter Innovation process variance
y Deterministic process Realization of hydrological system output
~Y Deterministic process Realization of observed system output

x Deterministic process Realization of rainfall input
ŷ Deterministic process Realization of hydrological process model (simulation)
F Variable Fourier transform (discrete- and continuous-time)
P Variable Power-density spectrum (PDS)
Q Variable Stochastic process having PDS as expected value (PDSV)
P Variable Sample of the PDSV, periodogram
Pj Variable Mean of the periodogram

fZ
j

Variable Profile function (equation (21))

fEj Variable Spectral profile function of residuals

fFFT Operation Fast Fourier transform (FFT) operation
h Parameter Parameter vector of hydrological process model
# Parameter Error model parameters
#f Parameter Autocorrelation parameters of error model
le Parameter Mean of error process
fj Function Probability density function at frequency j
fv2

1
Function v2 probability density function

fexp Function Exponential probability density function
q Function Transformation function, e.g., log
Jq Function Jacobian of the transformation q
t‘ Function Autocovariance function at lag ‘

aFor case studies, see Table 2. We use capital letters for stochastic processes, lower case letters for process realizations (samples) or
deterministic processes. Bounded domain continuous-time stochastic processes are written as ðZtÞt51;::;N , bounded domain stochastic
discrete-time processes are written as ðZkÞk51;::;N .
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By construction, equation (2) lumps all sources of error in the residual error term. Therefore, in this case,
likelihood-based inference requires the specification of a statistical model of the residual errors, i.e., a ‘‘resid-
ual error model,’’

e EðŶ ;#Þ5EðX; h;#Þ; (3)

where # denotes the error model parameters (which can be inferred or fixed a priori).

Hydrological model residuals are often well described by Gaussian AR(1) processes (‘‘red noise’’) [Schaefli
et al., 2007; Evin et al., 2013; Li et al., 2013].

Et5le1qðEt212leÞ1dt; dt � NIDðld; r
2
dÞ; (4)

where dt is the innovation at time step t, q is the (lag-1) autoregressive parameter, ld is the innovation
mean, r2

d is the innovation variance, le is the residual mean, and NID denotes the independent Gaussian
distribution. To assist in the residual error analysis, it is convenient to define the innovation mean,
ld5leð12qeÞ.

The BTL corresponding to AR(1) residuals with Gaussian innovations is:

pð~Y jX; h;#Þ5
ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p
ð2pr2

dÞ
N=2

exp 2
1

2r2
d

ð12q2Þðe12leÞ21
XN

t52

et2le2qðet212leÞð Þ2
( )" #

: (5)

where et are the raw residuals computed from equation (2) (see e.g., Priestley [1981], for the derivation of
the probability density of Gaussian AR(1) processes).

In many cases, the assumption of Gaussian errors is not supported by residual analysis [e.g., Schoups and
Vrugt, 2010]. An alternative assumption that we consider in this study is that the innovations follow a
Laplace distribution, with pdf fLaplaceðxjl; bÞ51=ð2bÞexp 2jx2lj=bð Þ, where the standard deviation is

ffiffiffi
2
p

b.

The BTL corresponding to AR(1) residual errors with Laplacian innovations is

pð~Y jX; h;#Þ5
ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p ffiffiffi
2
p

2rd

� �N

exp 2

ffiffiffi
2
p

rd

ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p
je12lj1

XN

t52

jet2l2qðet212lÞj
( )" #

; (6)

For details of more general AR(n) processes, see Box and Jenkins [1976, p. 274ff].

2.2. Spectral Domain: Basic Concepts
To derive the likelihood of the model residuals in the spectral domain rather than in the time domain, we
need the same key ingredients as for BTL: (i) a residual error model in the spectral domain (e.g., based on
the power-density spectrum of the stochastic process assumed to describe the residuals), (ii) a parametric
description of the probability distribution function associated with this error model, and (iii) spectral domain
realizations of the model residuals (either obtained directly in the spectral domain or from a transform of
time domain realizations). The derivation of these ingredients is presented next.

In the derivations to follow, it is important to distinguish between the application of Fourier transforms to
deterministic versus stochastic processes. In general, we use lower case symbols (e.g., z) to denote deter-
ministic processes and realizations (samples) from stochastic processes and upper case symbols (e.g., Z) to
denote stochastic processes (for example, the process Z that generated the realization z).

Consider a deterministic process z5ðztÞt521;::;1, defined over discrete time steps t of length Dt. If the pro-
cess is absolutely summable [Oppenheim and Schafer, 1989, p. 47], its discrete time Fourier transform can be
written as

Fx½z�5Dt
X1

t521
zt exp ð2itxDtÞ; (7)

where i5
ffiffiffiffiffiffiffi
21
p

.

The discrete time Fourier transform Fx is a vector of complex numbers. Its components are indexed by the
angular frequency x [rad/T] [e.g., Oppenheim and Schafer, 1989, p. 698].
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Next, consider a stochastic process Z5ðZtÞt521;::;1. In this case, the Fourier transform Fx½Z� is itself a sto-
chastic process, obtained as a derived distribution. In particular, the Fourier transform maps a time series of
random variables Z into a set of frequency-ordered random variables Fx½Z�. This can be seen by considering
the application of the Fourier transform to a set of individual time series z sampled from a stochastic pro-
cess Z, and then considering the distribution of the set of transformed time series Fx½z�.

Stochastic processes can be analyzed using the power-density spectrum (PDS), defined as the Fourier trans-
form of the autocovariance function of Z [Oppenheim and Schafer, 1989, p. 843]:

Px½Z�5Fx½t‘½Z��; (8)

where t‘½Z�5E Zt conjðZt1‘Þ½ � is the autocovariance function of process Z; E½� is the expectation operator, ‘ is
the lag and conjðÞ denotes complex conjugation. Note that the autocovariance function is often referred to
as the ‘‘autocorrelation sequence’’ in the signal processing literature [e.g., Oppenheim and Schafer, 1989, p.
743].

Assuming process ergodicity, the PDS of a stochastic process can be related to the expectation of the Fou-
rier transform of the stochastic process. For a finite-domain process ZðNÞ5ðZtÞt51;::;N , it holds that [Oppen-
heim and Verghese, 2015, chapter 11]

Px½ZðNÞ�5
1
N

E

�����Fx

�
ZðNÞ

�����
2�
; (9)

where j � j denotes the absolute value (or, more generally, the complex modulus). The PDS of an infinite-
domain process is obtained by taking the limit N !1 in equation (9).

In the signal processing literature, both formulations of the PDS are attributed to Wiener-Khinchin; in recent
literature, the formulation in equation (9) is referred to as the Einstein-Wiener-Khinchin theorem [Oppen-
heim and Verghese, 2015, chapter 11].

We stress that, unlike the Fourier transform of a stochastic process, the PDS of a stochastic process is a
deterministic quantity: it is defined either in terms of the autocovariance function (equation (8)) or in terms
of expectations (equation (9)).

2.3. The PDS Variate, PDSV
Given a finite-length sample zðNÞ5ðztÞt51;::;N , the Fourier transform Fx½zðNÞ� provides a spectral domain sam-
ple of the discrete-time Fourier transform of the entire infinite-domain process Z [Oppenheim and Schafer,
1989, p. 695].

Due to the finite length of the sample, the mapping between the time and spectral domain is possible only
at a finite number of frequencies xj. These frequencies are given by integer multiples of the fundamental
frequency xf:

xj5jxf ; j50; ::;N21; (10)

xf 5
2p

NDt
: (11)

Accordingly, we will use the subscript j as the index of the discrete-time finite-sample Fourier transform.
Since the exponential basis functions used by the Fourier transform are orthogonal and complex-valued, N=2
frequencies are sufficient to describe the N elements of zðNÞ and hence we have j50; . . . ;N=221.

