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Abstract This chapter presents some novel information theoretic results for the anal-
ysis of stationary time series in frequency domain. In particular, the spectral distri-
bution that corresponds to the most uncertain or unpredictable time series with some
values of the autocovariance function fixed, is the generalized vonMises spectral dis-
tribution. It is thus a maximum entropy spectral distribution and the corresponding
stationary time series is called the generalized vonMises time series. The generalized
vonMises distribution is used in directional statistics for modelling planar directions
that follow a multimodal distribution. Furthermore, the Gaussian-generalized von
Mises times series is presented as the stationary time series that maximizes entropies
in frequency and time domains, respectively referred to as spectral and temporal en-
tropies. Parameter estimation and some computational aspects with this time series
are briefly analyzed.

1 Introduction

Nonstationary data typically havemean, variance and covariances that change signif-
icantly over time. It is consequently difficult to make reliable predictions or forecasts
directly from these data. Thus, nonstationary data are transformed to stationary data,
viz. data that possess constant mean, constant variance and constant covariance be-
tween any two observations that are separated by any fixed time lag. Stationary data
are often analyzed in frequency domain, where the spectral distribution plays the
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2 Gatto

central role: it characterizes the correlations between the values of the time series
and it allows for linear predictions. The analysis in frequency domain is particularly
interesting for the identification of periodicities of the data. The first developments
of the theory of stationary processes appeared at the end of the 19-th century with
the analysis of data in frequency domain, which is called the spectral analysis. The
alternative analysis in time domain, viz. based on the covariance function, appeared
only later. The first statistical theory for periodic phenomenawas developed by Fisher
(1929). Other early leading contributions to the theory of stationary processes are
Cramér (1942), Rice (1944 and 1945) as well as the volumes Cramér and Leadbetter
(1967) and Yaglom (1962). A more recent volume on stationary processes is Lind-
gren (2012) and an historical review can be found in Brillinger (1993). This chapter
provides various information theoretic results for spectral distributions of stationary
processes with discrete time, i.e. stationary time series. It recasts the generalized von
Mises (GvM) distribution, which was introduced in directional statistics as a model
for planar directions, in the context of the spectral analysis of time series. It shows
that the spectral distribution that corresponds to the most uncertain or unpredictable
time series and whose autocovariance function agrees with some few first predeter-
mined values, for example estimated from a sample, is the GvM spectral distribution.
It is thus a maximum entropy spectral distribution and the corresponding stationary
time series can be called the generalized von Mises time series. The Gaussian sta-
tionary time series with GvM spectral distribution, called Gaussian-GvM, follows
the maximal entropy principle w.r.t. time and frequency. Although some estimation
and other computational aspects are briefly analyzed, this chapter is only a first study
of the Gaussian-GvM time series.

Let {Xj}j∈Z be a complex-valued time series whose elements belong to a common
Hilbert spaceL2 of square integrable random variables, thus E

[
|Xj |

2] < ∞, ∀ j ∈ Z.
Its autocovariance function (a.c.v.f.) is given by ψ( j + r, j) = cov

(
Xj+r ,Xj

)
=

E
[
Xj+r Xj

]
− E[Xj+r ]E

[
Xj

]
, ∀ j,r ∈ Z. We assume that the time series is weakly

stationary, which will be shortened to stationary, precisely that E[Xj] and ψ( j + r, j)
do not depend on j, ∀ j,r ∈ Z. In this case we denote µ = E[Xj], ψ(r) = ψ(r,0) =
ψ( j + r, j), ∀ j,r ∈ Z, and σ2 = ψ(0), for some σ ∈ (0,∞). A stronger type of
stationarity is the strict stationarity, which requires that the double finite dimensional
distributions (f.d.d.) of the time series are invariant after a fixed time shift, i.e.
∀ j1 < . . . < jn ∈ Z, r ∈ Z and n ≥ 1,(

Uj1, . . . ,Ujn ,Vj1, . . . ,Vjn

)
∼

(
Uj1+r , . . . ,Ujn+r ,Vj1+r , . . . ,Vjn+r

)
, (1)

where Uj = Re Xj and Vj = Im Xj , ∀ j ∈ Z. As usual, E1 ∼ E2 means that the
random elements E1 and E2 follow the same distribution. Stationary time series
can be analyzed in frequency domain, precisely through the spectral distribution. A
spectral distribution function (d.f.) is any nondecreasing function Fσ over [−π, π]
that satisfies Fσ(−π) = 0 and Fσ(π) = σ2. This d.f. relates to the a.c.v.f. through the
equation
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ψ(r) =
∫
(−π,π]

eirθdFσ(θ), ∀r ∈ Z.

The simplest nontrivial stationary time series {Xj}j∈Z is called white noise if it has
mean zero and a.c.v.f.

ψ(r) =

{
σ2, if r = 0,
0, if r = ±1,±2, . . . ,

for some σ > 0. All frequencies of {Xj}j∈Z are equally represented, because its
spectral density is the uniform one with total mass σ2, namely fσ(θ) = σ2/(2π),
∀θ ∈ (−π, π]. The term white noise originates from the fact that white color reflects
all visible wave frequencies of light. Real-valued time series are used in many
applied sciences; refer e.g. to Brockwell and Davis (1991) or Chatfield (2013).
However, complex-valued time series are often preferred representations of bivariate
signals,mainly because their compact formulation. They have been applied in various
technical domains, such as magnetic resonance imaging (cf. e.g. Rowe, 2005) or
oceanography (cf. e.g. Gonella, 1972).

Spectral distributions of complex-valued time series can be viewed as rescaled cir-
cular distributions. For real-valued time series, the spectral distribution is a rescaled
axially symmetric circular distribution. We recall that a circular distribution is a
probability distribution over the circle that is used for modelling planar directions as
well as periodic phenomena. During the last two decades, there has been a consider-
able amount of theoretical and applied research on circular distributions. Two major
references are Mardia and Jupp (2000) and Jammalamadaka and SenGupta (2001).
A short introduction is Gatto and Jammalamadaka (2015) and a recent review is
Pewsey and García-Portugués (2020).

