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Introduction
Justification logic is a variant of modal logic where the �-operator is re-
placed with justification terms that stand for specific justifications. So a
formula �A from modal logic which can be read as there is a proof / an
evidence for A is replaced by t : A with the intended meaning that the
justification t is a justification to belief A . In justification logic we ask
about the reason why we believe or know something [8, 9, 23].

The first justification logic was the Logic of Proofs and was developed by
Artemov [1, 5]. The aim was to provide intuitionistic logic with classical
provability semantics. In this logic the justification terms represent proofs
in a formal system like Peano arithmetic. By proof we mean a Hilbert-style
proof which is a sequence of formulas

F1, . . . Fn (*)

where each formula is either an axiom or derived by a rule application from
formulas that occur earlier in the proof. In this interpretation t : A holds
if A occurs in the proof-sequence represented by t. Hence t is not only a
proof for the last formula in the sequence Fn but for all formulas in it.

The benefit of being able to represent explicit reasons in logical systems
is not limited to mathematical proof systems but can be used to represent
evidence in general. Using this interpretation, justification logic provides
a versatile framework for epistemic logic [2, 6, 12, 16, 21]. If we inter-
pret terms in this context, we ignore the order of the sequence in (*) and
interpret evidence terms as sets of formulas.

This is anticipated in both Mkyrtychev models [28] as well as Fitting
models [19]. The former are used to obtain a decision procedure for jus-
tification logic where one of the main steps is to keep track of which (set
of) formulas a term justifies, see, e.g. [23, 34]. The latter provide first
epistemic models for justification logic based on possible worlds semantics.
Each world in the model has its own evidence function that specifies, which
term serves as possible evidence for which (set of) formulas in this world.
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Artemov [3] introduced modular models where justification terms are
interpreted as sets of propositions when he addressed the problem of the
logical type of justifications.

In this thesis justification terms are interpreted as sets of possible (or
impossible) worlds instead. This is called a subset semantics since we
define that t : A holds if the interpretation of t is a subset of the extension
of A. Various kinds of justification logics and the corresponding subset
models will be presented.

The thesis consists of two main parts. The first part gives an overview
of the general framework of subset models. The basic ideas are introduced
and the standard logical axioms are discussed. In the second part the
possibilities to use subset models are extended for other purposes. Besides
standard extensions like introducing probabilities or dynamic aspects like
updates, some new aspects like new operators for combining justifications
and logics that deal with presumptions are introduced.

This thesis is based on four articles in collaboration with Thomas Studer:
Subset models for justification logic [24], which is also submitted in an ex-
tended version for the journal Information and Computation, Exploring
subset models for justification logic [26], which is submitted to be pub-
lished in the collection with the working title Research Trends in Contem-
porary Logic by Melvin Fitting et al., Belief Expansion in Subset Models
[25], which was presented at LNCS in 2020 and Impossible and Conflicting
Obligations in Justification Logic [18], which will be presented at DEON
2021 and which is a collaboration with Faroldi and Ghari.
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Part I.

Subset Models for
Justification Logics
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This Part introduces subset models for justification logics. We offer a new
semantics to interpret justification terms so that they become more like
pieces of evidence than just sets of formulas. In fact, this is not the first
attempt to do so. Artemov [7] and Artemov and Nogina[10] treated jus-
tification terms as sets of possible worlds, a strategy which we follow too.
However, they did not consider the usual term structure. In Chapter 6 we
show that the subset models presented here can be used to model aggre-
gating probabilistic evidence like proposed in [7]. On the other hand, there
are several topological approaches to evidence available [11, 35, 36], which,
however, do not feature justifications explicitly in their language.

In [33] Sedlár and Podrouz̆ek establish a relational semantics for justifi-
cation logic J that looks quite similar to our subset semantics. However,
they claim that the relation has to be irreflexive, which is a big obstacle to
modelling aspects like factivity, as they mention themselves.

It is the aim of this part to provide a new semantics called subset seman-
tics for justification logic that interprets terms as sets of possible worlds
and operations on terms as operations on sets of possible worlds. We then
say that t : A is true if A is true in all the worlds belonging to the inter-
pretation of t.
Usually, justification logic includes an application operator that repre-

sents modus ponens (MP) on the level of terms. We provide two approaches
to handle this operator in our semantics. The first is to include a new con-
stant c? which is interpreted as the set of all the worlds closed under (MP)
and then use this new constant to define an application operator. We follow
this approach in Chapter 1. The second way, which is investigated in Chap-
ter 2, is to include an application operator directly. However, this leads
to some quite cumbersome definitions. In Chapter 3 we investigate the
differences between these two kinds of models according to monotonicity
of application.

Another difference between our semantics and many other semantics for
justification logic is that we allow non-normal (impossible) worlds. They
are usually needed to model the fact that agents are not omniscient and
that they do not see all the consequences of the facts they are already aware
of. In Chapter 4 we show how these impossible worlds preserve the aspect
of hyperintensionality, which is central to the logic of justification.1

1I would like to thank Igor Sedlár for his comments that have been very inspiring for
a lot of aspects discussed in Chapter 3 and Chapter 4.
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In the first two Chapters we present soundness and completeness proofs.
However, completeness for logics that contain the axiom jd but not the
axiom jt is only shown for logics, where all axioms are justified by some
constant, so called axiomatically appropriate constant specifications. In
Chapter 5 we finally demonstrate how our framework can be slightly modi-
fied to guarantee completeness for all constant specifications. Furthermore,
we look at various representations of the D-axiom in modal logics and in-
vestigate the differences of their realizations in justification logics.
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1. L?
CS-subset models

In this chapter a first version of subset models for justification logics will
be introduced. We do not limit ourselves to one logic, but we investigate
a whole family of logics. As is usual in this field, we will introduce the
language and the logics before we present the new semantics which will be
proven to be sound and complete.

1.1. Syntax
Justification terms are built from countably many constants ci and vari-
ables xi and the special and unique constant c? according to the following
grammar:

t ::= ci | xi | c? | (t+ t) | !t

The set of terms is denoted by Tm. The set of atomic terms, i.e. terms
that do not contain any operator + or ! is denoted by ATm. The operation
+ is left-associative.

Formulas are built from countably many atomic propositions pi, terms t
and the symbol ⊥ according to the following grammar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all formu-
las is denoted by LJ . The other classical Boolean connectives ¬,>,∧,∨,↔
are defined as usual.

Definition 1.1 (c?-term). A c?-term is defined inductively as follows:

• c? is a c?-term

• if s and t are terms and c is a c?-term then s + c and c + t are
c?-terms

7



1. L?CS-subset models

So a c?-term is either c? itself or a sum-term where c? occurs at least
once.

We investigate a family of justification logics that differ in their axioms
and how the axioms are justified. We have two sets of axioms, the first
axioms are:

cl all axioms of classical propositional logic;
jc? c : A ∧ c : (A→ B)→ c : B for all c?-terms c.
j+ s : A ∨ t : A→ (s+ t) : A;

The set of these axioms is denoted by L?α.
There is another set of axioms:

j4 t : A→!t : (t : A);
jd t :⊥→⊥;
jt t : A→ A.

This set is denoted by L?β . It is easy to see that jd is a special case of jt.
By L? we denote all logics that are composed from the whole set L?α and
some subset of L?β . Moreover, a justification logic L? is defined by the set
of axioms and its constant specification CS that determines which constant
justifies which axiom. So the constant specification is a set

CS ⊆ {(c, A) | c is a constant and A is an axiom of L?}

In this sense L?CS denotes the logic L? with the constant specification CS.
To deduce formulas in L?CS we use a Hilbert system given by L? and the
rules modus ponens:

A A→ B (MP)
B

and axiom necessitation

(AN!) ∀n ∈ N, where (c, A) ∈ CS!...!︸︷︷︸
n

c : !...!︸︷︷︸
n−1

c : ... : !!c : !c : c : A

8



1.2. Semantics

1.2. Semantics
Definition 1.2 (L?CS-subset models). Given some logic L? and some con-
stant specification CS, then an L?CS-subset model M = (W,W0, V, E) is
defined by:

• W is a set of objects called worlds.

• W0 ⊆W and W0 6= ∅ .

• V : W × LJ → {0, 1} such that for all ω ∈W0, t ∈ Tm, F,G ∈ LJ :

– V (ω,⊥) = 0;

– V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;

– V (ω, t : F ) = 1 iff E(ω, t) ⊆ { υ ∈W | V (υ, F ) = 1 }.

• E : W × Tm→ P(W ) that meets the following conditions where we
use

[A] := {ω ∈W | V (ω,A) = 1}. (1.1)

For all ω ∈W0, and for all s, t ∈ Tm:

– E(ω, s+ t) ⊆ E(ω, s) ∩ E(ω, t);

– E(ω, c?) ⊆ WMP where WMP is the set of deductively closed
worlds, see below;

– if jd ∈ L?, then ∃υ ∈W0 with υ ∈ E(ω, t);

– if jt ∈ L?, then ω ∈ E(ω, t);

– if j4 ∈ L?, then

E(ω, !t) ⊆
{ υ ∈W | ∀F ∈ LJ (V (ω, t : F ) = 1⇒ V (υ, t : F ) = 1) } ;

– for all n ∈ N and for all (c, A) ∈ CS : E(ω, c) ⊆ [A] and

E(ω, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ....!c : c : A].

9



1. L?CS-subset models

The set WMP is formally defined as follows:

WMP := {ω ∈W | ∀A,B ∈ LJ ((V (ω,A) = 1 and V (ω,A→ B) = 1)
implies V (ω,B) = 1)}.

So WMP collects all the worlds where the valuation function is closed
under modus ponens. W0 is the set of normal worlds. The set W \W0
consists of the non-normal worlds. In a non-normal world both A and ¬A
may be true or none of them. Such non-normal or impossible worlds have
been investigated by Veikko Rantala [30, 31] and in Chapter 4 we will show
why they are necessary to keep the hyperintensional aspects of justification
logic in subset models.

Moreover, using the notation introduced by (1.1), we can read the con-
dition on V for justification terms t : F as:

V (ω, t : F ) = 1 iff E(ω, t) ⊆ [F ]

Since the valuation function V is defined on worlds and formulas, the
definition of truth is pretty simple:
Definition 1.3 (Truth in L?CS-subset models). LetM = (W,W0, V, E) be
an L?CS-subset model, ω ∈ W and F ∈ LJ . We define the relation 
 as
follows:

M, ω 
 F iff V (ω, F ) = 1
Remark 1.4. With the conditions on E(w, c?) and E(w, s + t) we obtain
the intended meaning of a c?-term s + c?, namely that we consider only
deductively closed worlds of s. However, the set E(s + c?) does not have
to be exactly the intersection of E(w, s) with WMP since we only have a
subset-relation instead of equality. Hence E(w, s + c?) 6= E(w, c? + s) in
general. So even if in two c?-terms the exactly same evidence sets occur,
their order still matters. For the same reason s + t : A → t + s : A is not
valid for any two distinct terms s and t.

1.3. Soundness
Definition 1.5 (L?CS-validity). Let CS be a constant specification. We
say that a formula F ∈ LJ is L?CS-valid if for each L?CS-subset model
M = (W,W0, V, E) and each ω ∈W0, we haveM, ω 
 F .

10



1.3. Soundness

Since in non-normal worlds even the axioms of classical logic will not be
valid in general, we only have soundness within W0.

Theorem 1.6 (Soundness of L?CS-subset models). For any justification
logic L?CS and any formula F ∈ L?CS we have that if L?CS ` F , then F is L?CS-
valid.

Proof. The proof is by induction on the length of the derivation of F :

• If F is an instance of some axiom of classical logic, then the truth of
F only depends on the valuation functions within the worlds of W0.
And all worlds of W0 behave appropriately by definition.

• If F is derived by modus ponens, there is a G ∈ LJ s.t. L?CS ` G→ F
and L?CS ` G. By induction hypothesis M, ω 
 G → F hence we
have V (ω,G→ F ) = 1 and therefore since ω ∈W0, V (ω,G) = 0 or
V (ω, F ) = 1 and again by induction hypothesisM, ω 
 G and thus
V (ω,G) = 1. Together with ω ∈ W0, we obtain V (ω, F ) = 1, which
isM, ω 
 F .

• If F is derived by axiom necessitation, then F = c : A for some
(c, A) ∈ CS. By the condition on E within L?CS-subset models we have
E(ω, c) ⊆ [A] for all ω ∈ W0. Hence V (ω, c : A) = 1 and therefore
M, ω 
 c : A. If F is a more complex formula like !c : (c : A) derived
by axiom necessitation, the argument is analogue.

• If F is an instance of the jc?-axiom, then

F = c : A ∧ c : (A→ B)→ c : B

for some A,B ∈ LJ and a c?-term c.
Suppose thatM, ω 
 c : A andM, ω 
 c : (A → B). i.e. E(ω, c) ⊆
[A] and E(ω, c) ⊆ [A → B]. Hence for all υ ∈ E(ω, c) we obtain
V (υ,A) = 1 and V (υ,A→ B) = 1. From the definition of c?-terms,
the conditions on E(w, c?) and E(w, s + t) for some terms s, t, we
infer that E(w, c) ⊆ WMP and we conclude V (υ,B) = 1 and hence
E(ω, c) ⊆ [B] and this means thatM, ω 
 c : B.

• If F is an instance of the j+-axiom, then F = s : A∨ t : A→ s+ t : A
for some s, t ∈ Tm and A ∈ LJ .
Suppose wlog.M, ω 
 s : A, by Definition 1.3 we get V (ω, s : A) = 1

11



1. L?CS-subset models

and by Definition 1.2 and the conditions on V for worlds in W0,
E(ω, s) ⊆ [A]. Since E(ω, s + t) ⊆ E(ω, s) ∩ E(ω, t) ⊆ E(ω, s) we
obtain that E(ω, s + t) ⊆ [A] and by the condition on E in W0 in
Definition 1.2 that V (ω, s + t : A) = 1. Hence by Definition 1.3
M, ω 
 s+ t : A.

• If F is an instance of the jd-axiom, then F = t :⊥→⊥ for some
t ∈ Tm.
Suppose towards a contradiction thatM, ω 
 t :⊥ for some t ∈ Tm,
then by Definition 1.3 we obtain that V (ω, t :⊥) = 1 and hence by the
condition of E in the worlds of W0, E(ω, t) ⊆ [⊥]. Since M must
be a jd-L?CS-subset model we claim that ∃υ ∈ W0 s.t. υ ∈ E(ω, t).
From υ ∈ E(ω, t) we derive by the condition on V in Definition 1.2
υ ∈ [⊥] or in other words υ ∈ (υ′ ∈ W | V (υ′,⊥) = 1) and hence
V (υ,⊥) = 1 and this contradicts the claim that υ ∈W0.

• If F is an instance of the jt-axiom, then F = t : A → A for some
A ∈ LJ and some t ∈ Tm.
SupposeM, ω 
 t : A. By Definition 1.3 there is V (ω, t : A) = 1. By
the condition on worlds in W0 in Definition 1.2 we get E(ω, t) ⊆ [A].
Since M is a jt-L?CS-subset model, ω ∈ E(ω, t) and therefore we
conclude ω ∈ [A]. Hence V (ω,A) = 1 and by Definition 1.3 we
obtain thatM, ω 
 A.