We now define a transformation of a stochastic process such that the expected value of this transformation
is the PDS of the original stochastic process. To this end, we define the ‘‘power-density spectrum variate’’
(PDSV) corresponding to a finite-length process ZðNÞ5ðZtÞt51;::;N as:

Qj½ZðNÞ�5
1

NDt
jFj ½ZðNÞ�j2: (12)

The following observations can be made:

1. The probability distribution pðQ½ZðNÞ�Þ is a derived distribution that depends on pðZðNÞÞ;
2. The power-density spectrum Pj½ZðNÞ� is the expectation of Qj½ZðNÞ�, i.e., Pj½ZðNÞ�5E½Qj½ZðNÞ��;
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3. A sample from the distribution of Qj½ZðNÞ� can be obtained by applying the transformation in equation
(12) to a time domain sample zðNÞ from the stochastic process ZðNÞ.

Pj½zðNÞ�5
1

NDt
jFj½zðNÞ�j2: (13)

The quantity Pj½zðNÞ� is often called the periodogram of zðNÞ (usually defined with Dt51) [Oppenheim and
Schafer, 1989]. The periodogram can be seen to represent a ‘‘single sample’’ estimator of the mean of the
power-density spectrum.

2.4. Statistical Properties of Quantities in the Spectral Domain
We now turn our attention to the probability distributions of quantities in the spectral domain.

For j � 1, the quantity jFj½ZðNÞÞ�j2 is known to have the v2-distribution with 2 degrees of freedom, i.e., an
exponential distribution with pdf fexpðxjbÞ51=b expð2x=bÞ, where E½x�5b and var½x�5b2 [e.g., Bartlett,
1950]. The periodogram at j 5 0 follows the v2 distribution with 1 degree of freedom (see below). These dis-
tributional properties of the PDS variate have important implications for parameter inference, and are elab-
orated in further detail in section 2.10.

Since Pj½zðNÞ� represents a sample from Qj½ZðNÞ�, and Pj½ZðNÞ� is by definition the expected value of Qj½Z�, we
can express the probability density of Pj½zðNÞ� for j> 0 using the exponential pdf with mean
Pj½Z�5E½Qj½ZðNÞ��:

pðPj½z�jPj ½Z�Þ5fexpðPj½z�jPj½Z�Þ; j51; ::;N=221; (14)

where, for simplification, we omitted the time domain superscript (N) on Z.

The probability distribution of Qj½ZðNÞÞ� at j 5 0 is the scaled v2 distribution with 1 degree of freedom,

pðPj½z�jPj ½Z�Þ5fv2
1
ðPj ½z�jPj½Z�Þ; j50; (15)

where fv2
1
ðxjbÞ5 1

b
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pðx=bÞ
p exp½2ðx=bÞ=2�.

Unlike the exponential distribution, for the v2 distribution with 1 degree of freedom, we have E½x�5b and
var½x�52b2. Inspection of the v2 distribution with 1 degree of freedom indicates that it corresponds to the
distribution of the square of a Gaussian variate (hence it can be referred to as a ‘‘squared-Gaussian’’
distribution).

Having derived the distribution of the PDSV for all frequencies, pðPj½z�jPj½Z�), in equations (14) and (15), and
having a method to compute samples from the PDSV (the periodogram in equation (13)), the remaining
step is to obtain an expression for the PDS Pj½Z� of specific stochastic processes used to describe residual
errors.

2.5. PDS of Uncorrelated Processes
For simple uncorrelated processes, the following relations hold:

P0½Z�5Dtr2
Z1NDtl2

Z ; (16)

Pj½Z�5Dtr2
Z ; j51; ::;N=221: (17)

Equation (17), obtained from Parseval’s theorem [Jenkins and Watts, 1968], is a well-known result and gener-
ally referred to as the ‘‘mean value of the periodogram.’’

Equation (16) is less known. In fact, the PDS spike at zero frequency of any process with nonzero
constant mean is often discarded, e.g., in the Whittle estimator [Whittle, 1953] used by Montanari
and Toth [2007], and in the mixed time domain and spectral domain calibration presented by Morlando
et al. [2016]. An example where it is explicitly included is the analysis of De Vleeschouwer and Pauwels
[2013].
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2.6. Bayesian Spectral Likelihood for Uncorrelated Processes
The Bayesian spectral likelihood (BSL) of time domain observations ~Y is obtained as the joint probability of
the corresponding spectral domain residual realizations P½e� at all frequencies. When the residual errors are
assumed to be uncorrelated, we obtain,

pð~Y jX; h;#Þ5pðP0½e�jP0½E�Þ
YN=221

j51

pðPj½e�jPj ½E�Þ

5fv2
1
ðP0½e�jP0½E�Þ

YN=221

j51

fexpðPj ½e�jPj½E�Þ;

(18)

where P0½� is given in equation (16) and Pj½� is given in equation (17).

Note that the PDSV is obtained from the actual realization of residuals e (equation (2)), whereas the PDS is a
property of the underlying stochastic process E (e.g., Gaussian).

Substituting the expressions for P0½Z� and Pj½Z� from equation (16) and (17), and assuming Dt51 and
l2
E50, yields the BSL for zero-mean white noise with variance rd:

pð~Y jX; h; rdÞ5fv2
1
ðP0½e�jr2

dÞ
YN=221

j51

fexpðPj½e�jr2
dÞ; (19)

where the definitions of fexpðÞ and fv2
1
ðÞ are as given in section 2.3.

2.7. PDS of Autocorrelated Processes
As the residuals of hydrological errors are typically highly autocorrelated, it is of interest to consider the PDS
of autocorrelated processes.

Regardless of the autocorrelation structure, equation (16) holds for frequency j 5 0. However, for j> 0, the
PDS of an autocorrelated process depends on j.

For Gaussian red noise, AR(1), it can be shown that [Brockwell and Davis, 1987]

Pj½Z�5
Dtr2

Z

q2sin2ðxjÞ1½12qcosðxjÞ�2
: (20)

More generally, the PDS of any stationary process Z with finite variance and linear autocorrelation structure
(e.g., with moving-average components, non-Gaussian innovations, etc.) can be expressed using a ‘‘profile’’
function, fZ

j ð#fÞ [Fox and Taqqu, 1986]:

Pj ½ZðNÞ�5Dtr2
ZfZ

j ð#fÞ: (21)

where #f are the parameters of the autocorrelation structure.

The profile function fZ
j is a function of the frequency index j and depends solely on the autocorrelation

structure of the process; it depends neither on the probability distribution of the innovations nor on the var-
iance of the innovations.

Equation (20) can be derived from the general equation (21), with parameters #f5q [Box et al., 1994]. The
corresponding expressions for other autoregressive processes can be found in references such as Box et al.
[1994] and others.

2.8. General Bayesian Spectral Likelihood
The general BSL formulation is obtained by expressing the joint probability distribution of the PDS variate
(PDSV) at all frequencies j 5 0,.., N=221:

pð~Y jX; h;#Þ5
YN=221

j50

fjðPj ½e�jPj½E�Þ: (22)

Recalling the different form of the probability distribution for frequency j 5 0 (equation (15)) than for fre-
quencies j> 0 (equation (14)), the above equation becomes:
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pð~Y jX; h;#Þ5fv2
1
ðP0½e�jP0½E�Þ

YN=221

j51

fexpðPj½e�jPj ½E�Þ; (23)

P0 is given by equation (16) and Pj by equation (21):

P0½E�5Dtr2
d1NDtl2

e ; (24)

Pj½E�5Dtr2
df
E
j ½#f�: (25)

The above equations hold for any homoscedastic (constant-variance) residual model, independent of the
residual distribution. For hydrological model residuals, the main focus will be on AR(1) residual models, for
which fEj is given by equation (20). Note that the homoscedasticity assumption can be addressed by using
transformations such as logarithmic or Box-Cox when calculating the residuals in equation (2) (see below).