Let k ∈ {1,2, . . .}. A class of circular distributions that possess various theoretical
properties has densities given by

f (k)1 (θ | µ1, . . . , µk, κ1, . . . , κk) =

1
2πG(k)0 (δ1, . . . , δk−1, κ1, . . . , κk)

exp


k∑
j=1

κj cos j(θ − µj)
 , (2)

∀θ ∈ (−π, π] (or any other interval of length 2π), where µj ∈ (−π/ j, π/ j], κj ≥ 0,
for j = 1, . . . , k,

G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk) =

1
2π

∫ 2π

0
exp{κ1 cos θ + κ2 cos 2(θ + δ1) + . . . + κk cos k(θ + δk−1)}dθ,

andwhere δj = (µ1−µj+1)mod(2π/( j+1)), for j = 1, . . . , k−1, whenever k ≥ 2. The
circular density (2) for k ≥ 2was thoroughly analyzed by Gatto and Jammalamadaka
(2007) and Gatto (2009), who called it “generalized von Mises density of order
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k” (GvMk). Let us denote a circular random variable θ with that density as θ ∼
GvMk(µ1, . . . , µk, κ1, . . . , κk). The GvM1 density is the well-known circular normal
or von Mises (vM) density, which represents within circular statistics what the
normal distribution represents in linear statistics. It is given by f (1)1 (θ | µ1, κ1) =

{2πI0(κ1)}
−1 exp{κ1 cos(θ − µ1)}, ∀θ ∈ (−π, π], where µ1 ∈ (−π, π], κ1 ≥ 0 and

where In(z) = (2π)−1
∫ 2π
0 cos nθ exp{z cos θ}dθ, ∀z ∈ C, is the modified Bessel

function of the first kind and integer order n (see e.g. Abramowitz and Stegun,
1972, p. 376). Compared to the vM, which is axially symmetric and unimodal
whenever κ1 > 0, the GvM2 distribution allows for substantially higher adjustability,
in particular in terms of asymmetry and bimodality. This makes it a practical circular
distribution that has found various applications. Some recent ones are: Zhang et al.
(2018), in meteorology, Lin and Dong (2019), in oceanography, Astfalck et al.
(2018), in offshore engineering, and in Christmas (2014), in signal processing. The
GvMk spectral density is given by f (k)σ = σ2 f (k)1 , for some σ ∈ (0,∞): it is the
GvMk circular density f (k)1 given in (2) that is rescaled to have any desired total
mass σ2. When the GvMk spectral density is axially symmetric around the null axis,
then the corresponding time series {Xj}j∈Z is real-valued. As shown in Salvador and
Gatto (2021a), the GvM2 density with κ1, κ2 > 0 is axially symmetric iff δ1 = 0
or δ1 = π/2. In both cases, the axis of symmetry has angle µ1 with respect to
(w.r.t.) the null direction. The GvM2 spectral density has a practical role time series
because of its uni- and bimodal shape. A complete analysis of the number of modes
of the GvM2 distribution is given in Salvador and Gatto (2021b). Note that in some
situations a three-parameter version of theGvM2 distribution introduced by Kim and
SenGupta (2013) appears sufficient to model both asymmetric and bimodal data. The
densities of this subclass are obtained by setting δ1 = π/4 and k = 2 in the GvMk

density (2). However, this subclass does not possess the optimality properties of
the GvM2 distribution that are presented in Section 2. It is worth mentioning that
the GvM spectral distribution has many similarities with the exponential model of
Bloomfield (1973), which is a truncated Fourier series of the logarithm of some
spectral distribution. Bloomfield motivates the low truncation of the Fourier series
by the fact that “the logarithm of an estimated spectral density function is often found
to be a fairly well-behaved function”. A closely related reference is Healy and Tukey
(1963). However, Bloomfield’s model is given for real-valued time series only.

The estimation of the spectral distribution is an important problem in the analysis
of stationary time series. Information theoretic quantities like Kullback-Leibler’s
information (cf. Kullback and Leibler, 1951) or Shannon’s entropy (cf. Shannon,
1948) are very useful in this context. These quantities are defined for probability
distributions but they can be considered for distributions with finite mass. These are
spectral distributions and we assume them absolutely continuous. Thus, let fσ and
gσ be two spectral densities whose integrals over (−π, π] are both equal to σ2. The
spectral Kullback-Leibler information of fσ w.r.t. gσ is given by

I( fσ |gσ) =
∫ π

−π
log

fσ(θ)
gσ(θ)

fσ(θ)dθ = σ2I( f1 |g1), (3)
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where 0 log 0 = 0 is assumed and where the support of fσ is included in the support
of gσ , otherwise I( fσ |gσ) = ∞. It follows from Gibbs inequality that I( fσ |gσ) is
nonnegative, precisely I( fσ |gσ) ≥ 0, for all possible spectral densities fσ and gσ ,
with equality iff f1 = g1 a.e. The Kullback-Leibler information is also called relative
entropy, Kullback-Leibler divergence or distance, eventhough it is not a metric. Thus
(3) is a measure of divergence for distributions with same total mass σ2. Shannon’s
entropy can be defined for the spectral density fσ by

S( fσ) = −
∫ π

−π
log

fσ(θ)
(2π)−1σ2 fσ(θ)dθ = −I( fσ |uσ) = −σ2I( f1 |u1), (4)

where uσ is the uniform density with total mass σ2 over (−π, π], viz. uσ =
σ2/(2π)I(−π,π], IA denoting the indicator of set A. Shannon’s entropy of the cir-
cular density f1 over (−π, π] is originally defined as −

∫ π
−π

log f1(θ) f1(θ)dθ =
−(2π)−1−I( f1 |u1). It measures the uncertainty inherent in the probability distribution
with density f1. Equivalently, S( f1) measures the expected amount of information
gained on obtaining an observation from f1, based on the principle that the rarer
an event, the more informative its occurrence. The spectral entropy defined in (4)
slightly differs the original formula of Shannon’s entropy for probability distribu-
tions: inside the logarithm, fσ is divided by the uniform density with total mass
σ2. With this modification the spectral entropy becomes scale invariant w.r.t. σ2,
just like the spectral Kullback-Leibler information (3). The spectral entropy satisfies
S( fσ) ≤ 0, with equality iff fσ = uσ a.e. This follows from Gibbs inequality.

The topics of the next sections of this chapter are the following. Section 2 provides
information theoretic results for spectral distributions and introduces the related
GvM and the Gaussian-GvM time series. Section 2.1 gives general definitions and
concepts. Section 2.2 provides the optimal spectral distributions under constraints
on the a.c.v.f. The GvM spectral distribution maximizes Shannon’s entropy under
constraints on the first few values of the a.c.v.f. Section 2.3 motivates the Gaussian-
GvM time series from the fact that it follows the maximal entropy principle in both
time and frequency domains. Section 3 provides some computational aspects. Section
3.1 gives some series expansions for integral functions appearing in the context of the
GvM2 time series. An estimator for the parameters of the GvM spectral distribution
is presented in Section 3.2. Section 3.3 provides an expansion for the GvM spectral
d.f. Some short concluding remarks are given in Section 4.