• If F is an instance of the j4-axiom, then F = t : A →!t : (t : A) for
some A ∈ LJ and t ∈ Tm
SupposeM, ω 
 t : A, then by Definition 1.3 there is V (ω, t : A) = 1.
By the condition on E for j4-L?CS-subset models for all υ ∈ E(ω, !t)
we obtain V (υ, t : A) = 1. Therefore E(ω, !t) ⊆ [t : A] and by
Definition 1.2 there is V (ω, !t : (t : A)) = 1 and again by Definition 1.3
we concludeM, ω 
 !t : (t : A).

The j-axiom s : (A → B) → (t : A → s · t : B) is not part of our logic.
Using the (c?)-axiom, we can define an application operation such that the
j-axiom is valid.

Definition 1.7 (Application). We introduce a new abbreviation · on terms
by:

s · t := s+ t+ c?

12



1.4. Completeness

Lemma 1.8 (The “j-axiom” follows). For all M = (W,W0, V, E),
ω ∈W0, A,B ∈ LJ and s, t ∈ Tm:

M, ω 
 s : (A→ B)→ (t : A→ s · t : B)

Proof. Suppose M, ω 
 s : (A → B) and M, ω 
 t : A. Therefore
E(ω, s) ⊆ [A→ B] and E(ω, t) ⊆ [A]. We find

E(ω, s · t) = E(ω, s+ t+ c?) ⊆
E(ω, s) ∩ E(ω, t) ∩ E(ω, c?) ⊆ [A→ B] ∩ [A] ∩ E(ω, c?).

Hence for all υ ∈ E(ω, s · t) we have V (υ,A → B) = 1 and V (υ,A) = 1
and υ ∈ E(ω, c?) and therefore V (υ,B) = 1. Hence E(ω, s · t) ⊆ [B] and
we obtainM, ω 
 s · t : B.

Of course there is as well a derivation within any of the presented logics.
We use CR as an abbreviation for classical reasoning.

s : (A→ B)→ s+ t : (A→ B) j+
s+ t : (A→ B)→ s+ t+ c? : (A→ B) j+
s : (A→ B)→ s+ t+ c? : (A→ B) CR
t : A→ s+ t : A j+
s+ t : A→ s+ t+ c? : A j+
t : A→ s+ t+ c? : A CR
s+ t+ c? : (A→ B)→ (s+ t+ c? : A→ s+ t+ c? : B) jc?

s : (A→ B)→ (t : A→ s+ t+ c? : B) CR

1.4. Completeness
To prove completeness we will construct a canonical model and then show
that for every formula F that is not derivable in L?CS, there is a model
MC with a world Γ ∈ WC

0 s.t. MC ,Γ 
 ¬F . Like in the case of other
semantics for justification logics, the completeness of logics containing (jd)
is only given, if the corresponding constant specification is axiomatically
appropriate. Before we start with the definition of the canonical model,
we must do some preliminary work. We will first prove that our logics are

13



1. L?CS-subset models

conservative extensions of classical logic. With this result we can argue,
that the empty set is consistent and hence can be extended to so-called
maximal L?CS-consistent sets of formulas. These sets will be used to build
the W0-worlds in the canonical model.

Theorem 1.9 (Conservativity). All logics L? presented are conservative
extensions of the classical logic CL, i.e. for any formula F ∈ Lcp:

L? ` F ⇔ CL ` F

Proof. Since L? is an extension of CL the right-to-left direction is obvious.
To prove the direction from left to right we use a translation t : LJ → Lcp:

t(P ) := P

t(⊥) :=⊥
t(A→ B) := t(A)→ t(B)

t(s : A) := t(A)

This translation removes all justification terms from a given formula.
Now we show by induction on the length of the derivation for some formula
A that CL ` t(A) whenever L? ` A and note that t(A) = A for any A ∈ Lcp.
The cases where A is an axiom of CL is then obvious, since all logics L?
contain all axioms of CL.

• cl: If A is an instance of some axiom scheme in LJ , then t(A) = A is
an instance of the same axiom scheme in CL.

• jc?: t(c : A ∧ c : (A→ B)→ c : B) = A ∧ (A→ B)→ B, which is a
classical tautology.

• j+: t(s : A ∨ t : A → (s + t) : A) = A ∨ A → A, which is a classical
tautology.

• j4,jd,jt: All translations have the form A → A, which is a classical
tautology.

• modus ponens: If A is derived by modus ponens, then there is a
formula B s.t. L? ` B → A and L? ` B and by induction hypothesis
Lcp ` t(B) → t(A) and Lcp ` t(B) and hence t(A) can be derived in
CL by modus ponens.

14



1.4. Completeness

• axiom necessitation: If A is derived by axiom necessitation, then
A is of the form c : B for some axiom B. But t(c : B) = B and B is
an axiom.

Definition 1.10 (Consistency). A logical theory L is called consistent, if
L 6`⊥. A set of formulas Γ ⊂ LJ is called L-consistent if L 6`

∧
Σ →⊥ for

every finite Σ ⊆ Γ. A set of formulas Γ is called maximal L-consistent, if
it is L-consistent and none of its proper supersets is.

Since all presented logics are conservative extensions of CL , we have the
following consistency result.

Lemma 1.11 (Consistency of the logics). All presented logics are con-
sistent.

As usual, we have a Lindenbaum lemma and the usual properties of
maximal consistent sets hold, see, e.g., [23].

Lemma 1.12 (Lindenbaum Lemma). Given some logic L, then for each
L- consistent set of formulas Γ ⊂ LJ there exists a maximal consistent set
Γ′ such that Γ ⊆ Γ′.

Definition 1.13 (Canonical Model). For a given logic L?CS we define the
canonical modelMC = (WC ,WC

0 , V
C , EC) by:

• WC = P(LJ).

• WC
0 =

{
Γ ∈WC

∣∣ Γ is maximal L?CS − consistent set of formulas
}
.

• V C : V C(Γ, F ) = 1 iff F ∈ Γ;

• EC : With Γ/t := {F ∈ LJ | t : F ∈ Γ} and

WC
MP := {Γ ∈WC |∀A,B ∈ LJ :

if A→ B ∈ Γ and A ∈ Γ then B ∈ Γ}

we define :

EC(Γ, t) =
{

∆ ∈WC
MP

∣∣ ∆ ⊇ Γ/t
}

if t is a c?-term
EC(Γ, t) =

{
∆ ∈WC

∣∣ ∆ ⊇ Γ/t
}

otherwise.

15



1. L?CS-subset models

Not all models that correspond to Definition 1.13 are L?CS-subset models.
It depends on the presence of axiom jd and the constant specification.

Definition 1.14 (axiomatically appropriate CS). A constant specification
CS is called axiomatically appropriate if for each axiom A, there is a con-
stant c with (c, A) ∈ CS.

Axiomatically appropriate constant specifications are important as they
provide a form of necessitation [9].

Now we must show that the canonical model is in general an L?CS-subset
model.

Lemma 1.15. The canonical modelMC is an L?CS-subset model if either

(1) (jd) /∈ L?CS or

(2) the constant specification CS is axiomatically appropriate or (jt) ∈
L?CS.

• does not contain (jd) or

• contains it and has an axiomatically appropriate constant specifica-
tion CS or contains (jt) too.

Proof. In order to prove this, we have to show thatMC meets all the con-
ditions we made for the valuation and evidence function and the constant
specification i.e.:

(1) WC
0 6= ∅.

(2) For all Γ ∈WC
0 :

a) V C(Γ,⊥) = 0;
b) V C(Γ, F → G) = 1 iff V C(Γ, F ) = 0 or V C(Γ, G) = 1;
c) V C(Γ, t : F ) = 1 iff E(Γ, t) ⊆ [F ].

(3) For all Γ ∈WC
0 , F ∈ LJ , s, t ∈ Tm:

a) EC(Γ, s+ t) ⊆ EC(Γ, s) ∩ EC(Γ, t);
b) EC(Γ, c?) ⊆WC

MP ;
c) If jd in L?, then ∃∆ ∈WC

0 with ∆ ∈ EC(Γ, t);

16



1.4. Completeness

d) If jt in L?: ∀Γ ∈WC
0 and ∀t ∈ Tm : Γ ∈ EC(Γ, t);

e) If j4 in L?:

EC(Γ, !t) ⊆ {∆ ∈WC |∀F ∈ LJ
(V C(Γ, t : F ) = 1⇒ V C(∆, t : F ) = 1)};

f) For all (c, A) ∈ CS: EC(Γ, c) ⊆ [A] and

EC(Γ, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ....!c : c : A] for all n ∈ N.

So the proofs are here:

(1) Since the empty set is proven to be L?CS-consistent (see Lemma 1.11)
it can be extended by the Lindenbaum Lemma to a maximal L?CS-
consistent set of formulas Γ with Γ ∈WC

0 .

(2) Suppose Γ ∈WC
0 :

a) We claim V C(Γ,⊥) = 0: Suppose the opposite, this means that
V C(Γ,⊥) = 1 hence by the definition of V C follows that ⊥∈ Γ.
But this is a contradiction to the fact that Γ is consistent.

b) From left to right: Suppose V C(Γ, F → G) = 1, then by the defi-
nition of V C , F → G ∈ Γ. Since Γ is maximal L?CS-consistent this
implies by maximal consistency of Γ that F 6∈ Γ or G ∈ Γ. Hence
again by the definition of V C , V C(Γ, F ) = 0 or V C(Γ, G) = 1.
From right to left: Suppose V C(Γ, F ) = 0 or V C(Γ, G) = 1,
then by the definition of V C either F 6∈ Γ or G ∈ Γ. Since
Γ ∈WC

0 ,Γ is maximal L?-consistent and hence in both cases by
maximal consistency that F → G ∈ Γ. But this means again by
the definition of V C that V (Γ, F → G) = 1.

c) From left to right: Suppose V C(Γ, t : F ) = 1, then by Definition
1.13 t : F ∈ Γ. Hence with the definition of Γ/t we obtain
F ∈ Γ/t. So for each ∆ ∈ EC(Γ, t), F ∈ ∆ (again by Definition
1.13). Hence for these ∆ it follows by the definition of V C that
V C(∆, F ) = 1 and therefore ∆ ∈ [F ]. Since this is true for all
∆ ∈ EC(Γ, t) we obtain EC(Γ, t) ⊆ [F ].

17



1. L?CS-subset models

From right to left: The proof is by contraposition.
Suppose V C(Γ, t : F ) 6= 1, then by definition of V C t : F 6∈ Γ.
We define a world ∆ by ∆ := Γ/t. Since ∆ ∈ P(LJ) we can be
sure that ∆ exists, i.e. ∆ ∈ W . Since t : F 6∈ Γ it follows that
F 6∈ Γ/t and therefore F 6∈ ∆. But obviously ∆ ⊇ Γ/t hence
∆ ∈ EC(Γ, t). So we conclude EC(Γ, t) 6⊆ [F ].
It remains to show that in case of t = c?,∆ := Γ/t ∈ WC

MP

since otherwise ∆ 6∈ EC(Γ, c?). In fact this is the case. Since
Γ ∈ WC

0 we obtain that Γ is a maximal L?CS-consistent set of
formulas and hence, whenever c? : A, c? : (A→ B) ∈ Γ then by
jc? we obtain c? : B ∈ Γ. This means that whenever A ∈ ∆
and A → B ∈ ∆ then B ∈ ∆. Hence ∆ = Γ/c? is closed under
modus ponens and therefore ∆ ∈ WC

MP . So together with the
former reasoning ∆ ∈ E(Γ, c?).

(3) Suppose Γ ∈WC
0 :

a) Given some F ∈ LJ , s, t ∈ Tm: We start by an observation on
the relation between the sets Γ/(s+ t) and Γ/s for Γ ∈WC

0 . If
s : A ∈ Γ then since Γ is maximal L?CS-consistent s + t : A ∈ Γ
and therefore Γ/s ⊆ Γ/(s + t). With the same reasoning we
obtain Γ/t ⊆ Γ/(s + t). Thus if ∆ ⊇ Γ/(s + t) then ∆ ⊇ Γ/s
and ∆ ⊇ Γ/t. This means that EC(Γ, s + t) ⊆ EC(Γ, s) and
EC(Γ, s+ t) ⊆ EC(Γ, t).2 Therefore

EC(Γ, s+ t) ⊆ EC(Γ, s) ∩ EC(Γ, t).

b) This follows directly from the definition of EC(Γ, c?).
c) If jd in L?, either CS is axiomatically approporiate or (jt) ∈ L?

too.
• CS is axiomatically appropriate.

For any Γ ∈ WC
0 we obtain ¬(t :⊥) ∈ Γ. Hence ⊥6∈

Γ/t. Suppose towards a contradiction that Γ/t is not L?CS-

2Please note if s = c? or t = c? this only holds due to EC(Γ, s + t) being constrained
in this case to WMP . Special thanks for drawing my attention to this point goes
to the anonymous referee who found a mistake in the original completeness proof of
L?

CS.
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1.4. Completeness

consistent, i.e. there exist A1, . . . An ∈ Γ/t s.t.

A1, . . . , An `L?
CS
⊥ . (1.2)

This together with the construction of Γ/t leads to t :
A1, . . . , t : An ∈ Γ. Since CS is axiomatically appropri-
ate we can use (1.2) to infer t : A1, . . . , t : An `L?

CS
s(t) :⊥,

for some term s(t) only based on t. Since Γ is assumed to
be maximally consistent we can use (jd) and apply modus
ponens to infer ⊥∈ Γ which contradicts the assumption that
Γ is consistent. Therefore Γ/t is L?CS-consistent and can be
expanded by the Lindenbaum Lemma to a maximal L?CS-
consistent set ∆ ⊇ Γ/t with ∆ ∈WC

0 and ∆ ∈ EC(Γ, t).
• (jt) ∈ L?:

The claim is a direct consequence of property (3d) (see next
item).

d) Assume for some F ∈ LJ ,Γ ∈ WC
0 , t ∈ Tm that F ∈ Γ/t,

i.e. t : F ∈ Γ, since Γ is maximal L?CS-consistent and t : F → F
is an instance of the jt-axiom, we conclude that F ∈ Γ. Since
F was arbitrary we obtain Γ ⊇ Γ/t and hence Γ ∈ EC(Γ, t).

e) Suppose for some ∆ ∈ EC(Γ, !t), hence ∆ ⊇ Γ/!t. Then assume
for some arbitrary F ∈ LJ , V (Γ, t : F ) = 1 i.e. by Definition
1.13 we obtain t : F ∈ Γ. Since Γ is maximal L?CS-consistent
and t : F →!t : (t : F ) is an instance of the j4-axiom we obtain
!t : (t : F ) ∈ Γ and hence t : F ∈ Γ/!t. But then t : F ∈ ∆ and
by Definition 1.13 it follows that V C(∆, t : F ) = 1. Since F was
an arbitrary formula and ∆ an arbitrary world of EC(Γ, !t) we
conclude that the condition holds.

f) Suppose (c, A) ∈ CS, maximal L?CS-consistency implies for all
Γ ∈WC

0 that c : A ∈ Γ. Hence A ∈ Γ/c and for all ∆ ∈ EC(Γ, c)
we obtain A ∈ ∆ and therefore EC(Γ, c) ⊆ [A].
Furthermore maximal L?CS-consistency implies for all Γ ∈ WC

0
by axiom necessitation that

!...!︸︷︷︸
n

c : ... :!c : c : A ∈ Γ.
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1. L?CS-subset models

Hence
!...!︸︷︷︸
n−1

c : ... :!c : c : A ∈ Γ/ !...!︸︷︷︸
n

c

and for all ∆ ∈ EC(Γ, !...!︸︷︷︸
n

c) we obtain

!...!︸︷︷︸
n−1

c : ... :!c : c : A ∈ ∆

and therefore

EC(Γ, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ... :!c : c : A].