2.9. Incorporation of BSL into a Full Bayesian Framework
The preceding sections 2.6 and 2.8 derived the likelihood function pð~Y j~X ; h;#Þ for Bayesian spectral domain
inference. The Bayesian posterior distribution pðh;#j~Y ; ~X Þ is then obtained by specifying a prior distribution
for all inferred quantities, pðh;#Þ,

pðh;#j~Y ; ~X Þ / pð~Y j~X ; h;#Þ3pðh;#Þ: (26)

The specification of the prior distribution allows incorporating existing (approximate) knowledge of hydro-
logical model parameters, e.g., based on previous investigations [e.g., Viglione et al., 2013], theoretical con-
straints, as well as estimates of error model parameters from auxiliary studies such as rainfall and rating
curve error analysis [e.g., Renard et al., 2011]. In the simplest instance where such additional information is
not available, such as in the case studies of this paper, a uniform prior distribution can be used,
pðh;#Þ / const.

In general, the likelihood function must account for any data transformations, such as the logarithmic or
Box-Cox transformations often used to stabilize the error variance,

pð~Y j~X ; h;#Þ5det Jqð~Y Þ3pðEj~X ; h;#Þ; (27)

where det Jq is the Jacobian determinant of transformation q, e.g., in the case of the logarithmic transforma-
tion qðyÞ5log y used in section 3.4, we have det Jqð~yÞ5

QN
t51 1=~y [e.g., see McInerney et al., 2017]. Unless

the data transformation includes fitted parameters (e.g., the Box-Cox transformation applied with a fitted
rather than fixed value of the power parameter k), the Jacobian term is constant with respect to the inferred
quantities ðh;#Þ, and can be treated as part of the proportionality constant in equation (26).

2.10. Theoretical Advantages of BSL
An interesting and useful feature of BSL is that its likelihood function, given in equation (23), is ‘‘almost’’
(asymptotically for large N) independent from the distribution of residuals in the original (time) domain.
This behavior arises from the v2 form of the probability distribution of the PDS variate (PDSV), used to derive
BSL (see equations (14) and (15)).

Intuitively, the asymptotic properties of the PDSV can be related to the mathematical form of the Fourier
transform, which is defined as a sum of a series of variables (see equation (7)). When these variables are ran-
dom, as is the case when the Fourier transform is applied to a stochastic process, the Central Limit Theorem
results in an asymptotic convergence to a Gaussian distribution almost irrespective of the distribution of
the individual terms in the sum (see Brillinger [1981] and Cohen [1998], for details). Next, when we consider
the definition of the power-density spectrum variate (PDSV, Q) in equation (12), we see that, for j> 0, the
complex modulus operation results in the sum of squares of two Gaussian terms, which by definition yields
the v2 distribution with 2 degrees of freedom, i.e., the exponential distribution. A slightly different result
holds for j 5 0 (see equation (14)).

A more formal derivation of the (asymptotic) distributional properties of spectral quantities is provided by
Brillinger [1981, theorem 4.4.2] and Cohen [1998]. This behavior and associated advantages are illustrated
and discussed in section 4.
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It is emphasized that, strictly speaking, the power-density spectrum variate (PDSV) follows the exact v2

distribution only for white noise (uncorrelated homoscedastic Gaussian processes). For strongly non-
Gaussian, heteroscedastic and/or autocorrelated processes, the distribution of the PDSV converges to the
v2 distribution asymptotically as N !1 [e.g., Duchon and Robert Hale, 2012, chapter 1]. The greater the
departure from white noise, the longer data period (larger value of N) is needed before the v2 distribution
becomes a reasonable approximation (similar to Central Limit Theorem convergence being slower when
summing highly non-Gaussian, heteroscedastic and/or autocorrelated random variables). Given the long
time series used in this paper (e.g., N5215 in case study 2), convergence of the PDSV to the v2 distribution
is not a limiting factor.

Another useful theoretical feature of BSL is that it can quite readily accommodate virtually any residual
autocorrelation structure, as long as the autocorrelation decays to zero. This can be achieved by substituting
the appropriate parameterization for fEj in equation (25). Examples of estimating the parameters of the
well-known ‘‘1=f ’’ noise [e.g., West and Shlesinger, 1990; Ward and Greenwood, 2007] and of a process with
an exponentially decaying PDS are provided in section 3. In contrast, it might be difficult to derive the corre-
sponding autocorrelation functions in the time domain, and indeed impossible in the case of ‘‘1=f ’’ noise
[Ward and Greenwood, 2007]. The practical advantages afforded by this flexibility of BSL are discussed fur-
ther in section 5.

2.11. Relationship to the Estimator of Montanari and Toth [2007]
Montanari and Toth [2007] have previously investigated the calibration of hydrological models using the
maximum likelihood estimator introduced by Whittle [1953]. The likelihood proposed by Montanari and
Toth [2007] is

pð~Y jX; h;#Þ5
YN=2

j51

fexpðPj½~Y �jPj½Hðh; ~X Þ�1Pj½Ej#�Þ; (28)

where Pj½Hðh; ~X Þ� is the periodogram of the model simulation and is used as an estimate of the PDS of the
hydrological model Pj½HðhÞ�. The term Pj½Ej#� is the PDS of the residual model as in equation (23), and Pj½~Y
� is the periodogram of the observed output. Note that, as discussed in section 2.11, equation (28) does not
include the PDS value for j 5 0. Furthermore, both periodograms (of the model simulation and of the
observed output) are obtained via the Fast Fourier transform without windowing [Montanari and Toth,
2007] (the R-code available from the authors).

The approach suggested by Montanari and Toth [2007], which will be referred to as the ‘‘Montanari-Toth
likelihood’’ (MTL), requires two important assumptions:

1. The PDS of the observations ~Y 5Hðh; ~X Þ1E can be approximated as P½~Y �5P½Hðh; ~X Þ�1P½E� or, more
generally, P½qð~Y Þ�5P½qðHðh; ~X ÞÞ�1P½E�� when the residuals E� are defined in transformed space. This
approximation holds only if the hydrological model and the residual model are independent, i.e., if their
cross spectrum is zero [e.g., see Brockwell and Davis, 1987].

2. The generally unknown PDS of the hydrological model P½Hðh; ~X Þ� can be approximated by the periodo-
gram of a model simulation, P½Hðh; ~X Þ�. As the periodogram is a ‘‘single-sample’’ estimator of the PDS,
this approximation introduces additional noise into the estimation procedure. More stable (less noisy)
PDS estimators exist [e.g., Welch, 1967] but have not been investigated in the context of the Whittle esti-
mator for hydrological model calibration.

As shown by Montanari and Toth [2007], assumptions 1 and 2 above can often provide useful prac-
tical results. However, the additional approximation errors introduced by these assumptions can be
expected to inflate posterior parameter uncertainty compared to BSL, which does not make these
assumptions. These theoretical considerations are investigated empirically in section 4 and discussed
in section 5.

Note also that MTL is formulated in terms of the observed streamflows given a model simulation and a
residual error model, whereas BSL is formulated in terms of the observed residuals given a residual error
model. In this respect, the convenience of the BSL formulation presented in this work is that it does not
require dealing with spectral analysis of the hydrological model equations.
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3. Case Studies

Four case studies are presented: (i) illustration of the properties of the periodogram (used in the BSL infer-
ence), using pure random processes; (ii) inference of parameters of autocorrelation functions of pure ran-
dom processes; (iii) synthetic hydrological calibration, where we investigate the inference of hydrological
and error model parameters under controlled conditions; and (iv) real hydrological calibration, where we
investigate parameter inference when model assumptions are not fully met.

A summary of the case studies is given in Table 2 and a summary of notations in Table 3.