2 The GvM and the Gaussian-GvM time series

Section 2.1 summarizes central results of time series and defines the GvM time
series. Section 2.2 provides information theoretic results for spectral distributions.
An important result is that the GvM spectral distribution maximizes the entropy
under constraints on the a.c.v.f. Section 2.3 proposes the Gaussian-GvM time series
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based on the fact that it follows the maximal entropy principle in both time and
frequency domains, under the same constraints.

2.1 General considerations

Two central theorems of spectral analysis of time series are the following. The first
one is Herglotz theorem:

ψ : Z→ C is nonnegative definite (n.n.d.)1⇔ ψ(r) =
∫
(−π,π]

eirθdFσ(θ), ∀r ∈ Z,
for some d.f. Fσ over [−π, π], with Fσ(−π) = 0 and σ2 = Fσ(π) ∈ (0,∞).

The second theorem is a characterization of the a.c.v.f.:

ψ : Z→ C is the a.c.v.f. of a (strictly) stationary complex-valued time series⇔
ψ is n.n.d.

These two theorems can be found at p. 117-119 of Brockwell and Davis (1991).
They tell that if we consider the spectral d.f. F(k)σ = σ2F(k)1 , where F(k)1 is the GvMk

d.f. with density f (k)1 given by (2), then there exists a stationary time series {Xj}j∈Z

with spectral d.f. F(k)σ and density f (k)σ = σ f (k)1 that we call GvM or, more precisely,
GvMk time series. Thus the GvMk time series is stationary by definition, it has
variance F(k)σ (π) = σ2 and it is generally complex-valued, unless the GvMk spectral
distribution is axially symmetric around the null direction.

The complex-valued GvMk stationary time series {Xj}j∈Z can be chosen with
mean zero, variance σ2 and Gaussian, meaning that the double f.d.d. given in
(1) are Gaussian. In this case, the distribution of {Xj}j∈Z is however not entirely
determined by its a.c.v.f. ψ(k) or, alternatively, by its spectral d.f. F(k)σ . (The formula
for the a.c.v.f. is given later in Corollary 1.4.) In order to entirely determine this
distribution, one also needs the so-called pseudo-covariance E[Xj+r Xj], ∀ j,r ∈ Z.
So an arbitraryGaussian, withmean zero and (weakly) stationary time series {Xj}j∈Z
is not necessarily strictly stationary: {Xj}j∈Z is strictly stationary iff the covariance
E

[
Xj+r Xj

]
and the pseudo-covariance E[Xj+r Xj] do not depend on j ∈ Z, ∀r ∈ Z.

This is indeed equivalent to the independence on j ∈ Z of

ψUU (r) = E[Uj+rUj], ψVV (r) = E[Vj+rVj],

ψUV (r) = E[Uj+rVj] and ψVU (r) = E[Vj+rUj], ∀r ∈ Z, (5)

where Uj = Re Xj and Vj = Im Xj , ∀ j ∈ Z. Note that under this independence on
j ∈ Z, we have ψVU (r) = ψUV (−r), ∀r ∈ Z. However, according Herglotz theorem,
if the a.c.v.f. ψ(k) is obtained by Fourier inversion of the GvMk spectral density, then

1 The function f : R → C is n.n.d. if
∑n

i=1
∑n

j=1 cic j f (xi − x j ) ≥ 0, ∀x1, . . . , xn ∈ R,
c1, . . . , cn ∈ C and n ≥ 1.
Any n.n.d. function f is Hermitian, i.e. f (−x) = f (x), ∀x ∈ R.
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it is n.n.d. By the above characterization of the a.c.v.f., a strictly stationary GvMk

time series always exists. The existence of a particular (precisely radially symmetric)
strictly stationary Gaussian-GvMk time series that satisfies some constraints on the
a.c.v.f. is shown in Section 2.3.

Next, for any given Gaussian-GvMk time series with spectral d.f. F(k)σ , there exists
a spectral process {Zθ }θ∈[−π,π] that is complex-valued and Gaussian.We remind that
the process that modulates the harmonics, {Zθ }θ∈[−π,π], is defined through the mean
square stochastic integral

Xj =

∫
(−π,π]

eiθ jdZθ, a.s., ∀ j ∈ Z, (6)

and by the following conditions:E[Zθ ] = 0,∀θ ∈ [−π, π],E
[ (

Zθ2 − Zθ1

) (
Zθ4 − Zθ3

) ]
= 0, ∀ − π ≤ θ1 < θ2 < θ3 < θ4 ≤ π, viz. it has orthogonal increments, and

E
[��Zθ2 − Zθ1

��2] = F(k)σ (θ2) − F(k)σ (θ1), ∀ − π ≤ θ1 < θ2 ≤ π. (7)

There are several reasons for considering the Gaussian-GvM time series. A prac-
tical one is that their simulation can be done with the algorithms presented in Chapter
XI of Asmussen and Glynn (2007), where one of these algorithms makes use of the
decomposition (6). A theoretical reason for considering normality is that it leads to
a second maximal entropy principle, this one no longer in frequency domain but in
time domain. We pursue this explanation on temporal entropy in Section 2.3.

2.2 Spectral Kullback-Leibler information and entropy

Let gσ be the spectral density of some stationary time series with variance σ2, for
some σ ∈ (0,∞). For a chosen k ∈ {1,2, . . .}, consider the a.c.v.f. conditions or
constraints

Ck :
∫ π

−π
eirθgσ(θ)dθ = ψr , for r = 1, . . . , k, (8)

for some ψ1, . . . ,ψk ∈ C satisfying |ψr | ≤ σ2, for r = 1, . . . , k, and such that the
(k + 1) × (k + 1) matrix

©«
σ2 ψ1 . . . ψk

ψ1 σ2 . . . ψk−1
...

...
. . .

...

ψk ψk−1 . . . σ2

ª®®®®¬
(9)

is n.n.d. One can re-express these conditions as
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Ck :
∫ π

−π
cos rθ gσ(θ)dθ = νr and

∫ π

−π
sin rθ gσ(θ)dθ = ξr , for r = 1, . . . , k,

(10)

where νr = Re ψr and ξr = Im ψr , giving thus
√
ν2
r + ξ

2
r ≤ σ

2, for r = 1, . . . , k, and
with n.n.d. matrix (9).

One encounters the two following practical problems. In an applied field where
a specific spectral density hσ is traditionally used,2 one may search for the spectral
density gσ that satisfies Ck and that is the closest to the traditional density hσ .
Alternatively, the spectral density gσ is unknown but the values of ψ1, . . . ,ψk are
available, either because they constitute a priori knowledge about the time series
or because they are obtained from a sample of the stationary time series. In this
second case, the values of ψ1, . . . ,ψk can be obtained by taking them equal to the
corresponding values of the empirical or sample a.c.v.f. For the sample X1, . . . ,Xn

of the time series, the sample a.c.v.f. is given by

ψ̂n(r) =
1
n

n−r∑
j=1
(Xj+r − Mn)(Xj − Mn) and ψ̂n(−r) = ψ̂n(r), for r = 0, . . . ,n − 1,

(11)

where Mn = n−1 ∑n
j=1 Xj . Thus we set ψr = ψ̂n(r), for r = 1, . . . , k and for k ≤ n−1.