The Truth Lemma follows very closely:

Lemma 1.16 (Truth Lemma). Let MC = (WC ,WC
0 , E

C , V C) be a
canonical model, then for any Γ ∈WC

0 :

MC ,Γ 
 F if and only if F ∈ Γ.

Proof.
MC ,Γ 
 F Def. 1.3⇐===⇒ V C(Γ, F ) = 1 Def. 1.13⇐====⇒ F ∈ Γ.

Hence each maximal L?CS-consistent set is represented by some world in
the canonical model and thus completeness follows directly:

Theorem 1.17 (Completeness). Given some logic L? and let CS be
constant specification which is required to be axiomatically appropriate in
case jd ∈ L?. For each formula F we have that if F is L?CS-valid, then
L?CS ` F .

Proof. The proof works with contraposition: Assume that L?CS 6` F . Then
{¬F} is L?CS-consistent and by the Lindenbaum Lemma contained in some
maximal L?CS-consistent world Γ of the canonical model MC . And then
MC ,Γ 6
 F .

In Chapter 5 we will show, that subset models for (jd) can be adapted
such that completeness holds for arbitrary constant specifications.

20



2. LA
CS-subset models

In this part we present an alternative definition of subset models for justi-
fication logic that directly interprets the application operator. Hence, we
work with the standard language of justification logic and we consider the
j-axiom instead of the axiom (jc?). The structure of this Chapter corre-
sponds to that of Chapter 1.

2.1. Syntax

In this section, justification terms are built from constants ci and variables
xi according to the following grammar:

t ::= ci | xi | (t · t) | (t+ t) | !t

This set of terms is denoted by TmA. The operations · and + are left-
associative and ! binds stronger than anything else. Formulas are built
from atomic propositions pi and the following grammar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all
formulas is denoted by LA

J . Again we use the other logical connectives as
abbreviations.

As in Chapter 1, we investigate again a whole family of logics. They are
arranged in two sets of axioms. The first set, denoted by LA

α contains the
following axioms:

cl all axioms of classical propositional logic;
j s : (A→ B)→ (t : A→ s · t : B);
j+ s : A ∨ t : A→ (s+ t) : A.
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The other is identical to L?β (modulo the different language) and contains:

j4 t : A→!t : (t : A);
jd t :⊥→⊥;
jt t : A→ A.

For the sake of uniformity we denote this set of axioms by LA
β .

By LA we denote all logics that are composed from the whole set LA
α and

some subset of LA
β .

There are no differences between these logics and the ones of the former
section except in case of application. Therefore we skip all the details
already mentioned and proved before.

CS and LA
CS are defined as before except that the corresponding logic has

changed as mentioned. And deducing formulas in LA
CS works the same as

in the previous section.

2.2. Semantics
Definition 2.1 (LA

CS-subset models). Given some logic LA
CS then an LA

CS-
subset modelM = (W,W0, V, E) is defined like an L?CS-subset model where

E : W × TmA → P(W )

meets the following condition for terms of the form s · t:

E(ω, s · t) ⊆Ww(s, t),

where we use

Ww(s, t) := {v ∈W | ∀F ∈ APPw(s, t)(v ∈ [F ])}

with

APPw(s, t) := {F ∈ LA
J | ∃H ∈ LA

J s.t.
E(w, s) ⊆ [H → F ] and E(w, t) ⊆ [H]}.
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2.3. Soundness

The set APPω(s, t) contains all formulas that are colloquially said deriv-
able by applying modus ponens to a formula justified by s and a formula
justified by t.
Truth in an LA

CS-subset models is defined as before.

Definition 2.2 (Truth in LA
CS-subset models). For an LA

CS-subset model
M = (W,W0, V, E) and a world ω ∈ W and a formula F we define the
relation 
 as follows:

M, ω 
 F iff V (ω, F ) = 1.

2.3. Soundness
Definition 2.3 (LA

CS-validity). Let CS be a constant specification. We
say that a formula F ∈ LA

J is LA
CS-valid if for each LA

CS-subset model
M = (W,W0, V, E) and each ω ∈W0, we haveM, ω 
 F .

Theorem 2.4 (Soundness of LA
CS-subset models). For any justification

logic LA
CS and any formula F ∈ LA

CS we have that if LA
CS ` F , then F is LA

CS-
valid.

Proof. The proof is by induction on the length of the derivation of F and
it is analogue to the proof of Theorem 1.6. The only thing that changes is
the case, where F is an instance of the j-axiom:
Then F = s : (A → B) → (t : A → s · t : B) for some s, t ∈ TmA

and A,B ∈ LA
J . Assume for some ω ∈ W0 that M, ω 
 s : (A → B) and

M, ω 
 t : A. Then by Definition 2.2 V (ω, s : (A→ B)) = 1. Since ω ∈W0
we obtain E(ω, s) ⊆ [A → B] and by the same reason V (ω, t : A) = 1
and E(ω, t) ⊆ [A]. From the definition of APPω(r, s) we conclude that
B ∈ APPω(s, t). So for all υ ∈ E(ω, s · t) we obtain by the requirements
of E that V (υ,B) = 1 hence E(ω, s · t) ⊆ [B]. From this, the fact that
ω ∈ W0 and the requirements of V in W0 we obtain V (ω, s · t : B) = 1,
which is by Definition 2.2M, ω 
 s · t : B.

2.4. Completeness
Before we start defining a canonical model, we have to do the same prelimi-
nary work for LA

CS as we had to do in the previous section for L?CS. Since the
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logics L?CS from the former section differ only in one axiom, i.e. j replaces
jc?, we skip all the parts that are already done and focus on the changes
that it brings about.

As before, we have a conservativity and consistency result.

Theorem 2.5 (Conservativity). All logics LA presented are conservative
extensions of the classical logic CL, i.e. for any formula F ∈ Lcp:

LA ` F ⇔ CL ` F.

Lemma 2.6 (Consistency of LA). All logics in LA are consistent.

All the other ingredients we needed in the former section to define and
further develop the canonical model were generally defined and proven and
can be adopted without additional effort.

To prove completeness we define a canonical model as follows:

Definition 2.7 (Canonical Model). For a given logic LA and a constant
specification CS we define the canonical modelMC = (WC ,WC

0 , V
C , EC)

by:

• WC = P(LA
J);

• WC
0 = {Γ ∈WC | Γ is maximal LA

CS − consistent set of formulas};

• V C : V C(Γ, F ) = 1 iff F ∈ Γ;

• EC : EC(Γ, t) = {∆ ∈W | ∆ ⊇ Γ/t}.

Now we must show that such a canonical model is in fact a subset model.

Lemma 2.8. The canonical modelMC is an LA
CS-subset model if LA

• does not contain (jd) or

• contains it but the corresponding constant specification CS is axiomat-
ically appropriate.

Proof. In order to prove that, we have to proceed in the same way as in
the previous section, i.e. showing that MC meets all the conditions we
made for the valuation and the evidence function as well as the constant
specification.
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2.4. Completeness

Since the canonical model is defined in the same way as the one of L?CS-
subset models, the corresponding proofs can be reused (see Lemma 1.15).
Nevertheless, we need to look at the differences. Instead of showing that
EC(Γ, c?) ⊆WC

MP we have to show that

EC(Γ, s · t) ⊆ {∆ ∈WC | ∀F ∈ APPΓ(s, t)(∆ ∈ [F ])}.

Assume that we are given Γ ∈ WC
0 , F ∈ LA

J , s, t ∈ TmA. Take any
∆ ∈ EC(Γ, s · t), i.e. ∆ ⊇ Γ/(s · t). Hence for all F s.t. s · t : F ∈ Γ we
know that F ∈ ∆. Hence by the definition of V C , we have V (∆, F ) = 1
and therefore ∆ ∈ [F ].
It remains to show: if F ∈ APPΓ(s, t) then s·t : F ∈ Γ. Suppose for some

formula F that F ∈ APPΓ(s, t) then by definition of APPΓ(s, t) we know
that there is a formula H s.t. EC(Γ, s) ⊆ [H → F ] and EC(Γ, t) ⊆ [H].
By using Lemma 2.8 (the part that corresponds to Lemma 1.15 (2c) we
conclude V C(Γ, s : (H → F )) = 1 and V C(Γ, t : H) = 1. Hence by the
definition of V C we obtain s : (H → F ) ∈ Γ and t : H ∈ Γ and since Γ
is maximal LA

CS-consistent and s : (H → F ) → (t : H → s · t : F ) is an
instance of the j-axiom we conclude that s · t : F ∈ Γ.

Lemma 2.9 (Truth Lemma). Let MC = (WC ,WC
0 , E

C , V C) be some
canonical LA

CS-subset model, then for all Γ ∈W0:

MC ,Γ 
 F if and only if F ∈ Γ.

Proof.
MC ,Γ 
 F Def. 2.2⇐===⇒ V C(Γ, F ) = 1 Def. 2.7⇐===⇒ F ∈ Γ.

Theorem 2.10 (Completeness). Given some logic LA and let CS be
constant specification which is axiomatically appropriate in case jd ∈ LA.
For each formula F we have that if F is LA

CS-valid, then LA
CS 
 F .

Proof. The proof is analogue to the one of Theorem 1.17.
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3. Comparing L?
CS and LA

CS

In the previous Chapters we introduced two different kinds of logics and
semantics. Both of them use a subset relation to model justification. This
leads to the question in which sense they differ.

Lemma 3.1 (Monotonicity of application in L?CS). In L?CS the appli-
cation operator is monotone, i.e.

s : A→ s · t : A, for all s, t ∈ Tm, A ∈ LJ

Proof. This follows directly from axiom j+ and Definition 1.7:

(axiom j+) s : A→ s+ t : A (3.1)
(axiom j+) s+ t : A→ s+ t+ c? : A (3.2)
(Definition 1.7) s+ t+ c? : A = s · t : A (3.3)
(3.1, 3.2, 3.3 and logical reasoning) s : A→ s · t : A

In the corresponding semantics this fact holds because if E(ω, s) ⊆ [A],
then any intersection of E(ω, s) with some other set will be as well a subset
of [A].

This phenomenon illustrates the intended meaning of · in c?-subset mod-
els: if we have a justification s which justifies some formula A and we
consider other justifications and have the capacity to apply modus ponens,
this so combined justification will justify not less than s alone.

Lemma 3.2 (Monotonicity of application on LA
CS). In LA

CS application
is not monotone.

Proof. The proof is with a counterexample and by using soundness.
Consider the LA

CS-subset modelM = (W,W0, V, E) with W = { ω1, ω2 },
W0 = { ω1 }, V (ω1, A) = 1 and for all other formulas the valuation in
w1 is arbitrary but such that the conditions for V in W0 are fulfilled,
V (ω2, X) = 0 for allX ∈ LJ , moreover E(ω1, s) = { ω1 }, E(ω1, t) = { ω2 },
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E(ω1, s · t) = { ω2 } and all other justifications are defined, s.t. they fulfil
the conditions of E in worlds of W0.

First we have to prove thatM is an LA
CS-subset model, i.e. to show that

all conditions made on V and E in Definition 2.1 for any ω ∈ W0 are
fulfilled. For V this holds by definition of V in ω1. So it remains to show
that E behaves properly. Again, for all justifications except E(ω1, s · t) this
holds by definition. So let us check whether

E(ω1, s · t) ⊆Wω1(s, t). (3.4)

We start by investigating the set APPω1(s, t): Since E(ω1, s) = {ω1} and
V (ω1, A) = 1 and ω1 ∈W0, we obtain in a first step that {ω1} ⊆ [X → A]
for all X ∈ LA

CS and as a consequence V (ω1, s : (X → A)) = 1 for all those
formulas X. Moreover E(ω1, t) = {ω2} and since in ω2 all formulas are
evaluated to 0, we obtain that t justifies nothing. So there is no X with
V (ω1, t : X) = 1. Hence APPω1(s, t) = ∅.
Since APPω1(s, t) = ∅, we obtain that Wω1(s, t) = W . Therefore (3.4) is

obvious. SoM is indeed an LA
CS-subset model.

Further we haveM, ω1 
 s : A but since V (ω2, A) = 0, there is

{ ω2 } = E(ω1, s · t) 6⊆ [A]

and henceM, ω 6
 s · t : A.
Finally, with Theorem 2.4 we conclude that LA

CS 6` s : A→ s · t : A

So the meaning of the application operator in LA
CS is different to the one

in L?CS. In LA
CS, a term of the form s · t only justifies formulas that can

be obtained by modus ponens; whereas in L?CS, the term s · t justifies all
formulas that are justified at least by one of its subterms s or t.
Another difference between the application in L?CS-subset models and

models for standard justification logic is that application does ignore which
justification justifies the condition and which justifies the antecedent.

Lemma 3.3. For all L?CS-subset models M = (W,W0, V, E), ω ∈ W0,
A,B ∈ LJ and s, t ∈ Tm:

M, ω 
 s : (A→ B)→ (t : A→ t · s : B)

Proof. The proof is analogue to the one of Lemma 1.8.
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However, application is not commutative.

Lemma 3.4. The formula s · t : A → t · s : A is not valid in L?CS-subset
models.

Proof. Since the evidence set of a sum-term s+ t is defined to be a subset
of the intersection of E(w, s) and (E.w, t), it is possible that E(w, s · t) 6=
E(w, t · s) and hence it is possible that only one of them is a subset of
[A].
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4. Hyperintensionality
As mentioned by Artemov and Fitting [9], hyperintensionality is a key
aspect of justification logic in contrast to standard modal logic, where it
is missed.In modal logic, if A is logically equivalent to B, then �A implies
�B. This is not the case in justification logic where A↔ B and s : A do not
imply s : B. So justification logic is able to distinguish between equivalent
contents. This is of importance when you think about propositions like
‘0 = 0’ and Fermats last theorem. Both have the same content in a possible
world semantics, namely all possible worlds. However, if some proof s is a
justification for ‘0 = 0’, s does not have to be a justification for Fermats
last theorem as well.

In the standard semantics of justification logic, where the interpretation
of a justification term is a sequence or set of formulas, hyperintensionality
comes for free.

In subset semantics, however, non-normal worlds are required to obtain
hyperintensionality. This can be seen easily in case of axioms and tau-
tologies, that are necessarily true in each normal world. As long as you
do not have non-normal worlds at hand, any justification term that jus-
tifies some tautology or some axiom, will justify all of them. The reason
for this is simple: suppose you have a subset model M = (W,W0, V, E)
where W0 = W , i.e. there are no non-normal worlds, and axioms A and
B. Since A and B are axioms, they are true in all normal worlds and thus
[A] = [B] = W0 = W . So, since [A] = [B], each subset of [A] will be
a subset of [B] too and therefore each justification s that justifies A will
justify B as well. So in this situation, there is no way to model a constant
specification where different justifications actually justify different axioms
without justifying all of them as a side effect.

By adding non-normal worlds we get hyperintensionality back. In non-
normal worlds, axioms and tautologies do not have to evaluate to true,
they might do so in some worlds but not in others. In a non-normal world
two equivalent propositions may be evaluated to different truth values, and
hence a justification that contains such a world may support one proposi-
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tion but not the other. The importance of non-normal worlds for modelling
hyperintensionality is worked out in detail by Jago in [20].
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5. About D
In Chapters 1 and 2 we have presented families of justification logics and
the corresponding subset models, which have been proven to be sound and
complete. However, if jd was an axiom of the logic, completeness was
only shown for axiomatically appropriate constant specifications. In this
Chapter we will present slightly different subset models than in Chapter 2
which are complete for all constant specification even in presence of jd.
The results of this Chapter are published in [18].