3.1. Case Study 1 (Synthetic): Properties of the Periodogram/BSL
One of the interesting properties of the periodogram of a random process is that its elements follow
(approximately) the v2 probability distribution regardless of the probability distribution of the original ran-
dom process (see section 2.8). This property is illustrated for uncorrelated non-Gaussian processes, with
innovations from the following four probability distributions: (i) uniform distribution in ½21; 1�, (ii) Laplace
distribution with l 5 0, r 5 1, (iii) bimodal Gaussian distribution with l151; l2521; r15r250:5 and
weight 0.2 of the first component; (iv) an AR(1) process with the parameters of the Gaussian error model of
Table 3, selected based on hydrological experience.

The methodology employed to empirically confirm the probability distribution properties of the periodo-
gram is given in section A1.

3.2. Case Study 2 (Synthetic): Inference of Pure Random Processes
The ability of BSL to retrieve the parameters of the process that generated the ‘‘observed’’ data are first illus-
trated using a synthetic case study based on pure random processes (i.e., without a deterministic
component).

The following stochastic processes are investigated:

fP1ðx; A1; B1Þ5A1exp ð2B1xÞ; (29)

fP2ðx; A2; B2Þ5A2=x
B2 ; (30)

with reference parameter values ðA1; B1Þ5ð100; 0:001Þ and ðA2; B2Þ5ð10:5; 3Þ, respectively.

The methodology for generating the synthetic data for this case study is detailed in section A2. This analysis
allows establishing the theoretical properties of BSL under idealized conditions. As we do not carry out a
Markov Chain Monte Carlo (MCMC) analysis of the posterior distribution, we are limited to examining the
properties of the optimal BSL estimate, rather than of the entire BSL distribution. Note that optimization of
the likelihood corresponds to optimization of the Bayesian posterior under uniform prior assumptions.

3.3. Case Study 3 (Synthetic): Simple Hydrological Model
Following the basic verification of the BSL using pure random processes, we investigate its properties when
applied to hydrological models with synthetic rainfall-runoff data. The synthetic data are generated using a
simple rainfall generator and hydrological model, in order for the synthetic streamflow data to generally
resemble real observations; see section A3 for a detailed description.

Table 2. Summary of Case Studies

Name Type Description

Case study 1.1 Synthetic Uncorrelated process with innovations from a uniform distribution in [–1, 1]
Case study 1.2 Synthetic As 1.1 but Laplace distribution with l 5 0, r 5 1
Case study 1.3 Synthetic As 1.1 but bimodal Gaussian distribution: l151; l2521; r15r250:5, weight of 1st component: 0.2
Case study 1.4 Synthetic AR(1) process (with the ‘‘error model’’ parameters given in Table 3)
Case study 2.1 Synthetic Pure random process with fP1ðx; ðA1; B1ÞÞ5A1exp ð2B1xÞ, A15100; B150:001
Case study 2.2 Synthetic Pure random process with fP2ðx; ðA2; B2ÞÞ5A2=xB2 ; A2510:5; B253
Case study 3.1 Synthetic Simple hydrologic model 1 Gaussian AR(1) error process (‘‘error model’’ parameters given in Table 3)
Case study 3.2 Synthetic As 3.1 but Laplacian AR(1) error process
Case study 3.3 Synthetic As 3.1 but error process with autocorrelation structure t‘5f ð‘; .1; .2Þ5expð2.1‘2.2‘

0:5Þ
Case study 4 Real data HYMOD model for Leave river 1 AR(1) Gaussian error process in log-transformed space

Water Resources Research 10.1002/2016WR019465

SCHAEFLI AND KAVETSKI BAYESIAN SPECTRAL LIKELIHOOD 6866



The rainfall generator used is a Poisson rectangular pulse model with an exponential distribution for both
the rain cell intensity and the duration [e.g., Bierkens and Puente, 1990]. The model has three parameters:
the arrival rate k, the mean intensity �i r , and the mean duration �t r .

The hydrological model used is a simple model with two linear reservoirs in series, described by three
parameters. The reservoir outflow is defined as ks, where s is the storage, and k21 is the residence time. The
residence time of the first reservoir, k21

1 , is shorter than the residence time of the second reservoir, k21
2 . The

leaching from reservoir 1 to reservoir 2 is assumed to be constant and equal to lg. We refer to this model as
the simple linear HM (‘‘linearity’’ here refers to the flux formulation).

The following residual error models are used: (i) Gaussian AR(1) process (section 2.1); (ii) Laplacian AR(1) pro-
cess (section 2.1); and (iii) a process with the autocorrelation structure t‘5f ð‘; .1; .2Þ5expð2.1‘2.2‘

0:5Þ,
which corresponds to the autocorrelation structure of the model residuals of Schaefli et al. [2007]. We con-
sider cases where the error model is specified correctly and cases where it is misspecified. The analyses of
misspecified error models include erroneous distributional assumptions and erroneous autocorrelation
structure assumptions.

The model parameters and the selected reference values for the synthetic case studies are summarized in
Table 3. The maximum likelihood parameter set is estimated using the Nelder-Mead simplex algorithm [e.g.,
Press et al., 2007] in Matlab Version 2010b.

The statistical reliability of the predictions in this case study is assessed against multiple realizations of syn-
thetic data using a predictive quantile-quantile plot, constructed as a generalization of the predictive qq-
plot plot proposed by Thyer et al. [2009] for the case of a single reference realization (the observed data)
(see section A3).

3.4. Case Study 4 (Real Data): Leaf River Modeling
The behavior of BSL under real data conditions is investigated by calibrating the hydrological model
HYMOD [Boyle, 2000] to the well-known Leaf River basin near Collins, Mississippi [e.g., Sorooshian et al.,
1993; Vrugt et al., 2005; Smith et al., 2008]. The catchment has an area of about 1950 km2. Daily area-
average precipitation, evapotranspiration, and streamflow estimates are available from the Hydrologic
Research Laboratory of the National Weather Service. The calibration period ranges from October 1948 to
September 1951. The validation period ranges from January 1951 to December 1969.

To stabilize the variance of the model residuals, we apply a log-transformation to the observed and simu-
lated streamflow

Table 3. Mathematical Notations Used for the Case Studies (for Methods, See Table 1), Including the Reference Values for the Model
Parameters

Notation Type Description Reference Value

m Parameter Number of experiment repetitions
G Process Rainfall generator model
/ Parameter Parameter vector of rainfall generator
k Parameter Arrival rate (rainfall generator) 0.5 day21

�i r Parameter Rainfall event mean intensity (rainfall generator) [L/T] 3.3 mm/d
�t r Parameter Rainfall event mean duration (rainfall generator) [T] 0.8 day
. Parameter Autocorrelation parameters (synthetic rainfall-runoff)
‘ Variable Lag (synthetic rainfall-runoff)
k1 Parameter Linear reservoir coefficient 1 [1/T] (synthetic rainfall-runoff) 0.1 day21

k2 Parameter Linear reservoir coefficient 2 [1/T] (synthetic rainfall-runoff) 0.05 day21

lg Parameter Leaching parameter [L/T] (synthetic rainfall-runoff) k�i r�t r mm/d
qe Parameter AR1 parameter (error model) 0.8
ld Parameter Mean of innovations (error model) 0.25
rd Parameter Standard deviation of innovation (error model) 0.015
smax Parameter Max. storage (HYMOD) [L]
bH Parameter Spatial variability (HYMOD)
a Parameter Flow splitting (HYMOD)
ms Parameter Residence time slow reservoir (HYMOD) [T]
mq Parameter Residence time fast reservoirs (HYMOD) [T]
mH Parameter Number of fast reservoirs (HYMOD)
A Parameter Numerical offset for log computation
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�t5logð~y t1AÞ2logðŷ t1AÞ; (31)

where A is a small fixed offset to avoid numerical problems when applying the transformation to zero and
near-zero flows. Here, we use A51024 (mm/d).