Note that the matrix (9) is n.n.d. in this case. Note also that the sample a.c.v.f. is a
biased estimator of the true a.c.v.f. (but asymptotically unbiased).

Theorem 1 below addresses the first of these two problems and it is the central
part of this article. The second problem is addressed by Corollary 1. The following
definitions are required. For k = 1,2, . . . and for an arbitrary circular density g1,
define the following integral functions:

G(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1) =∫ 2π

0
cos rθ exp {κ1 cos θ + κ2 cos 2(θ + δ1) + . . . + κk cos k(θ + δk−1)} g1(θ)dθ,

H(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1) =∫ 2π

0
sin rθ exp{κ1 cos θ + κ2 cos 2(θ + δ1) + . . . + κk cos k(θ + δk−1)}g1(θ)dθ,

A(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1) =
G(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1)

G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk ; g1)

and

2 Related comments are given in Section 4.
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B(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1) =
H(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; g1)

G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk ; g1)
,

for r = 1, . . . , k, where δj = (µ1 − µj+1)mod(2π/( j + 1)), for j = 1, . . . , k − 1
and κ1, . . . , κk ≥ 0. For these constants we make the conventions that the arguments
δ1, . . . , δk−1 vanish when k = 1 and that the argument g1 is omitted when equal to the
circular uniform density u1. For example, G(1)0 (κ1) = (2π)−1

∫ 2π
0 eκ1 cos θdθ = I0(κ1).

Define the matrix of counter-clockwise rotation of angle θ as

R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
. (12)

Theorem 1 (Kullback-Leibler closest spectral distribution)
Let σ ∈ (0,∞) and let gσ and hσ be two spectral densities with total mass σ2.

1. The spectral density gσ that satisfies Ck , given in and that is the closest to another
spectral density hσ , in the sense of minimizing the Kullback-Leibler information
I(gσ |hσ), is the exponential tilt of hσ that takes the form

gσ(θ) =

1
G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk ; h1)

exp


k∑
j=1

κj cos j(θ − µj)
 hσ(θ), (13)

∀θ ∈ (−π, π], where δj = (µ1 − µj+1)mod(2π/( j + 1)), for j = 1, . . . , k − 1,
µj ∈ (−π/ j, π/ j] and κj ≥ 0, for j = 1, . . . , k. The values of these parameters are
the solutions of(

νr
ξr

)
= σ2R(rµ1)

(
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; h1)

B(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; h1)

)
, (14)

where R(rµ1) denotes the rotation matrix (12) at α = rµ1, for r = 1, . . . , k, and
where ν1, . . . , νk and ξ1, . . . , ξk are given by (10).

2. For any spectral density gσ that satisfies Ck , the minimal Kullback-Leibler infor-
mation of gσ w.r.t. hσ is given by

−σ2 log G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk ; h1) +

k∑
r=1

κr (νr cos rµr + ξr sin rµr )

≤ I(gσ |hσ), (15)

with equality iff gσ is a.e. given by (13), where the values of the parameters
µj ∈ (−π/ j, π/ j] and κj ≥ 0, for j = 1, . . . , k, are solutions of (14).

Theorem 1 is a rather direct consequence or generalization of Theorem 2.1 of
Gatto (2009), in which the trigonometric moments are replaced by the a.c.v.f. and
the circular distribution is replaced by the spectral distribution. Indeed, along with
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the generalization of the circular distribution to the spectral distribution, the a.c.v.f.
of a stationary time series generalizes the trigonometric moment. Precisely, the r-th
trigonometric moment of the circular random variable θ with density g1 is given by

ϕr = γr + iσr = E
[
eirθ ] = ∫ π

−π
eirθg1(θ)dθ, (16)

for some γr , σr ∈ R and ∀r ∈ Z, whereas the a.c.v.f. of the stationary time series
with the spectral density gσ = σ

2g1 is given by

ψ(r) = σ2ϕr = σ
2(γr + iσr ), ∀r ∈ Z. (17)

Clearly, ψ(0) = σ2 and |ψ(r)| ≤ ψ(0), ∀r ∈ Z. The claim that (17) is indeed the
a.c.v.f. of a stationary time series is rigorously justified by the above mentioned
Herglotz theorem and characterization of the a.c.v.f.

The existence and the unicity of the solution to (14), i.e. of the parameter values
satisfying Ck , can be justified by the fact (14) can be reparametrized in terms of the
saddlepoint equation (or exponential tilting equation) given by (14) of Gatto (2009).
This is the saddlepoint equation of a distribution with bounded domain. In this case,
the solution, called saddlepoint, exists and it is unique. These facts are well know in
the theory of large deviations.

In the context of the justification of Theorem 1.1, we can note that an equivalent
expression to (14) is given by

ψr = σ
2eirµ1

·

{
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; h1) + iB(k)r (δ1, . . . , δk−1, κ1, . . . , κk ; h1)

}
,

for r = 1, . . . , k, which can be seen equivalent to Ck .
When analyzing a time series with periodic components, leading for example to

certain monthly or weekly constraints, then the set of k constraints Ck may no longer
be appropriate. Instead of it, one may still need the constraints in the form given
in (8) but exclusively for r limited to some subset of {1, . . . , k}, which is possibly
different than {1, . . . , j},∀ j ∈ {1, . . . , k}. Theorem 1 can be easily generalized to this
situation. For simplicity, assume that only the l-th constraint must be removed from
Ck , for some l ∈ {1, . . . , k − 1}, and thus assume k ≥ 2. Then Theorem 1 has to be
adapted by setting κl = 0 in (13) and by removing the equation (14) whenever r = l.
In addition, if l = 1, then µ1 appearing in δj given just after (13) and appearing
in (14) must be replaced by µm, with m arbitrary selected in {2, . . . , k}. Similar
adaptations could be considered for the next results of this chapter, essentialy to
Corollary 1 and to Theorem 2. Writing the results of this chapter in the most general
form would have negative repercussions on readability; cf. Gatto (2009).

A major consequence of Theorem 1 is that the GvMk spectral distribution is a
maximum entropy distribution. This fact and related results are given in Corollary
1.