Before we start with the technical part, let us take a closer look at the
D-axiom.3 In justification logics there are several versions of axiom jd,
based on various versions of the corresponding axiom in modal logic. In
normal modal logics the following axioms are equivalent:

(1) ¬� ⊥,

(2) �A→ ¬�¬A,

(3) ¬(�A ∧�¬A).

and can be translated into: there cannot be necessity for inconsistency. So,
in modal logic which version you take is irrelevant.

However, as soon as we consider deontic logic, it really matters which one
we take. By replacing � with O and reading OA as "There is an obligation
for A" the differences become visible. Then (1) should be read as "There
can’t be an obligation for an impossible state of affairs", however, (3) has
another meaning: "There can’t be an obligation for A and an obligation
for ¬A". The difference is, that (O ⊥) is conceptually impossible whereas
(OA ∧ O¬A) is in principal logically possible, if there are two different
obligations in the game: one for A and one for ¬A. Our daily life is full of
such inconsistent obligations and philosophers have constructed even more
such conflicts of duty. Worse still, these conflicts may even be derived

3The reflections in this Chapter are based on the work of Federico L.G. Faroldi and a
remark of Meghdad Ghari.
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from one and the same ethical principle, like for example the categorical
imperative of Kant. So by following this principle we may be forced to do A
and not to do A, like when we know where someone is hiding to avoid being
murdered and the potential murderer asks us whether this person is at that
place. Either we lie, which is strictly forbidden in Kant’s interpretation of
the categorical imperative, or we abet a murder, which also contradicts
the categorical imperative. To sum up, in deontic logic it is of importance
which version of D-axiom is chosen.
In justification logic, however, we distinguish between the terms. Having

(s : A ∧ t : ¬A) is not contradictory, as long as s 6= t. So in justification
logic we can have an axiom ¬(s : A∧ s : ¬A) and still be able to deal with
conflicts of duty.

The realization of (1) is the well known jd-axiom ¬(t :⊥) and the reali-
sation of (3) is known as noc : ¬(t : A∧ t : ¬A). We call the corresponding
logical systems JD and JNoC. Corollary 5.12 establishes that the former
implies the latter. The converse direction only holds in case of an axiomat-
ically appropriate constant specification and the presence of j+ which will
be shown in Lemma 5.15, Lemma 5.16 and Remark 5.17. So there are two
options to avoid the collapse between JD and JNoC : either skip j+ or
having a constant specification which is not axiomatically appropriate.

5.1. Syntax

We reuse the language LA
J as presented in Chapter 2.

The axioms of JD are the following:

cl all axioms of classical propositional logic;
j s : (A→ B)→ (t : A→ s · t : B);
j+ s : A ∨ t : A→ (s+ t) : A;
jd t :⊥→⊥ .

The constant specification CS is defined analogue to Chapter 2 and we
have the same rules (MP) and (AN!) as presented there.
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5.2. D-arbitrary subset models
We present a novel class of subset models for JD and establish soundness
and completeness. We refer to Chapter 2 and state that JD is part of the
justification logics presented there. Hence by JDACS-subset model we denote
an LA

CS-subset model where L is JD.

Definition 5.1 (D-arbitrary subset model). D-arbitrary CS-subset models
M = (W,W0, V, E) are defined like JDACS-subset models with the condition
in the definition of E:

∃υ ∈W0 with υ ∈ E(ω, t)

being replaced with:

∃υ ∈W 6⊥ with υ ∈ E(ω, t)

where W 6⊥ := {ω ∈W | V (ω,⊥) = 0}.

Definition 5.2 (D-arbitrary validity). Let CS be a constant specification.
We say that a formula F is D-arbitrary CS-valid if for each D-arbitrary
CS-subset modelM = (W,W0, V, E) and each ω ∈W0, we haveM, ω 
 F .

We have soundness and completeness with respect to arbitrary constant
specifications.

Theorem 5.3 (Soundness and Completeness). Let CS be an arbitrary
constant specification. For each formula F we have

JDCS ` F iff F is D-arbitrary CS-valid.

The completeness proof is by a canonical model construction as in the
case of LA

CS-subset models as presented in Chapter 2. We will only sketch
main steps here. The canonical model is given as follows.

Definition 5.4 (Canonical Model). Let CS be an arbitrary constant spec-
ification. We define the canonical modelMC = (WC ,WC

0 , V
C , EC) by:

• WC = P(LJ).

• WC
0 =

{
Γ ∈WC

∣∣ Γ is maximal JDCS-consistent set of formulas
}
.
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• V C(Γ, F ) = 1 iff F ∈ Γ;

• EC(Γ, t) =
{

∆ ∈WC
∣∣ ∆ ⊇ Γ/t

}
where

Γ/t := {F ∈ LJ | t : F ∈ Γ}.

The essential part of the completeness proof is to show that the canonical
model is a D-arbitrary CS-subset model.

Lemma 5.5. Let CS be an arbitrary constant specification. The canonical
modelMC is a D-arbitrary CS-subset model.

Proof. Let us only show the condition

∃υ ∈WC
6⊥ with υ ∈ E(ω, t) (5.1)

for all ω ∈W0 and all terms t.
So let t be an arbitrary term and Γ ∈ WC

0 . Since Γ is a is maximal
JDCS-consistent set of formulas, we find ¬(t : ⊥) ∈ Γ and thus t : ⊥ /∈ Γ.
Let ∆ := Γ/t. We find that ⊥ /∈ ∆ and by definition V C(∆,⊥) = 0. Thus
∆ ∈ WC

6⊥ . Moreover, again by definition, ∆ ∈ EC(Γ, t). Thus (5.1) is
established.

Now the Truth lemma and the completeness theorem follow easily ana-
logue to Lemma 2.9 and 2.10.
Remark 5.6. Our completeness result also holds in the setting with c?.
However, the proof that the canonical model is well-defined is a bit more
complicated as one has to consider the case of c? separately.

5.3. No conflicts
So far, we have considered the explicit version of ¬O⊥. In normal modal
logic, this is provably equivalent to ¬(OA∧O¬A). In this section we study
the explicit version of this principle, which we call NoC (No Conflicts),
saying that reasons are self-consistent. That is A and ¬A cannot be oblig-
atory for one and the same reason. The axioms of JNoC are the axioms of
JD where jd is replaced with:

noc ¬(t : A ∧ t : ¬A).
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Accordingly, a constant specification for JNoC is defined like a constant
specification for JD except that the constants justify axioms of JNoC.
Given a constant specification CS for JNoC, the logic JNoCCS is defined by

the axioms of JNoC and the rules modus ponens and axiom necessitation.
Definition 5.7 (NoC subset model). A NoC CS-subset model

M = (W,W0, V, E)

is defined like a general subset model with the condition in the definition
of E:

∃υ ∈W0 with υ ∈ E(ω, t)

being replaced with:

∃υ ∈Wnc with υ ∈ E(ω, t)

where

Wnc := {ω ∈W | for all formulas A (V (ω,A) = 0 or V (ω,¬A) = 0)}.

The notion of NoC CS-validity is now as expected.
Definition 5.8 (NoC validity). Let CS be a constant specification. We
say that a formula F is NoC CS-valid if for each NoC CS-subset model
M = (W,W0, V, E) and each ω ∈W0, we haveM, ω 
 F .
Theorem 5.9 (Soundness and Completeness). Let CS be an arbitrary
constant specification. For each formula F we have

JNoCCS ` F iff F is NoC CS-valid.

Again the completeness proof uses the canonical model construction from
Definition 5.4 except that we set

WC
0 = {Γ ∈WC |Γ is maximal JNoCCS-consistent set of formulas}.

Now we have to show that the defined structure is an NoC CS-subset model.
Lemma 5.10. Let CS be an arbitrary constant specification. The canonical
modelMC is an NoC CS-subset model.
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Proof. As before, we only show the condition

∃υ ∈WC
nc with υ ∈ E(ω, t) (5.2)

for all ω ∈W0 and all terms t.
So let t be an arbitrary term and Γ ∈ WC

0 . Let A be an arbitrary
formula. Since Γ is a is maximal JNoCCS-consistent set of formulas, we find

¬(t : A ∧ t : ¬A) ∈ Γ

and thus t : A ∧ t : ¬A /∈ Γ. Thus, again by maximal consistency,

t : A /∈ Γ or t : ¬A /∈ Γ.

Let ∆ := Γ/t. We find that

A /∈ ∆ or ¬A /∈ ∆

and hence, by definition,

V C(∆, A) = 0 or V C(∆,¬A) = 0.

Thus ∆ ∈ WC
nc . Moreover, again by definition, ∆ ∈ EC(Γ, t). There-

fore (5.2) is established:

Again the Truth lemma and the completeness theorem follow easily.

5.4. Formal comparison
The following lemmas establish the exact relationship between JD and
JNoC. First we show that JDCS proves that reasons are consistent among
them, i.e. that ¬(s : A∧ t : ¬A) holds for arbitrary terms s and t, which is
the consistency principle used in [17].

Lemma 5.11. Let CS be an arbitrary constant specification. Then JDCS
proves ¬(s : A ∧ t : ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s : A ∧ t : ¬A. Thus we have
s : A and t : ¬A where the latter is an abbreviation for t : (A → ⊥) (by
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the definition of the symbol ¬). Thus using axiom j, we get t · s : ⊥ and
by axiom jd we conclude ⊥.

Corollary 5.12. For any constant specification CS, JDCS proves every
instance of noc.

Remark 5.13. It is only by coincidence that Lemma 5.11, and thus also
Corollary 5.12, hold for arbitrary constant specifications. If we base our
propositional language on different connectives (say ∧ and ¬ instead of →
and ⊥), then Lemma 5.11 and Corollary 5.12 only hold for axiomatically
appropriate constant specifications.

The proof of Lemma 5.11 then is as follows. Since CS is axiomatically
appropriate, there exists a term r such that

r : (¬A→ (A→ ⊥)) (5.3)

is provable where ⊥ is defined as P ∧¬P (for some fixed P ) and F → G is
defined as ¬(F ∧ ¬G). From (5.3) and axiom j we get

t : ¬A→ r · t : (A→ ⊥).

Thus from s : A ∧ t : ¬A, we obtain (r · t) · s : ⊥, which contradicts axiom
jd as before.

Next we show that also JNoCCS proves that reasons are consistent among
them.

Lemma 5.14. Let CS be an arbitrary constant specification. Then JNoCCS
proves ¬(s : A ∧ t : ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s : A ∧ t : ¬A holds. Using
axiom j+ we immediately obtain s+ t : A ∧ s+ t : ¬A. By axiom noc we
conclude ⊥, which establishes ¬(s : A ∧ t : ¬A).

Next we show that JNoCCS with an axiomatically appropriate constant
specification proves ¬(t : ⊥).

Lemma 5.15. Let CS be an axiomatically appropriate constant specifica-
tion. Then JNoCCS proves ¬(t : ⊥) for each term t.
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Proof. Because CS is axiomatically appropriate, there are terms r and s
such that

r : (⊥ → P ) and s : (⊥ → ¬P ).

Therefore, we get

t : ⊥ → r · t : P and t : ⊥ → s · t : ¬P.

Thus we have t : ⊥ → (r · t : P ∧ s · t : ¬P ). Together with the previous
lemma, this yields t : ⊥ → ⊥, which is ¬(t : ⊥).

Here the requirement of an axiomatically appropriate constant specifi-
cation is necessary.

Lemma 5.16. There exists a NoC CS-subset model M = (W,W0, V, E)
with some ω ∈W0 such that

M, ω 
 t : ⊥

for some term t.

Proof. Consider the empty CS and the following model:

(1) W = {ω, v} and W0 = {ω}

(2) V (v,⊥) = 1 and V (v, F ) = 0 for all other formulas F

(3) E(ω, t) = {v} for all terms t.

We observe that v ∈ Wnc. So the model is well-defined. Further, we find
E(ω, t) ⊆ [⊥]. Since ω ∈W0, we get V (ω, t : ⊥) = 1. We conclude

M, ω 
 t : ⊥.

Remark 5.17. For Lemmas 5.14 and 5.15, the presence of the + operation
is essential. Consider a term language without + and the logic JNoC−
being JNoC without j+. Let CS be an axiomatically appropriate CS for
JNoC−. There is a NoC CS-subset model M for JNoC−CS with a normal
world ω such that

M, ω 
 s : P ∧ t : ¬P

for some terms s and t and some proposition P .
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Hence, if we drop the + operation, we can have self-consistent reasons
without getting reasons that are consistent among them even in the pres-
ence of an axiomatically appropriate constant specification.

Instead of using an axiomatically appropriate constant specification, we
could also add the schema s : > to JNoCCS in order to derive jd.

Lemma 5.18. Let CS be an arbitrary constant specification. Let JNoC+
CS

be JNoCCS extended by the schema s : > for all terms s. We find that

JNoC+
CS ` ¬(t : ⊥) for each term t.

Proof. The following is an instance of axiom noc

¬(t : ⊥ ∧ t : ¬⊥).

Using the definition > := ¬⊥ and propositional reasoning, we obtain

t : > → ¬(t : ⊥).

Using t : > and modus ponens, we conclude ¬(t : ⊥).
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Part II.

New Operators and Terms
for Justification Logics
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In Part I we have shown how subset models can be used to model standard
justification logics. In this part, we show how they can model new operators
and terms and how they can be used to study dynamic processes.

In Chapter 6 we show how Artemov’s approach to aggregated evidence
can be subsumed by subset models, i.e. how we can find the best lower
bound for the probability that X if we have probabilities for F1, . . . Fn and
F1, . . . Fn ` X.

In Chapter 7 we explore various kinds of combining justifications. We
analyse how two (or more) justifications can interact together and introduce
some new operators to model these interactions.

In Chapter 8 we introduce new types of terms that include primary
beliefs. We use them to model things like intuition, where we have beliefs
for which we do not have any explicit primary cognitive processes, and
selective perceptions, i.e. perceptions where we ignore those parts, which
contradict our presumptions.

In Chapter 9 we investigate a version of contraction and how subset
models can be adapted for it.

Finally, in Chapter 10 we analyse dynamic aspects of subset models and
introduce the new term up(A). This term identifies the updating process
as a specific justification and we will read the formula [A]up(A) : A as after
an update with A, this update is a justification to believe A. We study the
main properties of the resulting logic as well as the differences to a previous
(symbolic) approach to belief expansion in justification logic.
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6. Artemov’s aggregated
evidence and L?

CS-subset
models

It was our goal to use subset models for justification logics with probabili-
ties. The most promising strategy was to introduce a probability measure
on evidence sets. This is the same approach that Artemov took in [7]. We
therefore used his work as a guideline to adapt our subset models in an
appropriate way.

6.1. Aggregated evidence
Artemov considers the case in which we have a database, i.e. a set of
propositions Γ = {F1, . . . Fn} with some kind of probability estimates and
in which we also have some proposition X that logically follows from Γ.
Then we can search for the best justified lower bound for the probability
of X. He presents us with a nice way to find this lower bound. To find it,
he introduces probability events u1, . . . , un, each of which supports some
proposition in Γ, i.e. ui : Fi, and calculates some aggregated evidence
e(u1, . . . , un) for X with them. The probability of e then provides a tight
lower bound for the probability of X.

The trick he uses is the following:

(1) First he collects all subsets ∆i of Γ which support X, i.e. ∆i ` X, and
creates a new evidence ti from all the corresponding uij s.t. uij : Fij
for each Fij ∈ ∆i.