We assume that the residuals of log-transformed responses can be described by a random vector E that
(approximately) follows an AR(1) process with Gaussian innovations. In this case, BTL and BSL can be
applied without further modification to the log-transformed residuals (see section 2.9). The posterior param-
eter distribution with BSL or BTL are sampled using the Metropolis algorithm described in Schaefli et al.
[2007], which was used to produce 1000 samples from a stable chain (no update of the sampling
distribution).

All error model parameters are sampled jointly with the hydrological model parameters. We use uniform
priors for all parameters except the error model innovation variance r2

d , for which Jeffreys prior is used,
pðr2

dÞ51=r2
d , [see Schaefli et al., 2007]. Note that the mean of the innovations ld, which effectively acts as a

mass balance parameter, is inferred jointly with all other parameters. In principle, this estimation approach
can lead to nonrobust predictions, as shown empirically by Evin et al. [2014]. Although such nonrobustness
was not seen in the current case study, we note that joint inference of mass balance parameters, error vari-
ance and error autocorrelation should be undertaken with care to avoid poor inference and predictions.

4. Results

4.1. Case Study 1: Theoretical Properties
An important property of BSL, arising from its use of the periodogram, is that its formulation does not
depend on the process distribution in the original (time)domain (section 2.10). This is illustrated in Figure 1,
which shows Gaussian qq-plots of the realizations from three different non-Gaussian random processes,
and the v2 qq-plots of the corresponding periodograms. Figures 1a and 1b show three theoretical process
examples, while Figures 1c and 1d applies this analysis to the (highly non-Gaussian) residuals time series
obtained from the inferred maximum likelihood parameter set of the Leaf River case study (section 4.4). In

Figure 1. Illustration that the probability distribution of periodogram values does not depend on the probability distribution of the process in the time domain (see section 2.8). The
Gaussian qq-plots in the left column confirm that the four tested processes are non-Gaussian (top row: case studies 1.1, 1.2., 1.3, bottom row: case study 1.4, Table 2). The v2 qq-plots in
the right column show that the periodogram values of all four tested processes follow the v2 distribution.
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all cases, irrespective of the process distribution in the original domain, the periodograms follow a v2 distri-
bution with 2 degrees of freedom for all frequencies j> 0. This finding provides empirical confirmation of
the theoretical considerations given in section 2.10.

4.2. Case Study 2: Inference of PDS Parameters
Another important property of BSL is that it can be readily used to infer the parameters of processes with
virtually any PDS. This is illustrated in Figure 2, which shows, for each parameter of the two pure random
processes given in Table 2, the distributions of optimal estimates obtained by maximizing the likelihood
function over multiple process realizations with the same underlying true parameters (see section 3.2).

Figure 2 show that the distributions are (correctly) centered on the true parameter values used to generate
the original process realizations. The variability of the optimal estimates is indicative of the parametric

Figure 2. Parameter distributions inferred with BSL for the pure random processes of case studies 2.1 and 2.2 (section 3.2, Table 2). The bottom row illustrates a single realization from
each process.
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uncertainty associated with fitting the model to finite-length realizations (in this particular example, para-
metric uncertainty is quite small, less than 5% in both cases, due to the relatively long realization used (see
section A2).

4.3. Case Study 3: Synthetic Hydrological Calibration
4.3.1. Correct Versus Misspecified Error Models
The mathematical equivalence of BSL and BTL is illustrated in Figure 3, which shows the parameter distribu-
tions obtained for the simple linear HM with a Gaussian AR(1) residual model where all model assumptions
are respected. The inferred parameter distributions are almost indistinguishable for the BSL and BTL
likelihoods.

Figure 4 shows the same experiment, except that the residuals are generated from a Laplace AR(1) distribu-
tion. We consider three likelihoods: Gaussian BTL, Laplace BTL, and BSL (which remains unchanged because
it does not depend on the assumed distribution of residual errors).

The parameter distributions inferred with BSL, Gaussian BTL, and Laplace BTL are almost identical, and are
centered on the true parameter values. This finding demonstrates the general robustness of the Gaussian
BTL with respect to the underlying distribution of model residuals. This robustness is confirmed by repeat-
ing the same experiment (results not shown) with different residual error parameters (namely
q� 2 0; 0:5; 0:8; ld 2 0; 0:23; 1) and rd 2 0:06; 0:13; 0:5), and for lognormal residual distributions. This
robustness expresses the fact that in any of these experiments, BTL-Gauss is maximized for almost the same
parameter set as BTL-Laplace or BTL-lognormal (differences in optimal parameter values of a few percent).
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Figure 3. Distributions of optimal parameters inferred by BTL-Gauss-AR1, BSL-AR1, and MTL-AR1 in the synthetic experiment with the simple linear HM and Gaussian AR(1) residuals
(case study 3.1, section 3.3, Table 2). The exact parameter values are indicated with vertical red lines. BSL and BTL are consistent with each other, whereas MTL produces different results.
Note that ld cannot be inferred under MTL.
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The robustness of least squares parameter estimates to moderate departures from Gaussian distribution
assumptions is fairly well established in the statistical literature [e.g., White, 1981]. Note that here we are con-
cerned with departures from the overall shape of the error distribution rather than to the presence of strong
outliers, as in the latter case least squares estimates can indeed deteriorate very rapidly [Press et al., 2007].

The robustness of BTL does start to break down if wrong assumptions are made about the residual autocor-
relation structure (rather than about the residual distribution). This is illustrated in Figure 5, which shows
the parameter distributions obtained for BTL, BSL and MTL for the synthetic case when the residuals have
an exponential rather than AR(1) autocorrelation structure (see section 3.2). The parameter distributions
show that both BTL-Gauss-AR1 and BSL-AR1 yield unbiased parameter estimates. However, compared to
the distributions obtained under the correct likelihood (called BSL-non-AR1), BTL-Gauss-AR1 yields too wide
hydrological parameter distributions, in particular for parameter k2 (compare Figure 5 top row and bottom
row). The distributions of the parameters k1, k2, and lg under BSL-AR1 are similar to the distributions
obtained under the correct likelihood BSL-non-AR1 (compare Figure 5 second row and bottom row). This
finding suggests that BSL is slightly more robust than BTL to violations of assumptions describing the resid-
ual error autocorrelation.

The differences between the distributions become more visible when comparing their reliability using the
predictive qq-plots shown in Figure 6. These predictive qq-plots show the probability distribution of the
underlying true reference simulations within the model simulations. The predictive qq-plot for BSL-non-AR1
is clearly closer to the 1:1 line (corresponding to a perfectly reliable probabilistic model) than for the other
likelihoods. Finally, Figure 7 shows the spectral domain differences between the PDS inferred under the
assumptions of BTL-Gauss-AR1, BSL-AR1, and BSL-non-AR1 versus the true PDS. It can be seen that there is
a relatively pronounced difference between the PDS inferred with the correct likelihood BSL-non-AR1 and
the PDS obtained with the likelihoods assuming (wrongly) a AR1 process.
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Figure 4. As Figure 3, but with the synthetic residuals generated from a Laplace distribution (case study 3.2, Table 2), to test the robustness of inference with respect to distributional
assumptions in the error model. Results shown for BTL-Gauss-AR1, BTL-Laplace-AR1, BSL-AR1, and MTL-AR1. The exact parameter values are indicated with vertical red lines.
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4.3.2. Comparison of MTL Versus BSL and BTL
Figure 3 compares the parameter distributions for the simple linear HM obtained using the MTL likelihood to
the parameter distributions obtained using BTL and BSL.

The MTL inference of all model parameters (hydrological and error model) is unbiased despite the fact that the
error innovation mean cannot be inferred (section 2.11). However, the posterior distributions (of all parameters)
have a larger variance under MTL than under BTL and BSL, in particular for the hydrological model parameter k2

and the error model autocorrelation q.