Corollary 1 (Maximal Shannon’s spectral entropy distribution and GvM a.c.v.f.)
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Let σ ∈ (0,∞) and gσ a spectral density with total mass σ2.
1. The spectral density gσ that maximizes Shannon’s entropy S(gσ) under Ck ,

given in (8), is the GvMσ,k(µ1, . . . , µk, κ1, . . . , κk) density, i.e. f (k)σ (·|µ1, . . . , µk,
κ1, . . . , κk), where µj ∈ (−π/ j, π/ j] and κj ≥ 0, for j = 1, . . . , k. The values of
these parameters are determined by (14).

2. If gσ is a spectral density satisfying Ck , then its entropy is bounded from above
as follows,

S(gσ) ≤ σ2 log G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk) −

k∑
r=1

κr (νr cos rµr + ξr sin rµr ),

with equality iff gσ = f (k)σ (·|µ1, . . . , µk, κ1, . . . , κk) a.e. The values of the parame-
ters are determined by (14) with h1 = u1, i.e. the circular uniform density, where
ν1, . . . , νk and ξ1, . . . , ξk are given by (10).

3. The entropy of the GvMσ,k(µ1, . . . , µk, κ1, . . . , κk) spectral density is given by

S
(

f (k)σ

)
= σ2

{
log G(k)0 (δ1, . . . , δk−1, κ1, . . . , κk)

− κ1 A(k)1 (δ1, . . . , δk−1, κ1, . . . , κk)

−

k∑
r=2

κr
[
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk) cos rδr−1

− B(k)r (δ1, . . . , δk−1, κ1, . . . , κk) sin rδr−1
]}
,

where
∑k

r=2 vanishes whenever k < 2.
4. The a.c.v.f. ψ(k)σ of the GvMσ,k(µ1, . . . , µk, κ1, . . . , κk) spectral distribution can

be obtained by(
Re ψ(k)σ (r)
Im ψ

(k)
σ (r)

)
= σ2R(rµ1)

(
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

B(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

)
and ψ(k)σ (−r) = ψ(k)σ (r), for r = 1,2, . . ..
Corollary 1 can be obtained from Theorem 1 as follows. Theorem 1.1 and the

relation between Kullback-Leibler information and entropy (4) tell that the GvMk

spectral distributionmaximizes the entropy, under the given constraints on the a.c.v.f.
The upper bound for the entropy of a spectral distribution satisfying the given
constraints is provided by Theorem 1.2. Thus, by considering h1 = u1 in Theorem
1, we obtain parts 1 and 2 of Corollary 1. Part 3 is a consequence of part 2. It is
obtained by replacing νr and ξr , for r = 1, . . . , k, that appear in the upper bound of
the entropy, by expressions depending on the parameters of the GvMk distribution,
through the identity (14).
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In the practice, when partial prior information in the form of Ck is available and
it is desired to determine the most noninformative spectral distribution that satisfies
the known prior information, then the GvMk spectral distribution is the optimal
choice. It is in fact the most credible distribution or the one that nature would
have generated, when some prior information and only that information would be
available.Maximal entropy distributions are important inmany contexts: in statistical
mechanics, the choice of a maximum entropy distribution subject to constraints is
a classical approach referred to as the maximum entropy principle. One can find
various studies on spectral distributions with maximal entropy. It is explained in
Section 3.2 that the autoregressivemodel of order k (AR(k))maximizes an alternative
entropy among all stationary time series satisfying Ck . Franke (1985) showed that
the autoregressive and moving average time series (ARMA) maximizes that entropy
among all stationary time series satisfying these same constraints and additional
constraints on the impulse responses. Further properties on these optimal ARMA
time series can be found in Huang (1990). Other references on spectral distributions
with maximal entropy are, for instance: Burg (1978), Kay and Marple (1981) and
Laeri (1990).

The simplest situation is the following.

Example 1 (vM spectrum) Corollary 1.3 with k = 1 yields the entropy of the vM
spectral distribution,

S
(

f (1)σ
)
= σ2

{
log G(1)0 (κ1) − κ1 A(1)1 (κ1)

}
= σ2

{
log I0(κ1) − κ1

I1(κ1)

I0(κ1)

}
,

for κ1 ≥ 0. By noting that B(1)r (κ1) = 0, for r = 1,2, . . ., Corollary 1.4 with k = 1
gives the a.c.v.f. of the vM spectral distribution as(

Re ψ(1)(r)
Im ψ(1)(r)

)
= σ2 A(1)r (κ1)

(
cos rµ1
sin rµ1

)
= σ2 Ir (κ1)

I0(κ1)

(
cos rµ1
sin rµ1

)
, (18)

and ψ(1)(−r) = ψ(1)(r), for r = 1,2, . . .. When κ1 > 0, the vM spectral distribution is
axially symmetric about the origin iff µ1 = 0. In other terms and according to (18),
the GvM1 or vM time series is real-valued iff µ1 = 0.

2.3 Temporal entropy

This section provides a strictly stationary Gaussian-GvM time series that follows the
maximal entropy principle in the time domain, in addition to the maximal entropy
principle in frequency domain, under common constraints on the a.c.v.f. Consider
the complex-valued Gaussian time series {Xj}j∈Z in L2 that is strictly stationary
with mean zero. This time series is introduced at the end of Section 2.1. Define
Uj = Re Xj and Vj = Im Xj , ∀ j ∈ Z. Let n ≥ 1 and j1 < . . . < jn ∈ Z. Consider
the random vector (Uj1, . . . ,Ujn ,Vj1, . . . ,Vjn ) and denote by pj1 ,..., jn its joint density.
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Thus pj1 ,..., jn is the 2n-dimensional normal density with mean zero and 2n × 2n
covariance matrix

Σj1 ,..., jn = var
( (

Uj1, . . . ,Ujn ,Vj1, . . . ,Vjn

) )
= E

[(
UU> UV>
VU> VV>

)]
, (19)

where U =
(
Uj1, . . . ,Ujn

)> and V =
(
Vj1, . . . ,Vjn

)>. According to (5), the elements
of Σj1 ,..., jn are given by

E[UjlUjm ] = ψUU ( jl − jm), E[VjlVjm ] = ψVV ( jl − jm),

E[UjlVjm ] = ψUV ( jl − jm) and E[VjlUjm ] = ψVU ( jl − jm),

with ψVU ( jl − jm) = ψUV ( jm − jl), for l,m = 1, . . . ,n. Because Σj1 ,..., jn depends on
j1, . . . , jn only through l1 = j2 − j1, . . . , ln−1 = jn − jn−1, we consider the alternative
notation Σl1 ,...,ln−1 = Σj1 ,..., jn .