(2) In a second step he combines all these new pieces of evidence to a new
piece of evidence (the so-called aggregated evidence) that actually is
the greatest evidence supporting X.
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The model he has in mind contains some evaluation in a probability space
(Ω,F , P ) with a mapping ? from propositions to Ω and evidence terms to
F that meets some restrictions (for more details on this see [7]). Step (1)
is to create a new piece of evidence ti for each ∆i described above, which
consists of the intersection of the corresponding uij’s.

ti :=
⋂
{uij | uij ⊆ F ?ij for some Fij ∈ ∆i}.

Step (2) then is to unite all these pieces of evidence to a new so-called
aggregated evidence:

AEΓ(X) :=
⋃
{ti | ti is an evidence for X obtained by step (1)}.

On the syntactic side evidence terms are built from variables u1, . . . , um,
constants 0 and 1 and operations ∩ and ∪, where st is used as an abbrevi-
ation for s ∩ t. With this we can built a free distributive lattice Ln where
st is the meet and s ∪ t is the join of s and t, 0 is the bottom and 1 the
top element of this lattice. Moreover Artemov defines formulas in a usual
way from propositional letters p, q, r, . . . by the usual connectives and adds
formulas of the kind t : F where t is an evidence term and F a purely
propositional formula.

The logical postulates of the logic of Probabilistic Evidence PE are:

A1 axioms and rules of classical logic in the language of PE;

A2 s : (A→ B)→ (t : A→ [st] : B);

A3 (s : A ∧ t : A)→ [s ∪ t] : A;

A4 1 : A, where A is a propositional tautology,
0 : F , where F is a propositional formula;

A5 t : X → s : X, for any evidence terms s and t such that s � t in Ln.

Artemov presents Soundness and Completeness proofs connecting PE
with the presented semantic, for more details see [7].
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6.2. Subset models for PE
Before we can start adapting Artemov’s approach to our models, we have to
point out some differences between the semantics and syntax used. First,
contrary to the models of Artemov, subset models may contain non-normal
worlds, but this does not significantly affect the applicability of Artemov’s
approach on them.

Another difference is that our evidence function has a different domain.
In Artemov’s models the evidence functions is E : Tm→ P(Ω) while in our
models it is E : W × Tm→ P(W ). This difference is due to the fact that
we allow terms to justify non-purely propositional formulas. Although
we need to adapt Artemov’s definitions, these adaptations will maintain
the essential characteristics. So let us adapt the L?CS-subset models to
aggregated L?CS-subset models by first describing the new syntax for the
terms:
Definition 6.1 (Justification Terms). Justification terms are built from
constants 0, 1, ci and variables xi and the special and unique constant c?
according to the following grammar:

t ::= 0 | 1 | ci | xi | c? | (t+ t) | (t ∪ t) | !t

This set of terms is denoted by TmP. As before, we introduce the abbre-
viation st := s+ t+ c?.
Even though we have other operators as well, we can construct a free

distributive lattice where we take s+ t as the meet of s and t, s ∪ t as the
join of them, 0 as the bottom element of the lattice. Note that st then is
the meet of s, t, and c?. Moreover, 1 and !t are treated like constants.4 As
usual, we have

s � t iff s ∪ t = t (6.1)

Consequently not all pairs of terms are comparable. This, however, does
not have any implications so far.

There is no difference to our subset models regarding the rules for forming
formulas except that the terms are contained in TmP, of course. The set

4We do not claim that 1 is the top element since some set E(ω, t) for a world ω ∈W0
and t ∈ TmP may contain non-normal worlds. If we claimed that 1 was the top
element we would obtain t � 1 and furthermore the set E(ω, 1) would contain non-
normal worlds as well. But since in non-normal worlds axioms may not be true,
E(ω, 1) 6⊆ [A] for some axiom A may be the case and therefore axiom A4 would fail.
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of formulas built according to this grammar and these rules is denoted by
Lprob.

In the definition of L?CS-subset models we only change the conditions on
the evidence function and the domain of V .

Definition 6.2 (PE-adapted subset models). An L?CS- subset model is
called a PE-adapted L?CS-subset model if the valuation function and the
evidence function meet the additional conditions respectively are redefined
as follows:

• V : W × Lprob → {0, 1} where all conditions listed in Definition 1.2
remain the same.

• For all ω ∈W0 and for all s, t ∈ TmP:
– E(ω, 1) = W0;
– E(ω, 0) = ∅;
– E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).

In fact, such an PE-adapted L?CS-subset model is a model of probabilistic
evidence PE.

Definition 6.3 (PE-validity). Let CS be a constant specification. We
say that a formula F is PE-valid if for each PE-adapted L?CS-subset model
M = (W,W0, V, E) and each w ∈W0, we haveM, w 
 F .

Theorem 6.4 (Soundness). For any formula F ∈ Lprob we have that if
PE ` F , then F is PE-valid.

Proof. The proof is by induction on the length of the derivation of F :

• If F is derived by axiom necessitation or modus ponens or is an
instance of axiom A1, then the proof is the analogue as in Theorem
1.6 since the relevant definitions have remained the same.

• If F is an instance of axiom A2, the proof is analogue to the proof
of Lemma 1.8: SupposeM, ω 
 s : (A → B) andM, ω 
 t : A then
E(ω, s) ⊆ [A→ B] and E(ω, t) ⊆ [A].

E(ω, st) = E(ω, s+ t+ c?) ⊆
E(ω, s) ∩ E(ω, t) ∩ E(ω, c?) ⊆ [A→ B] ∩ [A] ∩ E(ω, c?).
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Hence, for all υ ∈ E(ω, st) we have V (υ,A→ B) = 1 and V (υ,A) = 1
and υ ∈ E(ω, c?) and therefore V (υ,B) = 1. Hence E(ω, st) ⊆ [B]
and we obtainM, ω 
 st : B.

• If F is an instance of axiom A3, then F = (s : A∧ t : A)→ [s∪ t : A]
for some A ∈ Lprob, s, t ∈ TmP. SupposeM, ω 
 s : A ∧ t : A hence
E(ω, s) ⊆ [A] and E(ω, t) ⊆ [A]. Therefore

E(ω, s ∪ t) ⊆ E(ω, s) ∪ E(ω, t) ⊆ [A]

and since ω ∈W0 we obtainM, ω 
 s ∪ t : A.

• If F is an instance of axiom A4, then either F = 1 : A for some
axiom A or 0 : G for some formula G.
Suppose F = 1 : A for some axiom A. We assume thatM, ω 
 A for
all ω ∈ W0, hence E(ω, 1) = W0 ⊆ [A] and therefore M, ω 
 1 : A
for all ω ∈W0.
Suppose F = 0 : G: For any ω ∈ W0 we have E(ω, 0) = ∅ by
Definition 6.2. Since ∅ is a subset of any subset of W , we obtain
E(ω, 0) = ∅ ⊆ [G] for any formula G ∈ Lprob.

• F is an instance of axiom A5. AssumeM, ω 
 t : X for some term t
and some formula X and let s � t. By (6.1) we find t = s ∪ t. Thus

E(ω, t) = E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t)

and therefore E(ω, s) ⊆ E(ω, t). The assumption M, ω 
 t : X
means that E(ω, t) ⊆ [X]. Hence we also get E(ω, s) ⊆ [X] and
concludeM, ω 
 s : X.

Theorem 6.5 (model existence). There exists a PE-adapted L?CS-subset
model.

Proof. We construct a modelM = (W,W0, V, E) as follows:

• W = W0 = {ω}.

• The valuation function is built bottom up:
(1) V (ω,⊥) = 0;
(2) V (ω, P ) = 1, for all P ∈ Prop;
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(3) V (ω,A→ B) = 1 iff V (ω,A) = 0 or V (ω,B) = 1;
(4) V (ω, t : F ) = 1 iff t 6≥ 1 or if t ≥ 1 and V (ω, F ) = 1.

• E(ω, t) =
{
{ω} if t ≥ 1
∅ otherwise.

It is straightforward to show thatM is indeed a PE-adapted L?CS-subset
model. Let us only show the condition E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).
Suppose first s, t 6≥ 1, Then E(ω, s ∪ t) = ∅ = E(ω, s) = E(ω, t) and

hence the claim follows immediately.
Suppose at least one term of s and t is in greater than 1, then we obtain

that E(ω, s) = {ω} or E(ω, t) = {ω} and hence E(ω, s) ∪ E(ω, t) = {ω}
and since s ≤ s ∪ t and t ≤ s ∪ t we obtain s ∪ t ≥ 1 and therefore
E(ω, s ∪ t) = {ω}, so the claim holds.

Note that we cannot use the canonical model to show that adapted subset
models exists since in the canonical model

E(Γ, s ∪ t) 6⊆ E(Γ, s) ∪ E(Γ, t).

However, in an adapted subset model we need these sets to be equal (see
Definition 6.2) since otherwise axioms A3 and A5 would not be sound.
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of justifications

In L?CS-subset models the operator + is monotone and so is the application-
operator too, i.e.

s : A→ s+ t : A

s : A→ s · t : A.

This means that by combining several justifications, we never lose infor-
mation. The difference between both versions of subset models with respect
to this aspect of the application-operator was studied in Chapter 3.

If we want to model self consistent reasons without getting reasons that
are as well consistent among them, we have to drop the j+-axiom, as we
have seen in Remark 5.17. That seems to be intuitive, since j+ models a
way of combining justifications that have unbreakable validity, as it is the
case for mathematical proofs. But if we think about less reliable justifica-
tions, which may be misleading, it should be possible to have justifications
for A and others for ¬A. A standard example is having two volumes of an
encyclopedia s and t. Let us assume that the first one, s, offers a justifi-
cation for A and the other one, t, contains a correction to the first volume
saying that ¬A. Hence although s offers a justification for A, we would
not say that any combination s+ t is still a justification for A. Even in our
daily lives we encounter many justifications which lead to contradictions
among each other and one of our daily challenges is to learn how to deal
with these contradictions. So if we want to model how we combine justifi-
cations and how we use them to form our beliefs, it seems to be essential
to rethink the standard j+-axiom and its monotonicity.

When giving up monotonicity, we may even consider cases where

s : A ∧ t : A→ s+ t : A

does not hold. This may seem a little strange at first. However, such
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pairs of incompatible justifications exist. Consider the following historical
example. In the 19th century the feminist movement in Europe was divided
into two fractions according to the justifications for the right of women to
political participation: Egalitarism and Differentialism. The first fraction
argued that since women are equal to men, they should be subject to the
Human Rights as well. Hence if we have s = "women are equal to men
(and hence should have the same rights)" and A = "women should have
the right to vote" the egalitarians claimed s : A. The other fraction used
the opposite justification to justify A, namely t = "women are different to
men (and hence their experience will be an enrichment)" and concluded
t : A. So we have two justifications that justify the same conviction but
which are not compatible and hence cannot be used together to justify
anything.5

To model non-monotone combinations of justifications, we will introduce
a plausibility relation < on the worlds to order them. That means we say
that some of the worlds are more plausible than others. When we consider
non-monotone justifications, it is clear that we do not mean justifications
as proofs but rather justification as empirical observations which support
some beliefs. And if we ask whether or not some observation t supports a
belief A, we will only consider those worlds in t that are the most plausible
ones. If they all support the belief that A, then we say t : A.
If one thinks about plausibility, then there are two main possibilities to

model the term most plausible. One is that the set of the most plausible
worlds contains the worlds that are more plausible than all others, i.e.

opt<(S) = {x ∈ S : x < y for all y ∈ S}.

In this case all most plausible worlds are <-comparable to each other.
The other way is by demanding that for each most plausible world there
does not exist a strictly more plausible world, i.e.

max<(S) = {x ∈ S : y < x→ x < y for all y ∈ S}.

5Even today these two main lines of argumentation exist within feminist movements.
But nowadays the concept of gender and the reflection on its social construction
process refined the argumentation a lot, so that combinations of variants of s and t
are possible. For more details to the feminist movement in Europe see [27].

54



7.1. New Operators

By using this definition for most plausible, two non-comparable worlds
may be in the set of the most plausible worlds. For our purpose it seems
to be more reasonable to consider max< rather than opt< because we see
no necessity to demand comparability of all most plausible worlds. For
more details on the differences of these two ways of defining most plausible
worlds see Parent [29].

As an example of such a plausibility relation, consider a fan of Ockham’s
razor. This agent will always prefer explanations that need the fewest
added entities. So within an observation that may serve as a justification
for something, there may be a world w0 that needs no metaphysics, another
one w1 that needs some added entities and a third one w2 that needs
a whole cabinet of extra ontological entities. Then this agent will have
w0 < w1 < w2. If this agent is lucky enough to observe a supernova in the
Milky Way, she will take this observation as justification for the fact that
a star has exploded and ignore the fact that this observation could also
indicate the birth of a god.

7.1. New Operators
So far we only used standard operators on justification terms like ·,+,∪.
But there seem to be more options if we investigate the combination of
justification based on observations. We will model them by two new oper-
ators: +̂ , +̀ and refine the meaning of the already used ones. Hence we
have these five ways how an agent can combine justification terms:

• s · t: The meaning is the same as in LA
CS-models, i.e. applying modus

ponens on the formulas justified by s with the formulas justified by
t where the order of these two sets of formulas matters. So, the
agent takes two steps: first she considers all the formulas of kind
A → B that are true in all most plausible worlds of observation
s and compares them with all the formulas of kind A in the most
plausible worlds of t. Then she focuses only on worlds in which the
corresponding B is true. What is true in the most plausible worlds
of [B] will be justified by s · t. This is a non-commutative way of
combining observations. If the agent wants to say that she considers
all formulas that are justified by applying modus ponens on all the
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formulas in s and t she will have a justification term (s · t) ◦ (t · s) ◦
(s · s) ◦ (t · t) where ◦ can be any of +, +̂ ,∪.

• s+t and s+̂t: In both cases the agent will consider facts that are true
in the most plausible worlds that are part of both justification. The
difference is whether she is willing to accept that the combination of s
and t justifies facts that are true only if we make compromises in the
plausibility of the worlds in which these facts are true. Suppose for
simplicity that s and t both leave us with only three possible worlds:
s = {w1, w2} and t = {w1, w3} and we have that A is true in all
worlds of s and B is true in all worlds of t. Furthermore, w2 < w1
and w3 < w1. Now we can use intersection of s and t in two different
ways: either we accept all facts that are true in the common worlds,
i.e. w1, and therefore we say that the combination of s and t justifies
both, i.e. s + t : A and s + t : B, or we say that the combination of
s and t only justifies the facts that are true in the intersection of the
most plausible worlds of s and t. In the latter case this combination
justifies nothing. So it is all about the agent’s willingness to make
compromises in the level of plausibility.

Let us consider again the fan of Ockham’s razor. If she makes two
observations s and t which together suggest that additional entities
are needed (A="there is a God"), will she be willing to add these
entities to her beliefs or will she say that at least one of the two
observations cannot be correct? We have here that s + t : A is true
but s +̂ t : A is false.

In the example of the feminist movement we have two justifications
that we cannot combine so that the combination still supports any-
thing that is plausible. So there as well we have s + t : A but not
s +̂ t : A since there is no common most plausible world in s and t.