In terms of sensitivity to residual error assumptions, MTL does not, in theory, depend on the residual distri-
bution in the original domain (this property is similar to BSL). For the previously discussed case of Laplace
distributed residuals, MTL indeed results in unbiased parameter distributions (Figure 4), despite the fact
that the mean of the innovations, ld, cannot be inferred with MTL (the zero frequency does not enter the
computation of the Whittle likelihood). This example shows that nonzero-mean residuals do not necessarily
lead to biased MTL estimates.

In contrast, MTL is highly sensitive to wrong autocorrelation assumptions as demonstrated with the experi-
ment with non-AR(1) residual realizations: the resulting parameter distributions are biased (Figure 5), the
prediction range does not correspond to the range of reference simulations (Figure 6) and, compared to
the periodogram of the residuals, the PDS does not show enough power for high frequencies (Figure 7).

4.4. Case Study 4: Leaf River Case Study
The posterior distributions of HYMOD and residual error model parameters inferred in the Leaf River case
study using BTL-Gauss, BSL, and MTL are shown in Figure 8. The corresponding maximum likelihood param-
eter sets are listed in Table 4.
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Figure 5. As Figure 3, but with the synthetic residuals having an exponential autocorrelation function (case study 3.3, Table 2), to test the robustness of inference with respect to auto-
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The distributions produced using
BTL-Gauss and BSL are very simi-
lar. Notable differences arise
between the inferred residual
innovation means ld , the HYMOD
parameter bH (which parameter-
izes the degree of spatial variabil-
ity of the soil moisture), and
the HYMOD parameter a (which
parameterizes the distribution of
flow between the slow and quick
reservoirs). MTL gives a very dif-
ferent range of posterior parame-
ter values for the two reservoir
parameters ms and mq resulting in
lower base flow, slower reces-
sions, and a slower response to
rainfall events. Overall, this leads
to more strongly autocorrelated
residuals, as reflected in the distri-
bution of q for MTL.

Figure 9 shows the streamflow
simulation during the validation period corresponding to the parameter set with the highest BSL
value. Included are plots of the log-transformed streamflow to show the model performance during
low flows, a plot of the corresponding residual time series, a plot of the residuals against the rank of
the simulated streamflow, a predictive qq-plot, and a plot of the partial autocorrelation of the
residuals.

The diagnostic plots in Figure 9 show that, in the case of BSL, the logarithmic transformation stabilizes the
variance of residual errors and the assumption of constant-variance Gaussian residuals holds at least

approximately. The autocorrela-
tion of the residual errors is rea-
sonably approximated by the
AR(1) process (Figure 9f).

In contrast, the corresponding
diagnostic plots for MTL clearly
show that the results obtained
with this likelihood do not com-
ply with the underlying assump-
tions. In particular, the residuals
are strongly nonsymmetric (Fig-
ure 10d), do not have an AR(1)
autocorrelation structure (Fig-
ures 10c and 10f), and are non-
Gaussian (Figure 10e).

The results for the maximum
likelihood simulation with BTL
are very similar to BSL (Figure
11). However, the residual time
series computed in the BSL and
BTL inferences are not identical.
In particular, the distributions
of residual model parameters
are slightly different (especially
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for the innovation mean ld, see Figure 8), which translates into a different mean and total variance in the
AR(1) residual model.

Accordingly, the total prediction limits for BSL and BTL are also different (Figure 12). These limits are
obtained from 500 random model realizations (hydrologic model simulation plus residual error realization)
corresponding to random draws from the posterior parameter distributions. As can be seen in Figure 12,
the parametric uncertainty is relatively small for BSL, BTL, and MTL (because of the length of the calibration
data), and the majority of the predictive uncertainty is due to residual errors.

Overall, the total 90% prediction limits obtained with BSL and BTL from the 1000 samples span, respectively,
around 93% and 90% of observed values in the calibration period and around 94% and 87% of observed
values in the entire simulation period (calibration and validation). The predictive qq-plots for the validation
period (Figures 13a and 13d) show that both likelihoods lead to very similar statistical reliability, with minor
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Table 4. Leaf River Case Study: Limits of the Uniform Priors, Parameter Values Inferred Using BTL and BSL (Columns Denoted With inf),
and Empirical Quantities Estimated From the Computed Residuals (Columns Denoted With emp)a

smax

(mm) bH a ms mH q inf
ld inf

(mm/d)
rd inf

(mm/d) q emp
ld emp
(mm/d)

rd emp
(mm/d) NSE

Prior min 50 0.05 0.01 0.001 0.001 0 20.25 0
Prior max 800 1.95 1 0.20 0.95 0.99 0.25
BTL-Gauss 149 0.51 0.11 0.16 0.01 0.90 20.02 0.19 0.71 20.05 2.08 0.70
BSL 174 0.38 0.10 0.15 0.01 0.89 0.01 0.20 0.73 20.02 2.10 0.68
MTL 173 0.34 0.08 0.08 0.84 0.97 20.01 0.21 0.80 20.02 2.13 0.59

aThe number of fast reservoirs, mH, is fixed to 2 after initial optimization. The prior for rd is obtained according to the method used in
Schaefli et al. [2007]. NSE stands for the Nash-Sutcliffe efficiency.
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deviations from the uniform distribution. Considering high flow and low flow separately (Figures 13b, 13c,
13e, and 13f) suggests that BSL gives more reliable results than BTL for low flow simulations (Figures 13c
and 13f).

5. Discussion

Given the theoretical aspects presented in section 2 and the results of the empirical case studies reported
in section 3, we are now in a position to discuss the advantages and limitations of the BSL approach, relate
it to the existing techniques for parameter inference in the time and spectral domains, and outline direc-
tions for further investigations.

We begin by comparing BSL to other spectral calibration methods proposed in the hydrological literature,
with a particular focus on the MTL approach [Montanari and Toth, 2007], and then make a broader compari-
son to traditional time domain calibration (BTL).

The majority of spectral domain calibration methods in the hydrological literature are heuristic, in the sense
that they do not explicitly articulate a probabilistic model of the system of interest (here, the catchment
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Figure 9. Leaf River case study: (a) streamflow time series computed using the maximum likelihood parameter set estimated with BSL-AR1 (validation period), (b) same plot in log-
transformed space, (c) corresponding time series of residuals, (d) plot of the residuals against the rank of the predicted values, (e) Gaussian qq-plot of residuals, (f) partial autocorrelation
function (PACF) of the residuals.
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and observation systems) when constructing the objective function. For example, consider the case of
parameter calibration that searches for the hydrological parameter set to match the autocorrelation func-
tion of the simulated discharge and the autocorrelation function of the observed discharge, using the root-
mean-squared-error as a distance metric [Moussu et al., 2011]. This approach is useful from the point of view
of maximizing particular model fit features, and establishing the sensitivity of the fit to parameter values,
but cannot provide probabilistic estimates of uncertainty in the estimated parameters and predictions.

In addition, heuristic approaches, such as matching the autocorrelation function, hide a number of assump-
tions, such as the distributional properties of the errors. For example, using the sum-of-squared differences
between the autocorrelation functions of observed versus simulated streamflow implies an assumption that
these differences follow an independent Gaussian distribution. Unless these assumptions are stated and
tested explicitly, the ability of the inference to provide meaningful probabilistic estimates is questionable.

For these reasons, our interest in this study is on likelihood functions explicitly derived from probabilistic
models of the hydrological system and observations systems.

To the best of our knowledge, MTL is the only approach in the hydrological literature where a likelihood
function is formally articulated from a probabilistic description of the data. The Whittle likelihood employed
in the MTL approach is used outside of hydrology, in particular to infer the parameters of time series models
[Ives et al., 2010] and to estimate the power-density spectrum of time series [Choudhuri et al., 2004].
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Figure 10. Same analysis as in Figure 9, but for MTL-AR1.
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However, it is usually used in contexts where the PDS of the model can be computed directly [e.g., Monta-
nari et al., 1997], whereas in the MTL approach, the PDS of the (error) model is approximated (with poten-
tially large errors) by subtracting the periodogram of model simulations from the periodogram of observed
time series (section 2.11).