An important subclass of complex-valued normal random vectors is given by the
radially symmetric ones, which is obtained by setting the mean and the pseudo-
covariance matrix equal to zero. That is, the Gaussian vector X = (Xj1, . . . ,Xjn )

>,
where Xjl = Ujl + iVjl , for l = 1, . . . ,n, is radially symmetric iff E[X] = 0 and
E

[
XX>

]
= 0. A radially symmetric complex normal random vector X is character-

ized by the fact that, ∀θ ∈ (−π, π], eiθX ∼ X. Because these vectors and the related
processes are often used in signal processing, we consider them in this section.

Generally, by assuming neither stationarity nor normality, one defines the tempo-
ral entropy of the complex-valued time series {Xj}j∈Z at times j1 < . . . < jn ∈ Z in
terms of Shannon’s entropy of

(
Uj1, . . . ,Ujn , Vj1, . . . ,Vjn

)
, precisely as

Tj1 ,..., jn = −

∫ ∞

−∞

. . .

∫ ∞

−∞

log pj1 ,..., jn (u1, . . . ,un, v1, . . . , vn)

pj1 ,..., jn (u1, . . . ,un, v1, . . . , vn)du1 . . . dundv1 . . . dvn, (20)

whenever the density pj1 ,..., jn exists. Under strict stationarity, the temporal entropy
(20) becomes invariant under time shift and we can thus define the alternative
notation T l1 ,...,ln−1 = Tj1 ,..., jn .

Let us now mention two known and important information theoretic results for
the Gaussian distribution. The first one is the formula of the Gaussian entropy:

if pj1 ,..., jn is the 2n-dimensional Gaussian density with arbitrary mean and co-
variance matrix Σj1 ,..., jn , then the temporal entropy (20) is given by

Tj1 ,..., jn = {1 + log(2π)} n +
1
2

log det Σj1 ,..., jn . (21)

The second result is the maximum entropy property of the Gaussian distribution:

among random vectors
(
Uj1, . . . ,Ujn ,Vj1, . . . ,Vjn

)
having arbitrary density with

fixed covariance matrix Σj1 ,..., jn , the one that is normally distributed maximizes
Shannon’s entropy (20). The maximum of the entropy is given by (21).
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We now consider the constraints on the a.c.v.f. (8) and search for the (strictly)
stationary time series, with mean and pseudo-covariances null, that maximizes the
temporal entropy.

Theorem 2 (Maximal Shannon’s temporal temporal entropy distribution)
Consider the class of complex-valued and stationary time series {Xj}j∈Z with mean
null, variance σ2, for some σ ∈ (0,∞), and pseudo-covariances null. Denote by ψ
the a.c.v.f. of {Xj}j∈Z, ν = Re ψ and ξ = Im ψ.

1. If the a.c.v.f. ψ satisfies Ck given in (8) or in (10), thus ψ(1) = ψ1 = ν1 +
i ξ1, . . . ,ψ(k) = ψk = νk + i ξk , then the time series {Xj}j∈Z in the above class that
maximizes Shannon’s temporal entropy (20) with n = k+1 and j1 = 1, . . . , jk+1 =
k+1 is the one forwhich the corresponding double f.d.d. (1)with j1 = 1, . . . , jk+1 =
k + 1 is Gaussian, with mean zero and with 2(k + 1) × 2(k + 1) covariance matrix
Σ(k) = Σ1,...,1 given by (19) with

ψUU (r) = ψVV (r) =
νr
2

and ψUV (r) = ψVU (−r) = −
ξr
2
,

for r = 1, . . . , k.
2. The corresponding value of the temporal entropy is given by

T(k) = {1 + log(2π)} (1 + k) +
1
2

log det Σ(k).

Proof 1.a. This initial part of the proof shows that for any a.c.v.f. ψ, there ex-
ists a complex-valued Gaussian time series that is strictly stationary and radi-
ally symmetric. Let n ≥ 1, u j, vj ∈ R, cj = u j − ivj , for j = 1, . . . ,n, let
j1 < . . . < jn ∈ Z, u = (u1, . . . ,un)>, v = (v1, . . . , vn)

> ∈ Rn and define
q(u,v) = 1/2

∑n
l=1

∑n
m=1 clcmψ( jl − jm). Then q(u,v) ≥ 0 implies

q(u,v) =
1
2

n∑
l=1

n∑
m=1
(ul − ivl)(um + ivm){ν( jl − jm) + iξ( jl − jm)}

=
1
2

n∑
l=1

n∑
m=1
(ulum + vlvm)ν( jl − jm) − (ulvm − vlum)ξ( jl − jm). (22)

Define U = (Uj1, . . . ,Ujn )
> and V = (Vj1, . . . ,Vjn )

>. Assume
(
U>,V>

)
normally

distributed with mean zero and covariance matrix Σj1 ,..., jn , as in (19). A particular
choice of Σj1 ,..., jn can be obtained by setting

ϕ(u,v) = E
[
exp

{
i
(
u>,v>

) (
U
V

)}]
= exp

{
−

1
2

q(u,v)
}
,

leading to (
u>,v>

)
Σj1 ,..., jn

(
u
v

)
= q(u,v).
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This, (22) and (19) yield

E[UjlUjm ] =
1
2
ν( jl − jm), E[VjlVjm ] =

1
2
ν( jl − jm),

E[UjlVjm ] = −
1
2
ξ( jl − jm), E[VjlUjm ] =

1
2
ξ( jl − jm) (23)

and therefore ξ( jl− jm) = −ξ( jm− jl), for l,m = 1, . . . ,n. DefineX = (Xj1, . . . ,Xjn )
>,

where Xjl = Ujl + iVjl , for l = 1, . . . ,n. We obtain the covariance matrix

var(X) = E
[
XX>

]
= E

[
(U + iV)(U − iV)>

]
= E

[
UU> + VV> + i

(
VU> − UV>

) ]
=

1
2
(ν( jl − jm) + ν( jl − jm) + i [ξ( jl − jm) − {−ξ( jl − jm)}])l,m=1,...,n

= (ν( jl − jm) + iξ( jl − jm))l,m=1,...,n = (ψ( jl − jm))l,m=1,...,n

and the pseudo-covariance matrix

E
[
XX>

]
= E

[
(U + iV)(U + iV)>

]
= E

[
UU> − VV> + i

(
VU> + UV>

) ]
=

1
2
(ν( jl − jm) − ν( jl − jm) + i [ξ( jl − jm) + {−ξ( jl − jm)}])l,m=1,...,n

= (0 + i0)l,m=1,...,n = 0,

as desired. We have thus established the existence of a complex-valued Gaussian
time series {Xt }t∈R that is strictly stationary and radially symmetric.
1.b. Consider n = k + 1 and j1 = 1, . . . , jk+1 = k + 1. Under Ck , var(X) is entirely
determined: it is the (k + 1) × (k + 1) n.n.d. and Toeplitz matrix (9). The pseudo-
covariance matrix and the mean vector are null and thus also determined. We know
from (23) that, for r = 1, . . . , k + 1,

ψUU (r) = ψUV (r) =
1
2
ν(r) =

νr
2

and ψUV (r) = ψVU (−r) = −
1
2
ξ(r) = −

ξr
2
.