• s ∪ t: We say that s ∪ t justifies A only if A is true in the most
plausible worlds of the union of both justifications. Please keep in
mind that this does not mean that necessarily s : A or t : A. To see
this consider the example from Figure 1. There is a world w1, which
is maximal in s and where A is not true but there also is a world
w2 in t in which A is true and which is more plausible than w1, and
likewise worlds w4 and w5.
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A

s t

w0

w1

w2

w3

w4

w5

Figure 1.: Example, where the most plausible worlds of the union of s and
t are A-worlds but where neither all most plausible worlds of s
nor all most plausible worlds of t are A-worlds.

Let us consider, for example, the role of a member of a jury at a
court hearing. This member, let us name her Anne, hears different
testimonies to decide A="the accused is guilty". She may not be able
to classify all the witnesses as credible, but let’s assume that there are
two testimonies s and t that she herself considers credible. Let us now
look at the first testimony of witness s. If this testimony leaves open
doubts about the guilt of the defendant, then these doubts should
lead to Anne’s recognition of innocence in the sense of in dubio pro
reo, unless the doubt is removed by the second testimony t, by giving
additional clues or by providing better explanations for an aspect
that seem to be relieving in s. The same applies, of course, to t with
regard to s. Anne will not necessarily decide whether s or t is right
or if one is right at all. But she will take any remaining doubts of her
credible witnesses as an objection to the verdict guilty. If, however,
the two testimonies s and t united in this sense leave no doubt about
guilt, s ∪ t : A applies.
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• s +̀ t: This is a non-commutative but monotone way of combining
two justifications. It is to have a justification s on which one relies so
much that one only accepts other justification t if they have common
most plausible worlds and we ignore t, if not.6

If my best friend, who has never lied, who is very smart, who knows
about investments and who is a very conscientious person, tells me
that A is a good investment, I will believe him, even if others say the
opposite. All situations in which people are resistant to consulting
are of this type.

7.2. Syntax
To model combined justifications of this kind, we have to adapt our frame-
work. We will work with our second kind of subset models: LA

CS-subset
models instead of c?-subset models since in the latter the application op-
erator only works with a monotone sum-operator.7
Justification terms are built from constants ci and variables xi according

to the following grammar:

t ::= ci | xi | (t · t) | (t+ t) | (t +̂ t) | (t ∪ t) | (t +̀ t)

This set of terms is denoted by Tmnm. The operations ·,+, +̂ ,∪ and +̀
are left-associative.

Formulas are built from atomic propositions pi and the following gram-
mar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all
formulas is denoted by LnmJ . Again we use the other logical connectives as
abbreviations.

The logic Lnm is as follows: As usual we have two sets of axioms. The

6Of course we could do the similar thing for t and hence define a justification s+́t. But
this would not really add something new.

7With such a monotone sum-operator we have that s : A → s + t + c? : A and
t : (A → B) → s + t + c? : (A → B) so that c?-part can apply modus ponens to
derive s + t + c? : B.
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first one is Lnm
α with s, t ∈ Tmnm and A,B,C ∈ LnmJ :

cl all axioms of classical propositional logic;
j s : (A→ B)→ (t : A→ s · t : B);
NM1 s ∪ t : A ∧ s +̂ t : C → s +̂ t : A for a C ∈ LnmJ
NM2 s+ t : A ∧ s +̂ t : C → s +̂ t : A for a C ∈ LnmJ
NM3 s : A ∧ t : A→ s ∪ t : A
NM4 (s : A ∨ t : A) ∧ s +̂ t : C → s +̂ t : A for a C ∈ LnmJ
NM5 s : A→ s +̀ t : A
NM6 s +̀ t : A ∧ s +̂ t : C → t +̀ s : A for a C ∈ LnmJ

The other is denoted by Lnm
β and contains:

jd t :⊥→⊥;
jt t : A→ A.

By Lnm we denote all logics that are composed from the whole set of Lnm
α

and some subset of Lnm
β .

As in Chapter 1 we assume having a constant specification CS:

CS ⊆ {(c, A) | c is a constant and A is an axiom of Lnm}

In this sense Lnm
CS denotes the logic Lnm with the constant specification

CS. To deduce formulas in Lnm
CS we use again a Hilbert system given by

Lnm and the rules modus ponens and and axiom necessitation

(AN) where (c, A) ∈ CS
c : A

NM1 says that if A is supported by all most possible worlds of the
union of two justification and these two justification have an non-empty
set of common most plausible worlds s +̂ t this set supports as well that A.
Or to come back on the tribunal example: if two testimonies are compatible
and if, taken together by considering all observations they entail, they are
a justification for A, they are as well a justification for A if we only consider
those observations on which both witnesses agree.
NM2 says that facts which are supported by the combination of two

compatible justifications, provided one is willing to reduce the plausibility
level, are supported even without this reduction.
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NM3 says that if two justification s and t each justify a fact A and hence
A is true in all most plausible worlds of both justifications, it is also true
in all most plausible worlds that are in the union. So we refer again on our
tribunal example: both testimonies justify that the accused is guilty, hence
taking all parts of their testimonies together still justifies that the accused
is guilty.
NM4 says that if a fact is true in all most plausible worlds of a jus-

tification s and s is compatible with some other justification t such that
one does not have to make a compromise in plausibility, then these two
justification together still justify A without compromise on plausibility.
NM5 just says, that non-defeatable justification never lose their ability

to justify what they justify. Of course, the arrow is only from left to right
because if t is compatible with s it may refine the worlds we consider and
hence widen the set of facts that are supported by the combination.
NM6 says, that if two justifications s and t are compatible, they together

support the same facts regardless which of them is seen as more reliable.

7.3. Semantics
Definition 7.1 (Non-monotone subset models). Given some Lnm-logic and
some constant specification CS, then a corresponding Lnm

CS-non-monotone
subset modelM = (W,W0,<, V, E) is defined as follows:

• W,W0 are defined like in LA
CS-subset models.

• < is a preorder on W , so:
– w < w for all w ∈W (reflexivity);
– if w < v and v < u then w < u (transitivity).

• V : W × LnmJ → {0, 1} s.t for all ω ∈W0, t ∈ Tmnm, F,G ∈ LnmJ :
– V (ω,⊥) = 0;
– V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;
– V (ω, t : F ) = 1 iff ∅ 6= max<E(ω, t) and

max<(E(w, t)) ⊆ [F ]
where max<(S) := {w ∈ S | (∀v ∈ S)(v < w → w < v)}.
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• E is defined like in LA
CS-subset models with the following conditions

for all w ∈W0, s, t ∈ Tmnm, A,B ∈ Lnm:

E(w, s · t) 6= ∅ and
E(w, s · t) ⊆ {v ∈W | ∀F ∈ APPw(s, t)(v ∈ [F ])} (7.1)
where APPw(s, t) is defined analogously to Chapter 2:

APPw(s, t) := {F ∈ LnmJ | ∃H ∈ LnmJ s.t.
max<(E(w, s)) ⊆ [H → F ] and max<(E(ω, t)) ⊆ [H]}

E(w, s ∪ t) = E(w, s) ∪ E(w, t) (7.2)
E(w, s +̂ t) = max<E(w, s) ∩max<E(w, t) (7.3)
E(w, s+ t) = E(w, s) ∩ E(w, t) (7.4)

E(w, s +̀ t) =
{
E(w, s +̂ t) if E(w, s +̂ t) 6= ∅
max<E(w, s) otherwise

(7.5)

if jd ∈ Lnm : ∃v ∈W0 with v ∈ max<(E(w, t)) (7.6)
if jt ∈ Lnm : w ∈ max<(E(w, t)) (7.7)
if v ∈ E(w, s) then either v ∈ max<(E(w, s)) or

∃v′ s.t. v′ < v and v′ ∈ max<(E(w, s)) (7.8)
∅ 6= E(w, c) ⊆ [A] if (c, A) ∈ CS (7.9)

We do not claim antisymmetry for <, i.e. we allow that two worlds or
more have the same plausibility and hence it is possible that w < v and
v < w.

In opposition to a tradition in epistemic logic (see for example [13]),
we say that w < v if the world w is more plausible than v. We do this
by following the approach of deontic logic as presented by Parent in [29].
The reason to do so is that this approach seems to be more intuitive to
us. Nevertheless, it is only a decision on design and does not infect the
expressiveness of our framework.

(7.8) is known as smoothness assumption and guarantees that for each
world w ∈ S there is a world v ∈ max<(S) such that v < w. Please note
that S may have infinite chains of strictly better worlds, but they do not
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lead to a single maximal world.8 It only implies that for each E(w, s) 6= ∅,
the set max<(E(w, s)) is non-empty. A detailed discussion on smoothness
and other limit assumptions can be found in [29].

Definition 7.2 (Truth in Lnm
CS-subset models). For an Lnm

CS-subset
model M = (W,W0,<, V, E), a world ω ∈ W and a formula F we de-
fine the relation 
 as follows:

M, ω 
 F iff V (ω, F ) = 1.

7.4. Soundness
Definition 7.3 (Lnm

CS-validity). Let CS be a constant specification. We
say that a formula F ∈ LnmJ is Lnm

CS-valid if for each Lnm
CS-subset model

M = (W,W0,<, V, E) and each ω ∈W0, we haveM, ω 
 F .

Theorem 7.4 (Soundness of Lnm
CS-subset models). Given a logic Lnm

with some constant specification and a formula F ∈ Lnm we have that if
Lnm

CS ` F , then F is Lnm
CS-valid.

Proof. The proof is by induction on the length of the derivation and ana-
logue to the proof of Theorem 2.4.

We start with the axioms j, jd, and jt:

• If F is an instance of the j-axiom:
Then F = s : (A→ B)→ (t : A→ s · t : B) for some s, t ∈ Tmnm and
A,B ∈ LA

J . Assume for some w ∈ W0 thatM, w 
 s : (A→ B) and
M, w 
 t : A. Then V (w, s : (A → B)) = 1. Hence since w ∈ W0
we obtain max<(E(w, s)) ⊆ [A → B] and since V (w, t : A) = 1 we
obtain max<(E(ω, t)) ⊆ [A]. From the definition of APPω(r, s) we
conclude that B ∈ APPω(s, t). So for all v ∈ E(w, s · t) we obtain by
the requirements of E that V (v,B) = 1 hence max<(E(w, s·t)) ⊆ [B].
But since we defined that E(w, s · t) 6= ∅ and by smoothness we have
that ∅ 6= max<(E(w, s · t)) ⊆ [B]. From this, the fact that w ∈ W0

8Consider the following example to see, that infinite chains are possible even
with this smoothness condition: We have an infinite number of worlds
{w1.0, w2.0, . . . , w1.1, w2.1 . . . } and w(n+1).0 � wn.0∀n ∈ N. Moreover wn.1 � wn.0.
Then there is an infinite chain of strictly better worlds, but the smoothness condition
holds.
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and the requirements of V in W0 we obtain V (w, s · t : B) = 1, which
isM, w 
 s · t : B.

• If F is an instance of the jd-axiom, then F = t :⊥→⊥ for some
t ∈ Tmnm.
Suppose towards a contradiction thatM, w 
 t :⊥ for some t ∈ Tmnm,
then we obtain that V (ω, t :⊥) = 1 and hence by the condition of V
in the worlds of W0, max<(E(ω, t)) ⊆ [⊥]. Since M must be a
jd-Lnm-subset model we claim that ∃v ∈ W0 s.t. v ∈ max<(E(w, t)).
But then v ∈ [⊥] what contradicts that v ∈W0.

• If F is an instance of the jt-axiom, then F = t : A → A for some
A ∈ Lnm and some t ∈ Tmnm.
Suppose M, w 
 t : A. We obtain that V (w, t : A) = 1. By the
condition on worlds in W0 we get max<(E(ω, t)) ⊆ [A]. SinceM is a
jt-Lnm-subset model, w ∈ max<(E(ω, t)) and therefore we conclude
w ∈ [A]. Hence V (w,A) = 1 and we obtain thatM, w 
 A.

• If F is derived by modus ponens the proof is analogue to the one in
L?CS-subset models.

• If F is derived by axiom necessitation then F = c : A for (c, A) ∈ CS.
Since (c, A) ∈ CS we have ∅ 6= E(w, c) ⊆ [A]. Hence with (7.8)

∅ 6= max<(E(w, c)) ⊆ [A]

and therefore V (w, c : A) = 1 andM, w 
 c : A.

Before we prove soundness of the remaining axioms, let us have a look
how the evidence sets for the new operators are connected together:

max<(E(w, t)) ⊆ E(w, t) (7.10)
max<(E(w, s ∪ t)) ⊆ max<(max<(E(w, s)) ∪max<(E(w, t))) (7.11)
max<(E(w, s +̂ t)) ⊆ max<(E(w, s+ t)) (7.12)
max<(E(w, s +̂ t)) ⊆ max<(E(w, s ∪ t)) (7.13)

(7.10) is obvious.
(7.11) take some v ∈ max<(E(w, s∪t)). We find that v ∈ max<(E(w, s))

or v ∈ max<(E(w, t)) and hence v ∈ max<(E(w, s))∪max<(E(w, t)). Now
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assume towards a contradiction that

v 6∈ max<(max<(E(w, s)) ∪max<(E(w, t))).

Hence because of the smoothness condition ∃v′ s.t. v′ < v and

v′ ∈ max<(max<(E(w, s)) ∪max<(E(w, t))).

But

max<(max<(E(w, s))∪max<(E(w, t))) ⊆ max<(E(w, s))∪max<(E(w, t))

and we obtain that v′ ∈ E(w, s∪t). But then v is not maximal in E(w, s∪t),
which is a contradiction.

(7.12) from v ∈ max<(E(w, s +̂ t)) we obtain by using (7.10) that v ∈
E(w, s + t). Assume towards a contradiction that v 6∈ max<(E(w, s + t))
and hence because of smoothness ∃v′ < v s.t. v′ ∈ max<(E(w, s+ t)). But
then v′ ∈ E(w, s) and v′ ∈ E(w, t) and therefore v 6∈ max<E(w, s) and
v 6∈ max<E(w, t) and hence v 6∈ max<E(w, s +̂ t), which is a contradiction.
(7.13) Suppose v ∈ E(w, s +̂ t). Hence we have that v ∈ max<(E(w, s))

and v ∈ max<(E(w, t)). Assume towards a contradiction that

v 6∈ max<(E(w, s ∪ t)).

It is clear that v ∈ E(w, s ∪ t) and hence there must be a v′ s.t. v′ < v
and v′ ∈ max<(E(w, s ∪ t)). So v′ ∈ E(w, s) or v′ ∈ E(w, t). In the first
case we obtain v 6∈ max<E(w, s) and in the second case v 6∈ max<E(w, t),
which is a contradiction.

Now we can prove that all instances of the remaining axioms are valid:

• If F is an instance of NM1, then F = s∪ t : A∧ s +̂ t : C → s +̂ t : A
for some s, t ∈ Tmnm and A,C ∈ Lnm.
SupposeM, w 
 s∪t : A∧s+̂t : C then max<(E(w, s∪t)) ⊆ [A]. By
(7.13) we obtain max<(E(w, s +̂ t)) ⊆ [A] and sinceM, w 
 s +̂ t : C
we have that V (w, s +̂ t : C) = 1 and hence by using Definition 7.1
we obtain E(w, s +̂ t) 6= ∅. Therefore V (w, s +̂ t : A) = 1 and hence
M, w 
 s +̂ t : A.

• If F is an instance of NM2, then F = s+ t : A∧ s +̂ t : C → s +̂ t : A
for some s, t ∈ Tmnm and A,C ∈ Lnm.
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Analogue to NM1 but instead of using (7.13) use (7.12).