In this work, we use a different strategy when deriving the BSL approach—we articulate the spectral
domain error model by computing the distribution of residual errors in the spectral domain from the time
series of residuals in the time domain.

What are the advantages and limitations of the BSL approach versus the MTL approach? By explicitly com-
puting the residual error time series and then transforming to the spectral domain, BSL avoids the approxi-
mations and ensuing noise incurred by MTL. This behavior can be seen in the empirical case studies 3.1 and
3.2 (Table 2 and Figures 3 and Figure 4) where parametric uncertainty in the BSL approach was similar to
the BTL inference. Especially under synthetic conditions with the correct error model (case study 3.1, Figure
3), we can take BTL as the reference solution because it works directly with the raw residuals without any
spectral domain transformations.

In contrast, MTL inference yields parameter distributions that are clearly wider than those of BTL and BSL, as
can be seen in case studies 3.1, 3.2, and 3.3 (Figures 3–5). We can attribute the additional noise in MTL to at
least two potential reasons: (i) MTL uses the periodogram to estimate the PDS of the hydrological model. As
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Figure 11. Same analysis as in Figure 9, but for BTL-AR1.
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the periodogram is a single-sample estimator of the PDS, it increases the variance of the resulting parame-
ter estimates; (ii) MTL excludes the zeroth frequency of the PDS from the likelihood function and hence
loses information about the mean of the stochastic process assumed to describe residual errors.

This paper has not investigated the individual impact of these approximations on the MTL inference. It is
possible that the use of more robust PDS estimators, for example, Welch’s method [Welch, 1967] could
reduce the impact of some of the limitations. That said, testing the theoretical properties of approximations
to spectral properties of hydrological models is difficult because, except for special cases, the true PDS of
hydrological models is unknown. For example, Bierkens and Puente [1990] proposed analytical expressions
for the autocorrelation of the outputs from a simple hydrological model forced with stochastic inputs. How-
ever, their derivations hold only for the specific model used and only for small lags; these results are hence
of limited value with respect to more general analyses of the MTL inference scheme.

It is worth adding that, in BSL, the periodogram of residual errors is used not as an estimator of their power-
density spectrum (PDS), but to compute samples of the power-density spectrum variate (PDSV). Hence,
replacing the periodogram PðeÞ used in BSL by a more stable estimator of the PDS (e.g., the method of
Welch [1967]) would be detrimental to the probabilistic properties of BSL, because it would (by construc-
tion) underestimate the variability of residual errors in the spectral domain.

The advantage of the BSL approach in avoiding the approximations of MTL does not come free. In particu-
lar, the MTL approach appears simpler to apply to indirect calibration problems such as nonconcomitant
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calibration, because the residual errors do not have to be computed explicitly. BSL will require further devel-
opment to be applicable to this problem, including an approximation of the PDS of the residual errors that
does not ignore the cross spectrum (section 2.11).

These extensions to the MTL and BSL approaches lie beyond the scope of current work and will be explored
in follow-up studies.

We now shift our attention to a broad comparison of BSL and time domain estimation (BTL). In view of the
close correspondence of BSL and BTL, does BSL represents a new error model, or a new solution approach
for the same error model as BTL? In principle, BSL is obtained via Fourier transform of the time domain reali-
zation and, therefore, could be seen to rely on the same initial assumptions as BTL (here, that residuals fol-
low a Gaussian AR(1) process). However, due to the properties of the Fourier transform and the PDS
definition listed in section 2, the influence of assumptions such as that the errors are Gaussian is greatly
diminished. In this respect, the BSL approach could be viewed to represent a more robust error model,
especially with respect to distributional assumptions.

The advantages/attractive features of BSL versus BTL can be summarizes as follows.

a. Theoretical robustness against violation of distributional assumptions. As noted in the theory section
(section 2.3), the power-density spectrum variate central to the BSL approach has a v2 distribution almost
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independently from the (residual error) time series it is computed from. This is an attractive theoretical
property because it can be expected to reduce the impact of violating distributional assumptions such
as Gaussian errors, etc.

We note that least squares methods are often robust against departures from Gaussian assumptions
(e.g., White [1981] and case study 3.2). For this reason, a comparison of BSL and BTL in catchments with
strongly non-Gaussian errors is of interest and recommended for future work. The impact of strong out-
liers is of particular interest given the susceptibility of least squares estimation to this particular depar-
ture from Gaussianity [Press et al., 2007].

b. Flexibility in representing the autocorrelation structure of the model residuals. This flexibility arises due
to the structure of BSL where the autocorrelation profile function (21) is formulated directly in the spec-
tral domain. In case study 2.2, we considered processes with autocorrelation structures that cannot be
readily formulated in the time domain. For example, the correlation structure of ‘‘1/f’’ (pink) noise has no
simple representation in the time domain. Using BTL for such problems would require approximations,
e.g., by AR(n) processes, and does not appear robust (e.g., case study 3.3).

The theoretical flexibility of BSL over BTL in representing error autocorrelation becomes particularly
attractive when modeling environmental processes with strong cyclic behavior. For example, water tem-
perature time series typically exhibit a pronounced diurnal cycle [e.g., Comola et al., 2015]. A water tem-
perature model that does not capture this diurnal cycle will generally yield residuals with a cyclic
autocorrelation structure peaking every 24 h. This type of autocorrelation structure is difficult to repre-
sent in the time domain, but is relatively easier to represent in the spectral domain (e.g., with the profile
function, equation (21)). This example illustrates a case where BSL offers useful practical advantages for
modeling environmental systems where the autocorrelation of the model and/or observation errors is
(much) easier in the spectral domain than in the time domain.

c. Opportunities to extend the method to indirect calibration problems, by taking advantage of working in
the spectral domain (see discussion above).

The practicality of a calibration scheme such as BSL depends not only on its inferential properties, but
also on its computational cost. A major computational feature of spectral domain methods is their use of
Fourier transformed quantities. In practical work, the Fourier transform is invariably implemented using
the Fast Fourier Transform (FFT) algorithm, which requires of the order of Nlog N operations [Rao et al.,
2010]. BTL does not require any FFT operations (it operates exclusively in the time domain), MTL requires
a single FFT operation per likelihood evaluation (FFT of the hydrological model simulations, assuming
the FFT of observed data is precomputed once), and BSL also requires a single FFT operation per likeli-
hood evaluation (FFT of the residual error time series). While the cost of FFT can be appreciable for very
long time series, in most cases, we expect it to be dominated by the cost of running the hydrological
model, which in general requires the solution of differential and algebraic equations at each time step.
Consequently, it is unlikely that the computational cost of FFT within the BSL (and MTL) approaches
could be a major limiting factor in practical work.

Finally, in terms of future work, we note that many aspects of hydrological calibration in the spectral
domain remain poorly understood. Based on the findings reported in this paper, the following specific
directions deserve focused investigation:

a. Investigate the robustness of BSL versus MTL and BTL under conditions of strongly non-Gaussian errors.
In principle, BSL and MTL should provide practical robustness, which should be established using both
‘‘realistically constructed’’ synthetic data and real data case studies, in particular in arid/semiarid
catchments;

b. Apply BSL to environmental modeling problems where the error time series exhibit nontrivial persis-
tence patterns (for example, the diurnal water temperature models mentioned earlier);

c. Indirect calibration, including calibration using nonconcomitant input-output data time series, and cali-
bration in ungauged catchments;

d. Using BSL in studies exploring error decomposition. In this paper, we focused exclusively on aggregated
treatment of errors using a single residual error model. The alternative paradigm of error decomposition
is of tremendous interest, as it allows estimating dominant sources of uncertainty and devising strategies
for reducing these errors. In principle, BSL can be incorporated directly into the likelihood terms of hier-
archical Bayesian approaches such as BATEA [Kavetski et al., 2006; Renard et al., 2011], but the advan-
tages, limitations and practicalities of doing so remain to be established empirically.
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6. Conclusions

This paper presents the derivation of the spectral domain counterpart of the widely used time domain likeli-
hood for Bayesian inference of environmental models. The theoretical and empirical properties of the pro-
posed Bayesian spectral likelihood (BSL) are compared to the properties of the Bayesian time domain
likelihood (BTL), and to the Whittle-type spectral domain likelihood (MTL) previously proposed by Montanari
and Toth [2007].