So the covariance matrix of (U>,V>) is entirely determined by Ck and it is the
2(k + 1) × 2(k + 1)matrix Σ1,...,k+1 = Σ

1,...,1. Clearly, E
[
(U>,V>)

]
= 0. The second

information theoretic result for the Gaussian distribution, just above, concludes the
proof Theorem 2.1.
2. The second information theoretic result for the Gaussian distribution, viz. (21),
leads directly to the entropy formula in Theorem 2.2. �

So when {Xj}j∈Z is the strictly stationary Gaussian-GvM time series, both spectral
and temporal Shannon’s entropies are maximized under the constraints Ck .
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3 Some computational aspects

The following computational aspects are presented in this section: the computation
of the integral functions of the GvM2 time series in Section 3.1, the estimation of the
GvMk spectral distribution in Section 3.2 and the computation of the GvMk spectral
d.f. in Section 3.3.

3.1 Integral functions of the GvM2 time series

Some series expansions for some of the integral functions appearing with the GvMk

spectral distribution are provided. Indeed, the results of Section 2 require the con-
stants or integral functions G(k)r , for r = 0, . . . , k, and H(k)r , for r = 1, . . . , k. They
are integrals over a bounded domain of smooth integrands and therefore numerical
integration should perform well. Alternatively, one can evaluate these integral func-
tions by series expansions. Gatto (2009) provides some of these expansions and in
particular for k = 2, reported below. Define

epr =
{

1, if r is even and positive,
0, otherwise.

Let δ ∈ [0, π) and κ1, κ2 ≥ 0. Then the following expansions hold for r = 0,1, . . .,

G(2)r (δ, κ1, κ2) = I0(κ1)I r
2
(κ2) cos rδ epr + I0(κ2)Ir (κ1)

+

∞∑
j=1

cos 2 jδ Ij(κ2)
{
I2j+r (κ1) + I |2j−r |(κ1)

}
, (24)

and

H(2)r (δ, κ1, κ2) = − I0(κ1)I r
2
(κ2) sin rδ epr

+

∞∑
j=1

sin 2 jδ Ij(κ2)
{
I2j+r (κ1) − I |2j−r |(κ1)

}
. (25)

In these expansions we can see that Gr and Hr inherit the asymptotic behavior of
the Bessel function Ir , for large r . It follows from Abramowitz and Stegun (1972,
9.6.10, p. 375) that Ir (z) = (z/2)r {rΓ(r)}−1 {

1 + O
(
r−1)}, as r → ∞. This and the

Stirling approximation yield Ir (z) = (2πr)−1/2 {ez/(2r)}r
{
1 + O

(
r−1)}, as r →∞.

Hence Ir decreases rapidly to zero as r increases and this behavior is transmitted to
Gr and Hr .
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3.2 Estimation of the GvM spectral distribution

This section concerns the estimation problem: it reviews some classical results of
spectral estimation and it presents an estimator to the parameters of the GvM spectral
distribution.

A classical estimator of the spectral density is the periodogram, which is based
on the discrete Fourier transform of the sample a.c.v.f., i.e. on

Λn( j) =
n−1∑

r=−(n−1)
ψ̂n(r)e−i 2π jr

n ,

for j = b(n − 1)/2c, . . . ,−1,1, . . . , bn/2c, ψ̂n being the sample a.c.v.f. (11), n the
sample size and b·c the floor function. Because of its nonparametric nature, the
periodogram is well-suited for detecting particular features, such as periodicities,
that may not be identified by a parametric estimator. However, its irregular nature
may not be desirable in some contexts and it does not result from an important
optimality criterion.

One of the earliest studies on maximum entropy spectral distributions is Burg
(1967), who considered B( fσ) =

∫ π
−π

log fσ(θ)dθ as measure of entropy of the
spectral density fσ . This entropy is different than our adaptation of Shannon’s
entropy, viz. S( fσ) given in (4), but we can relate Burg’s entropy to Kullback-
Leibler’s information by

B( fσ) = 2π
{
log

σ2

2π
−

1
σ2 I(uσ | fσ)

}
= 2π

{
log

σ2

2π
− I(u1 | f1)

}
. (26)

Thus, maximizing Burg’s entropy amounts to minimize the re-directed Kullback-
Leibler information, instead of the usual Shannon’s entropy. For real-valued time
series, it turns out that the spectral density estimator that maximizes the entropy
(26) subject to the constraints Ck in (8), with ψr = ψ̂n(r), for r = 1, . . . ,n − 1 and
k = n − 1, is equal to the autoregressive estimator of order k. This autoregressive
estimator is given by the formula of the spectral density of the AR(k) model which
has been fitted to the sample of n consecutive values of the time series. For more
details refer e.g. to p. 365-366 of Brockwell and Davis (1991).

Estimators of the parameters of the GvMk spectral distribution can be obtained
from the generalization of the trigonometric method of moments estimator for the
GvMk circular distribution, which is introduced by Gatto (2008). This estimator
is the circular version of the method of moments estimators. Consider the GvMk

spectral distribution with unknown parameters µ1, . . . , µk and κ1, . . . , κk , for some
k ≤ n − 1. Consider the a.c.v.f. conditions Ck in which the spectral density gσ is
taken equal to the GvMk spectral density with variance σ2, viz. σ2 times the circular
density (2), and in which the quantity ψr ∈ C is replaced by the sample a.c.v.f. at
r , namely by ψ̂n(r), for r = 1, . . . , k, cf. (11). The resulting r-th equation can be
re-expressed in a similar way to (14), precisely as
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Re ψ̂n(r)
Im ψ̂n(r)

)
= σ2R(rµ1)

(
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

B(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

)
, (27)

for r = 1, . . . , k. This gives a system of 2k real equations and 2k unknown real pa-
rameter. The values of µ1, δ1, . . . , δk−1, κ1, . . . , κk that solve this system of equations
are the resulting estimators and they can be denoted µ̂1, δ̂1, . . . , δ̂k−1, κ̂1, . . . , κ̂k . We
now give two examples.
Example 2 (vM spectrum) When k = 1 we have the vM spectral distribution. Be-
cause B(1)1 (κ1) = 0, we obtain the two estimating equations(

Re ψ̂n(1)
Im ψ̂n(1)

)
= σ2 A(1)1 (κ1)

(
cos µ1
sin µ1

)
= σ2 I1(κ1)

I0(κ1)

(
cos µ1
sin µ1

)
,

with the two unknown parameters µ1 and κ1. The solutions are the estimators µ̂1 and
κ̂1. For κ1 > 0, if µ1 = 0 is given, then we have axial symmetry about the null axis,
thus real-valued time-series, and the two estimating equations reduce to the single
equation

ψ̂n(1)
σ2 = A(1)1 (κ1), (28)

whose solution is the estimator κ̂1. Amos (1974) showed that A(1)1 has positive deriva-
tive over (0,∞); for this derivative cf. e.g. p. 289 of Jammalamadaka and SenGupta
(2001). It follows that A(1)1 is a strictly increasing and differentiable probability d.f.
over [0,∞). So its inverse function is easily computed.