• If F is an instance of NM3, then F = s : A ∧ t : A → s ∪ t : A for
some s, t ∈ Tmnm and A ∈ Lnm.
Suppose M, w 
 s : A ∧ t : A. We then have max<(E(w, s)) ⊆ [A]
and max<(E(w, t)) ⊆ [A] and hence by (7.11)

max<(E(w, s ∪ t)) ⊆ max<(max<(E(w, s)) ∪max<(E(w, t))) ⊆
max<(E(w, s)) ∪max<(E(w, t)) ⊆ [A].

Since V (w, s : A) = 1 and by using smoothness, it is clear that

max<(E(w, s ∪ t)) 6= ∅.

Therefore V (w, s ∪ t : A) = 1 and henceM, w 
 s ∪ t : A.

• If F is an instance of NM4, then

F = (s : A ∨ t : A) ∧ s +̂ t : C → s +̂ t : A

for some s, t ∈ Tmnm and A,C ∈ Lnm.
SupposeM, w 
 (s : A∨ t : A)∧ s +̂ t : C then max<(E(w, s)) ⊆ [A]
or max<(E(w, t)) ⊆ [A] and hence

max<(E(w, s)) ∩max<(E(w, t)) = E(w, s +̂ t) ⊆ [A].

Since s+̂t : C for some C ∈ Lnm we obtain that max<(E(w, s+̂t)) 6= ∅.
Therefore we obtain with (7.10) that max<(E(w, s +̂ t)) ⊆ [A] and
hence V (w, s +̂ t : A) = 1 which meansM, w 
 s +̂ t : A.

• If F is an instance of NM5 then F = s : A → s +̀ t : A for some
s, t ∈ Tmnm and A ∈ Lnm. Suppose moreover M, w 
 s : A then
max<(E(w, s)) ⊆ [A]. Observe that

E(w, s +̂ t) = max<(E(w, s)) ∩max<(E(w, t)) ⊆ max<(E(w, s))

and of course

max<(E(w, s)) ⊆ max<(E(w, s))

65



7. Non-monotone combinations

and hence E(w, s +̀ t) ⊆ [A] regardless whether E(w, s +̂ t) = ∅.

• If F is an instance of NM6, then

F = s +̀ t : A ∧ s +̂ t : C → t +̀ s : A

for some s, t ∈ Tmnm and A,C ∈ Lnm. Suppose M, w 
 s +̂ t : C
for some C ∈ Lnm. This means that E(w, s +̂ t) 6= ∅ and hence
E(w, s +̀ t) = E(w, s +̂ t). But then, by definition, we obtain that
E(w, s +̂ t) = E(w, t +̂ s) and therefore E(w, t +̂ s) 6= ∅ as well and
hence E(w, t +̀ s) = E(w, s +̀ t). Therefore max<(E(w, s +̀ t)) ⊆ [A]
and thusM, w 
 t +̀ s : A.

Our axiomatization does not include an axiom where a term s+ t occurs
on the right hand side of an implication. Indeed, we have the following
lemma.
Lemma 7.5. The formula

s : A ∧ t : A ∧ s ∪ t : A ∧ s +̀ t : A ∧ s +̂ t : A→ s+ t : A

is not valid.
Proof. Consider Figure 2. We assume that it shows the evidence rela-
tions of w0. Thus [A] = {w1, w2, w3}, E(w0, s) = {w0, w1, w3}, and
E(w0, t) = {w0, w2, w3}. Hence max<(E(w0, s)) = {w1, w3} ⊆ [A] and
therefore M, w0 
 s : A, and max<(E(w0, t)) = {w2, w3} ⊆ [A] thus
M, w0 
 t : A. Furthermore max<(E(w0, s ∪ t)) = {w1, w2, w3} ⊆ [A] and
thereforeM, w0 
 s ∪ t : A. Moreover

max<(E(w0, s +̂ t)) = max<(E(w0, s +̀ t)) = {w3} ⊆ [A]

and thereforeM, w0 
 s +̂ t : A ∧ s +̀ t : A. But we also have

E(w0, s+ t) = max<(E(w0, s+ t)) = {w0, w3} 6⊆ [A]

and henceM, w0 6
 s+ t : A.

The main reason to extend our set of worlds by adding a preorder on them
was to avoid monotonicity. That the application operator is not monotone
in LA

CS-subset models is already shown in Chapter 3. It remains to show
that the strategy applied here gives us a non-monotone sum-operator.
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A

s

t

w0

w1
w2

w3

Figure 2.: Example for s : A∧t : A∧s+̂t : A∧s+̀t : A∧s∪t : A 6→ s+t : A.

Lemma 7.6 (j+ is not valid in Lnm-subset models). The formula

s : A ∨ t : A→ s+ t : A

is not valid in Lnm
CS-subset models.

Proof. Follows directly from Lemma 7.5.

So far we do not have completeness since the standard canonical models
we used in the first two sections do not fulfil all the necessary conditions
to be Lnm

CS-subset models. The problem is not to find a good plausibility
relation, but to obtain properties like E(w, s∪ t) = E(w, s)∪E(w, t). It is
quite obvious that some axioms are missing. Hence, this part needs more
research.

However, we can show that Lnm
CS-subset models exist.

Theorem 7.7 (model existence). There exists an Lnm
CS-subset model.

Proof. We construct a modelM = (W,W0,<, V, E) as follows:

• W = W0 = {w}

• w < w

• The valuation function is built bottom up:
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7. Non-monotone combinations

– V (w,⊥) = 0
– V (w,P ) = 1, for all P ∈ Prop
– V (w,A→ B) = 1 iff V (w,A) = 0 or V (w,B) = 1
– V (w, t : A) = 1 iff V (w,A) = 1

• E(w, t) = {w} for all t ∈ Tmnm.

By checking all the conditions listed in Definition 7.1 we immediately see
thatM is indeed a Lnm

CS-subset model. We will only show (7.9):

E(w, c) ⊆ [A] if (c, A) ∈ CS.

In fact, we show that all axioms A hold in w and then E(w, c) = {w} = [A].

• For all axioms A of cl we have V (w,A) = 1 by construction of V .

• If A is an instance of j, we have A = s : (F → G)→ (t : F → s·t : G).
SupposeM, w 
 s : (F → G)∧t : F hence E(w, s) = {w} = [F → G]
and therefore V (w,F → G) = 1 and similarly V (w,F ) = 1. By the
definition of V we conclude V (w,G) = 1. So E(w, s · t) = {w} = [G]
and hence V (w, s · t : G) = 1. Taking everything together leads to

V (w, s : (F → G)→ (t : F → s · t : G)) = 1

and hence {w} = [A].

• If A is an instance of NM1, then A = s∪ t : F ∧s +̂ t : G→ s +̂ t : F .
Since E(w, s∪ t) = E(w, s+̂ t) = {w} we obtain V (w, s∪ t : F ) = 1 iff
V (w, s +̂ t : F ) = 1 and thus V (w, s∪ t : F ∧s +̂ t : G→ s +̂ t : F ) = 1
and therefore {w} = [A].

• For all other axioms the proof is analogue to the previous case.
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8. Justification with presumption

When we look around and explore the world, we constantly get new ev-
idence that makes us understand the world we are living in a little bit
better. But usually we are not that open to a new piece of evidence that
we consider all worlds as possible that do not contradict that specific new
piece of evidence. In fact, we have some presumptions about the world, of
which we cannot always give explicit justifications, but which we simply
added to our belief system at some point in life. We interpret new pieces
of evidence in context to these presumptions. In the previous chapters,
pieces of evidence have been interpreted as the set of all worlds that are
consistent with some observation or information. However, if we receive a
new piece of evidence, we often only consider a subset of all those worlds,
namely the set of those worlds among them, that are also consistent with
our presumptions. So, in this sense we have something like a selective
perception.

In standard justification logic this is usually not taken into account. With
the constant specification we have some very special kind of presumptions,
but only about the axioms we believe in. So far, there is no possibility to
model that we believe B without indicating the explicit reason why we do
so.9

The aim of justification logic with presumption is to model an agent’s
reasoning where not all beliefs are explicitly justified. We do this by al-
lowing justification terms tΓ where t is a usual term that stands for some
evidence and Γ is a set of formulas that are believed without any explicit
reason.

9There are hybrid justification logics that feature both implicit and explicit knowl-
edge [4]. There, however, the presumptions cannot be reflected on the level of terms.
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8. Justification with presumption

8.1. Syntax
Definition 8.1 (The language LPJ ). The language LPJ is composed from
terms and formulas such that

• 0, 1, ci, xi are atomic terms for constants ci and variables xi and the
unique constants 0, 1. All atomic terms are terms.

• If s, t are terms and Γ is a finite non-empty set of formulas, then s+t,
s · t,!t and tΓ are terms too.

• ⊥ and all atomic propositions are formulas.

• if t is a term and F,G are formulas, then F → G and t : F are
formulas too.

We use the abbreviation tA,B to denote the term t{A,B}.
We extend the logics presented in Chapter 1 by adding new axioms that

deal with new kinds of justification.

Definition 8.2 (The logic LP). Given any logic LA we define the logic LP

by adding the following axioms to LA:

P1 ¬(0 : A) for all A ∈ LPJ
P2 1 : A for all propositional tautologies A
P3 tΓ : A for all A ∈ Γ
P4 t : A→ tΓ : A
P5 tA : B → t+ 1 : (A→ B)

To deduce formulas in LP we use a Hilbert system given by LP and the
rules (MP) and (AN!) as given in chapter 1.

The idea behind P1 is that 0 is like a blueprint of a piece of evidence so
that we can model the presumption without referring to a more detailed
justification. So 0A then is the evidence, that A is true.

Justification 1 has a similar function as justification c? in c?-subset mod-
els but instead of focussing on deductively closed worlds it focuses on nor-
mal worlds. We have already used a similar justification for the proba-
bilistic evidence logic in Chapter 6 and which contained P2 with the same
intended interpretation, namely that 1 is the justification that all tautolo-
gies hold.
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8.2. Semantics

P3 claims that if we restrict some evidence to the worlds, where all our
presumptions hold, then this is a justification that each of them holds.

The idea behind P4 is that if we have a justification for something, re-
stricting this justification to the worlds that correspond with our presump-
tions will not reduce its power to justify a specific formula. So, adding
information leads to a monotone process. This may look a bit strange
when we consider instances like t : (¬A)→ tA : (¬A) but in fact, this case
just illustrates that we are dealing on the one hand with justification that
may justify formulas that are evaluated to false (as long as jt is not in our
logic) and on the other hand with presumptions that may be wrong.
P5 relates the new type of justifications to the standard ones.

8.2. Semantics
Definition 8.3 (LP-subset model). A modelM = (W,W0, E, V ) is called
an LP-subset model, ifW is a set of worlds that contains a particular world
w∅, and W0, V and E are defined analogue to Definition 2.1 with the
following condition added on V and E for all w ∈W0, t, tΓ ∈ Tm, A ∈ LPJ :

• V (ω∅, F ) = 0, ∀F ∈ LPJ ;

• E(ω, tΓ) =
(⋂

A∈Γ[A]
)
∩ E(ω, t);

• E(ω, 0) = W ;

• E(ω, 1) = W0.

This new world ω∅ is of course not an element of W0 and models a world
where nothing at all is true. We have to add it in order to be sure that 0
by itself does not justify anything.

Truth in an LP-subset models is defined as before, i.e.

M, ω 
 F iff V (ω, F ) = 1.

8.3. Soundness
Definition 8.4 (LP-validity). Let CS be a constant specification. We
say that a formula F ∈ LPJ is LP

CS-valid if for each LP
CS-subset model

M = (W,W0, V, E) and each w ∈W0, we haveM, w 
 F .
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8. Justification with presumption

Theorem 8.5 (Soundness of LP
CS-subset models). For any justifi-

cation logic with presumptions LP, any constant specification CS and any
formula F ∈ LPJ we have that if LP

CS ` F , then F is LP
CS-valid.

Proof. The proof is again by induction on the length of the derivation and
analogue to the proof of Theorem 2.4. Since LP-subset models only differ
in the aspects of these new axioms, we only show this part of the proof
here.

• If F is an instance of P1 then F = ¬(0 : A) for some formula A.
Since ω∅ ∈W we obtain that [A] (W and hence W = E(ω, 0) 6⊆ [A]
for all formulas A and ω ∈ W0. So V (ω, 0 : A) = 0 and hence
M, ω 6
 0 : A and thereforeM, ω 
 ¬(0 : A).

• If F is an instance of P2 then F = 1 : A for some tautology A.
Since for all ω ∈W0 the valuation V is defined such that tautologies
are evaluated to 1 we obtain that W0 ⊆ [A] for every tautology A.
And so we conclude W0 = E(ω, 1) ⊆ [A] for all ω ∈ W0 and hence
V (ω, 1 : A) = 1 and finallyM, ω 
 1 : A.

• If F is an instance of P3 then F = tΓ : A for some justification t,
some set of formulas Γ and some A ∈ Γ.
Since A ∈ Γ we obtain

⋂
B∈Γ[B] ⊆ [A] and then any further intersec-

tion on the left side is of course as well a subset of [A]. Therefore

E(ω, tΓ) =
(⋂
B∈Γ

[B]
)
∩ E(ω, t) ⊆ [A]

and hence V (ω, tΓ : A) = 1 and finallyM, ω 
 tΓ : A.

• If F is an instance of P4 then F = t : A → tΓ : A for some t ∈ Tm,
A ∈ LPJ and some set of formulas Γ.
SupposeM, ω 
 t : A then E(ω, t) ⊆ [A]. Since

E(ω, tΓ) =
(⋂
B∈Γ

[B]
)
∩ E(ω, t) ⊆ E(ω, t) ⊆ [A]

we obtain V (ω, tΓ : A) = 1 and concludeM, ω 
 tΓ : A.
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• If F is an instance of P5 then F = tA : B → t + 1 : (A → B) for
some term t and formulas A,B.
SupposeM, ω 
 tA : B then V (ω, tA : B) = 1 and therefore

E(ω, t) ∩ [A] ⊆ [B] (8.1)

If E(ω, t+ 1) = ∅ then we directly obtain E(ω, t+ 1) ⊆ [A→ B] and
hence V (ω, t+ 1 : (A→ B)) = 1 and thusM, ω 
 t+ 1 : (A→ B).
If E(ω, t+1) 6= ∅, take some arbitrary υ ∈ E(ω, t+1) ⊆ E(ω, t)∩W0.
We have either υ ∈ [A] or υ 6∈ [A].
– If υ ∈ [A] we obtain by υ ∈ E(w, t) and (8.1) that υ ∈ [B]. The

conditions on W0 further allow us to conclude from V (υ,B) = 1
that V (υ,A→ B) = 1 and hence υ ∈ [A→ B].

– If υ 6∈ [A] then we can directly deduce from V (υ,A) = 0 and
υ ∈W0 that V (υ,A→ B) = 1 and hence υ ∈ [A→ B].

So both υ ∈ [A] and υ 6∈ [A] imply υ ∈ [A → B]. Therefore we find
E(ω, t+ 1) ⊆ [A→ B] and concludeM, ω 
 t+ 1 : (A→ B).

Remark 8.6. So far, we have no completeness. Following the strategy we
had in Chapters 1 and 2 will not work here. It would be possible to de-
fine both WC and WC

0 in the canonical model. For the latter we would
have to define something like extended maximally L?CS-consistent sets of
formulas, where we would use an algorithm similar to the one of Linden-
baum to decide whether to add formulas with the new defined justification
terms or not to some maximally L?CS-consistent set of formulas. However,
the definition of EC in such a canonical modal will not lead neither to
EC(Γ, 0) = WC nor EC(Γ, 1) = WC

0 .
However, we can show that LP-models exist.
Before we start to define such a model, we make some definitions that

will be useful later.