The key conclusions of this paper are as follows:

1. The Bayesian spectral domain likelihood derived in this work is mathematically equivalent to its time
domain counterpart in the case when the residual errors are assumed to be Gaussian (and autocorre-
lated). However, the spectral formulation offers two theoretical benefits: (i) its likelihood function is
(asymptotically) independent from the probability distribution of residual errors, and (ii) it can accommo-
date residual errors with more complicated autocorrelation structure (for which time domain representa-
tions are difficult or impossible).

2. At least under synthetic conditions, the time domain likelihood is relatively robust to departures from
the assumption of Gaussian residuals, but this robustness breaks down for departures from the assumed
autocorrelation structure. This is an aspect in which the spectral domain inference might offer practical
benefits over time domain inference.

3. For the Whittle-type spectral domain likelihood proposed by Montanari and Toth [2007], the synthetic
and real data studies suggest that the simplifying assumptions made in this likelihood tend to produce
parameter distributions that are too wide compared to inference in the time domain, and potentially
biased when autocorrelation assumptions are violated. The Bayesian spectral domain likelihood intro-
duced in this work does not appear to suffer from these limitations and does not incur a loss of informa-
tion compared to the corresponding time domain inference.

4. The real data case study based on the Leaf River and the hydrological model HYMOD reinforces the (rela-
tive) robustness of the time domain and spectral domain inference for a typical hydrological setting.
Both inferences produced similar results, despite some moderate departures from the residual error
model assumptions.

The theoretical derivations and analyses presented in this paper represent the first step toward formal
Bayesian inference in the spectral domain. Further work is required to better understand the properties of
spectral domain inference and its potential advantages in environmental model calibration. Future studies
will include: (i) investigation of the robustness of BTL and BSL in cases where the model residuals are
strongly non-Gaussian, e.g., as common in models of arid and semiarid catchments; (ii) a wider range of
hydrological case studies to gain more general insights into the practical performance of spectral domain
inference, including for models with nontrivial/cyclic autocorrelation structures; (iii) extensions of BSL to
parameter inference with nonconcomitant input-output time series; and (iv) extensions of BSL to more com-
prehensive inference setups with individual treatment or sources of uncertainty (error decomposition).

A Matlab implementation of BSL for AR(1) error models is available in supporting information S1.

Appendix A: Details of Case Study Methodology

A1. Analysis of Periodogram Properties in Case Study 1
This section details the methodology employed in case study 1 to empirically confirm the probability distri-
bution properties of the periodogram:

1. Select a time domain process (e.g., from the list of case studies summarized in Table 2);
2. Generate a sample of multiple independent realizations from the stochastic process. Here we generate a

sample z of length N5213.
3. Compute the periodogram PjðzÞ using the FFT operation [Welch, 1967];
4. Produce a Gaussian qq-plot of the sample z from in step 2. This plot is used to illustrate that the distribu-

tion of the process Z in the time domain is clearly non-Gaussian.
5. Produce a v2 qq-plot of the values of the periodogram PjðzÞ from step 3. This plot is used to demon-

strate that distribution of the process in the spectral domain follows the v2 distribution. Note that for an
uncorrelated process, the distribution of the PDS element Pj½Z� does not depend on the element index j.
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A2. Generation of Synthetic Data and Inference Verification in Case Study 2
This section describes the methodology employed in case study 2 to generate the synthetic data and use it
to verify the results of the inference under all tested likelihoods.

1. Select a stochastic process, defined by its PDS function fPðx; cÞ, where c is a set of parameters. We also
select a reference set of parameters, cr .

2. Generate a random process realization zðiÞ
PðcrÞ

of length N with PDS fPðcrÞ, as follows

zðiÞx  Nð0; 12Þ; (A1)

zðiÞ
PðcrÞ

5f 21
FFT ½fPðx; crÞ0:5fFFTðzðiÞx Þ�; (A2)

where fFFT denotes the fast Fourier transform (FFT) operation, f 21
FFT is the inverse FFT operation, and zðiÞx is

a standard Gaussian white noise realization (but any other probability distribution could be used here).
fPðx; crÞ0:5fFFTðzðiÞx Þ corresponds to an element by element (i.e., frequency by frequency) multiplication of
the square-root of the PDS fPðcrÞ with fFFTðzðiÞx Þ.

1. Infer the maximum BSL estimate ĉðiÞ by maximizing the log-BSL, log pðzðiÞ
PðcrÞ
jcÞ with respect to c. Here we

used the Matlab implementation of the Nelder-Mead simplex direct search algorithm [Lagarias et al.,
1998] for this maximization.

2. Repeat steps 2 and 3 for i51; ::;m to obtain an empirical distribution of optimized parameter estimates
ĉðiÞ. All presented results use m 5 400 replicates each of length N5215.

3. Compare the empirical distribution of ĉðiÞ to the reference value cr .

This analysis allows establishing the theoretical properties of BSL under idealized conditions. As we do
not carry out a Markov Chain Monte Carlo analysis of the posterior distribution, we are limited to examin-
ing the properties of the optimal BSL estimate, rather than of the entire BSL distribution. Note that optimi-
zation of the likelihood corresponds to optimization of the Bayesian posterior under uniform prior
assumptions.

A3. Generation of Synthetic Data in the Hydrological Case Study 3
This section describes the methodology employed in case study 3 to investigate the BSL inference under
synthetic hydrological conditions.

1. Select a rainfall generator G, and a reference parameter set /r .
2. Select a rainfall-runoff model H, and a reference parameter set hr .
3. Select a stochastic process to represent residual errors E, and a reference parameter set #r .
4. Generate a realization of the rainfall, xðiÞ  Gð/rÞ of length N.
5. Compute the synthetic ‘‘true’’ streamflow realization, yðiÞ5Hðhr ; xðiÞÞ of length N.
6. Generate a realization of residuals, eðiÞ  Eð#rÞ of length N.
7. Compute the synthetic ‘‘observed’’ streamflow realization, ~y ðiÞ5yðiÞ1eðiÞ, of length N.
8. Select a likelihood formulation (BTL, BSL, or MTL) and infer the maximum likelihood estimates ðĥðiÞ; #̂ðiÞÞ

by maximizing the log-likelihood, log pð~y ðiÞjxðiÞ; h;#Þ with respect to ðh;#Þ. Note that, similar to case
study 1, this procedure corresponds to maximizing the Bayesian posterior under uniform prior
assumptions.

9. Repeat steps 4–8 for i51; . . . ;m to obtain an empirical distribution of the optimized rainfall-runoff
model parameters ĥ

ðiÞ
and residual model parameters #̂

ðiÞ
. All presented results use m 5 400

replicates.

The statistical reliability of the predictions obtained in this study is assessed using a predictive quantile-
quantile (qq-) plot constructed as follows: (i) compute the median of the reference simulations at time
step t; (ii) estimate the quantiles of this median simulation within the predictions at time step t; (iii) esti-
mate the frequency of these quantiles for selected bins; (iv) repeat steps (i)–(iii) but swapping the refer-
ence simulations and the predictions; (v) plot the frequencies against each other; this should plot on a 1:1
line. Note that the predictive qq-plot constructed using the approach above is a generalization of the pre-
dictive qq-plot proposed by [Thyer et al., 2009], where only a single reference realization (the observed
data) was used.
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