Example 3 (GvM2 spectrum) When k = 2 we have the GvM2 spectral distribution.
The estimating equations (27) can be solved with the expansions of the constants
given by (24) and (25). As previously mentioned, with κ1, κ2 > 0, the GvM2 distri-
bution is axially symmetric around the axis µ1 iff δ1 = δ

(1) = 0 or δ1 = δ
(2) = π/2.

With these values of δ1 and with µ1 = 0, the axial symmetry is about the null axis and
the time series becomes real-valued. We note that B(2)r

(
δ(j), κ1, κ2

)
= 0, for r = 1,2

and for the cases j = 1,2. These equalities and Im ψ̂n(r) = 0, for r = 1,2, allow to
simplify (27) to

ψ̂n(r)
σ2 = A(2)r

(
δ(j), κ1, κ2

)
,

for r = 1,2 and for the two cases j = 1,2. These estimating equations generalize the
estimation equation (28) of the real-valued vM time series. For each one of these
two cases, we have two equations and two unknown values, namely κ1 and κ2, giving
the estimators κ̂1 and κ̂2.

We conclude this section on estimation by mentioning the test that the spectral
density is a GvM one, precisely the null hypothesis

H0 : fσ = f (k)σ (· | µ1, . . . , µk, κ1, . . . , κk) ,
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where all parameters are specified. Anderson (1993) addresses this problem with
the Cramér-von Mises and with the Kolmogorov-Smirnov criteria. Both criteria are
based on

√
n{F̂n − F(k)σ (·|µ1, . . . , µk, κ1, . . . , κk)}, (29)

where n is the sample size, F̂n is the estimator of the spectral d.f. obtained by
integration of the periodogram and where F(k)σ (·|µ1, . . . , µk, κ1, . . . , κk) is the d.f. of
f (k)σ (·|µ1, . . . , µk, κ1, . . . , κk). Under the main assumption that the time series admits
the AR(∞) representation, the asymptotic distribution (29) of is obtained, of course
not only for the GvM but for any specified spectral density. Note that Anderson
(1993) considers real-valued time series only, but the results can be directly adapted
to complex-valued time series. Section 3.3 provides a formula for the spectral GvM
d.f. which appears in this goodness of fit problem.

3.3 GvM spectral distribution function

A formula for the GvMk spectral d.f. can be obtained in the form of a series as
follows. Let ψ(k)σ denote the a.c.v.f. and let f (k)σ denote the spectral density of the
GvMk time series with variance σ2. It follows from Re ψ(k)σ (−r) = Re ψ(k)σ (r) and
Im ψ

(k)
σ (−r) = −Im ψ

(k)
σ (r), for r = 1,2, . . ., and from (14) that

f (k)σ (θ |µ1, . . . , µk, κ1, . . . , κk) =
1

2π

∞∑
r=−∞

ψ
(k)
σ (r) exp{−irθ}

=
1

2π

(
1 + 2

∞∑
r=1

Re ψ(k)σ (r) cos rθ + Im ψ
(k)
σ (r) sin rθ

)
=
σ2

2π

{
1 + 2

∞∑
r=1
(cos rθ, sin rθ)R(rµ1)

(
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

B(k)r (δ1, . . . , δk−1, κ1, . . . , κk)

)}
,

∀θ ∈ (−π, π]. Pointwise convergence is due to Dirichlet’s theorem (cf. e.g. Pinkus
and Zafrany, 1997, p. 47). The term by term integration of the Fourier series of
a piecewise continuous function converges uniformly towards the integral of the
original function (cf. e.g. Pinkus and Zafrany, 1997, p. 77). So the GvMk spectral
d.f. admits the series representation
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F(k)σ (θ |µ1, . . . , µk, κ1, . . . , κk) =

∫ θ

−π
fσ(α |µ1, . . . , µk, κ1, . . . , κk)dα

=
σ2

2π

(
θ + 2

∞∑
r=1

1
r
[
A(k)r (δ1, . . . , δk−1, κ1, . . . , κk){sin r(θ − µ1) + (−1)r sin rµ1}

− B(k)r (δ1, . . . , δk−1, κ1, . . . , κk){cos r(θ − µ1) − (−1)r cos rµ1}
] )
,

∀θ ∈ (−π, π], where the convergence is uniform. The order of the r-th summand
above is r times smaller than in the original Fourier series, so we can expect rapid
convergence. When k = 2, we can use the series expansions (24) and (25) for the
computation this d.f. This expansion of the spectral d.f. can be used in conjunction
with (7) for the computation of theL2-norm of the increments of the spectral process
of the GvMk time series. It may also be used in the testing problem (29).

4 Concluding remarks

This chapter presents an application of the GvM distribution of planar directional
statistics to the analysis of stationary time series. The GvM and Gaussian-GvM time
series are presented, together with some related results. Further results or methods
could be developed. For example, the consistency of the estimators of the parameters
of the GvM spectral distribution, as the sample of the time series augments, should
be established. Another open research topic would concern simulation algorithms
for the Gaussian-GvM time series. The GvM spectrum is motivated by theoretical
considerations and we are aware that ad hoc spectra are often used in applied
domains. For example, the Pierson-Moskowitz spectrum is widely used in naval
construction for modelling of ocean waves. We refer to p. 315-316 of Lindgren
(2012) for a list of commonly used spectra. (These spectra correspond to continuous
time stationary models, but wrapping them around the unit circle gives the spectra of
processes sampled at integer times, thus of time series.) We finally mention that the
connection between spectral and circular distributions is well-known: the wrapped
Cauchy circular distribution is the normalized spectrum of the AR(1) time series and
the cardioid distribution is the normalized spectrum of the first order moving average
(MA(1)) time series. This connection is exploited by Tanigichi et al. (2020), who
construct new circular distributions starting from spectra. It is thus in the opposite
direction that this chapter exploits this connection.
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