Definition 8.7 (pterm). pterm’s are defined inductively as follows:

• 0 and 1 are pterm’s.

• If Γ is a non-empty finite set of LPJ -formulas and t is a pterm then tΓ
is a pterm.

• If s and t are pterm’s, then s+ t is a pterm.
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8. Justification with presumption

So basically pterm’s are justification terms that have no other variables
or constants than 0 and 1 and do not contain any !’s.

Definition 8.8 (pset). Given a pterm t we define the set of formulas pset
as follows:

pset(t) := {F ∈ LPJ | F ∈ Γ for some Γ occuring in the subscript of t}

Definition 8.9. We define the depth of a term respectively of a formula
δ inductively as follows:

δ(s) := 0 if s ∈ ATm
δ(!s) := δ(s)
δ(s+ t) := max(δ(s), δ(t)) + 1
δ(sΓ) := δ(s) + max(δ(A) for A ∈ Γ) + 1
δ(⊥) := 0
δ(P ) := 0 for P ∈ Prop
δ(A→ B) := max(δ(A), δ(B)) + 1
δ(s : A) := max(δ(s), δ(A)) + 1

Theorem 8.10 (model existence). There exists an LP-subset model.

Proof. We show this for the logic L? with empty L?β and an empty CS and
construct a modelM = (W,W0, V, E) as follows:

• W = {w∅, w}

• W0 = {w}

• V (w∅, F ) = 0 ∀F ∈ LPJ
The valuation function F in w is defined by induction on δ(F ) bottom
up:

– V (w,⊥) = 0

– V (w,P ) = 1 ∀P ∈ Prop

– V (w,A→ B) = 1 iff V (w,A) = 0 or V (w,B) = 1
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– V (w, t : A) =


0 if t = 0 or (t 6= 0 is a pterm, V (w,A) = 0

and ∀B ∈ pset(t)(V (w,B) = 1))
1 otherwise.

• E is defined in parallel to V (w,F ) as well by induction on δ as follows:
– E(w∅, t) = W ∀t ∈ Tm.

– E(w, t) =


W if t = 0
W0 if t = 1⋂
A∈pset(t)[A] for all other pterm’s
∅ otherwise

In order to prove thatM is indeed an LP-subset model we have to show
that it fulfils all conditions listed in Definition 1.2 and Definition 8.3. Most
of them follow directly from the definition ofM or are very easy to see. We
only show that V (w, t : F ) = 1 iff E(w, t) ⊆ [F ]. We have to distinguish
the following cases:

(1) t = 1: Here we have two subcaes:
a) V (w,F ) = 0: then we have V (w, t : F ) = 0 by definition of

V in M. Furthermore E(w, t) = W0 and [F ] = ∅ and hence
E(w, t) 6⊆ [F ].

b) V (w,F ) = 1: then [F ] = W0 and hence E(w, t) ⊆ [F ].

(2) t = 0: Since E(w, 0) = W and w∅ ∈W we obtain that E(w, 0) 6⊆ [F ].
By definition of V there is V (w, 0 : F ) = 0.

(3) t 6= 0 is a pterm: Hence it is easy to see that E(w, t) =
⋂
A∈pset(t)[A].

We distinguish two main cases:
a) ∃A ∈ pset(t) with V (w,A) = 0. Then E(w, t) = ∅ and hence

E(w, t) ⊆ [F ] anyway which corresponds to V (w, t : F ) = 1.
b) ∀A ∈ pset(t) there is V (w,A) = 1. Hence E(w, t) = {w}. We

have again to distinguish two cases:
i. V (w,F ) = 1: then we obtain directly E(w, t) ⊆ [F ] which

corresponds to the fact that V (w, t : F ) = 1.
ii. V (w,F ) = 0: hence V (w, t : F ) = 0 which corresponds to

E(w, t) = {w} 6⊆ [F ] = ∅.
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8. Justification with presumption

(4) If t is something else: since then E(w, t) = ∅ we have E(w, t) ⊆ [F ]
anyway which corresponds to V (w, t : F ) = 1.
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9. Contraction
In belief revision contraction refers to the operation of ‘removing’ a sentence
from a belief set. Justification logic is normally used to model how we
obtain new justifications by combining older ones. In this sense it is quite
strange to have a section on contraction, which, in fact, is a process where
we lose information. Nevertheless, we tried to find a way of modelling
contraction within models of justification logic.

We model contraction by the following two formulas:

s : A → s−B : A for A 6= B, (9.1)
¬(s−B : B), (9.2)

where s−B denotes the justification s that loses the capacity to justify B.
In other words: if justification s has the capacity to justify B, then the set
of worlds within the interpretation of s is changed in s−B such that it does
no longer justify B. So (9.1) guarantees that s−B only loses its power to
justify B but apart from this, the justification keeps its power to justify all
other formulas that s justified. And (9.2) guarantees that B no longer is
justified by s−B .
To model these new features within subset models we have to adapt our

syntax and semantics.

Definition 9.1 (The language LCJ ). The language LCJ is composed from
terms and formulas such that:

• ci, xi, are atomic terms for constants ci and variables xi. All atomic
terms are terms.

• If s, t are terms and B is a formula, then t + t, s · t, !t and t−B are
terms too.

• ⊥ and all atomic propositions are formulas.
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9. Contraction

• if t is a term and F,G are formulas, then F → G and t : F are
formulas too.

Definition 9.2 (The logic LC). Given a logic LA we define the logic LC by
adding the following two new axioms to LA:

C1 s : A → s−B : A for A 6= B
C2 ¬(s−B : B)

Definition 9.3 (Non-B world). Given a model M = (W,W0, E, V ) and
a formula B, we say ω ∈ W is a non-B world if V (ω,B) = 0. Further we
say ω ∈W is a maximal non-B world if

V (ω,A) =
{

0 if A = B

1 otherwise.

Obviously for any B ∈ LCJ , a maximal non-B world ω is not consistent
with classical logic. Since we allow non-normal worlds in our models, this
is not a problem. In general, there is not a unique non-B world for some
formula B, since worlds may have the same valuations but differ in their
evidence function.
Definition 9.4 (LC-subset model). A modelM = (W,W0, E, V ) is called
an LCJ -subset model, if W,W0, E, V are defined analogously to Definition
2.1 and

• for each formula B, there exists at least one maximal non-B world.
For each formula B we pick one such maximal non-B-world and de-
note it with ωB .

• E additionally satisfies for all ω ∈W0 and all s−B ∈ Tm:

E(ω, s−B) = E(ω, s) ∪ {ωB}.

Truth in an LC-subset models is defined as before, i.e.

M, ω 
 F iff V (ω, F ) = 1.

Theorem 9.5 (Soundness). Given a logic LC and a formula F

LC ` F ⇒M, ω 
 F for all ω ∈W0 in all LC-subset modelsM
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Proof. The proof is analogue to the proof of Theorem 2.4. We only show
the cases for the additional axioms.

• If F is an instance of C1 then F = s : A→ s−B : A for A 6= B.
Suppose M, ω 
 s : A i.e. E(ω, s) ⊆ [A] for ω ∈ W0. Since A 6= B,
we know ωB ∈ [A] and therefore E(ω, s−B) = E(ω, s) ∪ {ωB} ⊆ [A].
We concludeM, ω 
 s−B : A.

• If F is an instance of C2 then F = ¬(s−B : B) for some B ∈ LCJ .
Since ωB /∈ [B], it is obvious that E(ω, s−B) = E(ω, s)∪{ωB} 6⊆ [B].
HenceM, ω 6
 s−B : B.

Remember that we work in a hyperintensional context. Applying the
contraction operator ·−B to a term s only removes B from the formulas
justified by s. In particular, we may have that s−B : (A ∧ B) is true
although s−B : B must be false. This could be addressed by introducing
some kind of selection function that chooses a (non-maximal) non-B set
that satisfies certain closure conditions to define the interpretation of ·−B .
Of course then axiom C1 needs to be changed accordingly.
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10. Updates
In the context of justification logic an update is seen as a belief change
operator. If we interpret justifications as sets of formulas, as it is done
in most semantics, such a belief change operator changes these sets. Such
dynamic epistemic justification logics have been studied, e.g. in [15, 16, 22,
32]. Kuznets and Studer [22], in particular, introduce a justification logic
with an operation for belief expansion. Their system satisfies a Ramsey
principle as well as minimal change. In fact, their system meets all AGM
postulates for belief expansion.

In their model, the belief expansion operation is monotone: belief sets
can only get larger, i.e.,

belief expansion always only adds new beliefs. (10.1)

This is fine for first-order beliefs. Indeed, one of the AGM postulates for
expansion requires that beliefs are persistent. However, as we will argue
later, this behavior is problematic for higher-order beliefs.

In this Chapter, we present an alternative approach that behaves better
with respect to higher-order beliefs and uses subset models for justification
logics.

It is the aim of this Chapter to equip subset models with an operation for
belief expansion similar to [22]. The main idea is to introduce justification
terms up(A) such that after a belief expansion with A, we have that A is
believed and up(A) (representing the expansion operation on the level of
terms) justifies this belief. Semantically, the expansion with A is dealt with
by intersecting the interpretation of up(A) with the truth-set of A. This
provides a better approach to belief expansion than [22] as (10.1) will hold
for first-order beliefs but it will fail in general.

The Chapter is organized as follows. First, we introduce the language
and a deductive system for JUS, a justification logic with belief expansion
and subset models. Then we present its semantics and establish soundness
of JUS. Section 10.4 is concerned with persistence properties of first-order
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and higher-order beliefs. Finally we prove a Ramsey property for JUS.

10.1. Syntax
Given a set of countably many constants ci, countably many variables xi,
and countably many atomic propositions Pi, terms and formulas of the
language of JUS are defined as follows:

• Evidence terms
– Every constant ci and every variable xi is an atomic term. If A

is a formula, then up(A) is an atomic term. Every atomic term
is a term.

– If s and t are terms and A is a formula, then s ·A t is a term.

• Formulas
– Every atomic proposition Pi is a formula.
– If A, B, C are formulas, and t is a term, then ¬A, A→ B, t : A

and [C]A are formulas.

The annotation of the application operator may seem a bit odd at first.
However, it is often used in dynamic epistemic justification logics, see,
e.g. [22].

The set of atomic terms is denoted by ATm, the set of all terms is denoted
by Tm. The set of atomic propositions is denoted by Prop and the set of all
formulas is denoted by LJUS. We define the remaining classical connectives,
⊥, ∧, ∨, and ↔, as usual making use of the law of double negation and de
Morgan’s laws.

The intended meaning of the justification term up(A) is that after an
update with A, this act of updating serves as justification to believe A.
Consequently, the justification term up(A) has no specific meaning before
the update with A happens.

Definition 10.1 (Set of Atomic Subterms). The set of atomic subterms
of a term or formula is inductively defined as follows:

• atm(t) := {t} if t is a constant or a variable

• atm(up(C)) := {up(C)} ∪ atm(C)
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• atm(s ·A t) := atm(s) ∪ atm(t) ∪ atm(A)

• atm(P ) := ∅ for P ∈ Prop

• atm(¬A) := atm(A)

• atm(A→ B) := atm(A) ∪ atm(B)

• atm(t : A) := atm(t) ∪ atm(A)

• atm([C]A) := atm(A) ∪ atm(C).

Definition 10.2. We call a formula A up-independent if for each subfor-
mula [C]B of A we have that up(C) /∈ atm(B).

Using Definition 10.1, we can control that updates and justifications
are independent. This is of importance to distinguish cases where updates
change the meaning of justifications and corresponding formulas from cases
where the update does not affect the meaning of a formula.

We will use the following notation: τ denotes a finite sequence of formulas
and ε denotes the empty sequence. Given a sequence τ = C1, . . . Cn and a
formula A, the formula [τ ]A is defined by

[τ ]A = [C1] . . . [Cn]A if n > 0 and [ε]A := A.

The logic JUS has the following axioms and rules where τ is a finite
(possibly empty) sequence of formulas:

1. [τ ]A for all propositional tautologies A (Taut)
2. [τ ](t : (A→ B) ∧ s : A↔ t ·A s : B) (App)
3. [τ ]([C]A↔ A) if [C]A is up-independent (Indep)
4. [τ ]([C]¬A↔ ¬[C]A) (Funct)
5. [τ ]([C](A→ B)↔ ([C]A→ [C]B)) (Norm)
6. [τ ][A]up(A) : A (Up)
7. [τ ](up(A) : B → [A]up(A) : B) (Pers)
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A constant specification CS for JUS is any subset

CS ⊆ {(c, [τ1]c1 : [τ2]c2 : . . . : [τn]cn : A) |
n ≥ 0, c, c1, . . . , cn are constants,
τ1, . . . , τn are sequences of formulas,
A is an axiom of JUS}

JUSCS denotes the logic JUS with the constant specification CS. The
rules of JUSCS are Modus Ponens and Axiom Necessitation:

A A→ B (MP)
B

(AN) if (c, A) ∈ CS
[τ ]c : A

Before establishing some basic properties of JUSCS, let us briefly discuss
its axioms. The direction from left to right in axiom (App) provides an
internalization of modus ponens. Because of the annotated application
operator, we also have the other direction, which is a minimality condition.
It states that a justification represented by a complex term can only come
from an application of modus ponens.

Axiom (Indep) roughly states that an update with a formula C can only
affect the truth of formulas that contain certain update terms.

Axiom (Funct) formalizes that updates are functional, i.e. the result of
an update is uniquely determined.

Axiom (Norm), together with Lemma 10.4, states that [C] is a normal
modal operator for each formula C.
Axiom (Up) states that after a belief expansion with A, the formula A

is indeed believed and up(A) justifies that belief.
Axiom (Pers) is a simple persistency property of update terms.

Definition 10.3. A constant specification CS is called axiomatically ap-
propriate if

(1) for each axiom A, there is a constant c with (c, A) ∈ CS and

(2) for any formula A and any constant c, if (c, A) ∈ CS, then for each
sequence of formulas τ there exists a constant d with

(d, [τ ]c : A) ∈ CS.
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The first clause in the previous definition is the usual condition for an ax-
iomatically appropriate constant specification (when the language includes
the !-operation). Here we also need the second clause in order to have the
following two lemmas which establish that necessitation is admissible in
JUSCS. Both are proved by induction on the length of derivations.

Lemma 10.4. Let CS be an arbitrary constant specification. For all for-
mulas A and C we have that if A is provable in JUSCS, then [C]A is provable
in JUSCS.

Lemma 10.5 (Constructive Necessitation). Let CS be an axiomati-
cally appriopriate constant specification. For all formulas A we have that
if A is provable in JUSCS, then there exists a term t such that t : A is
provable in JUSCS.

We will also need the following auxiliary lemma.

Lemma 10.6. Let CS be an arbitrary constant specification. For all terms
s, t and all formulas A,B,C, JUSCS proves:

[C]t : (A→ B) ∧ [C]s : A ↔ [C]t ·A s : B

10.2. Semantics
Now we are going to introduce subset models for the logic JUSCS. In order
to define a valuation function on these models, we will need the following
measure for the length of formulas.

Definition 10.7 (Length). The length of a term or formula is inductively
defined by:

`(t) := 1 if t ∈ ATm `(s ·A t) := `(s) + `(t) + `(A) + 1
`(P ) := 1 if P ∈ Prop `(A→ B) := `(A) + `(B) + 1
`(¬A) := `(A) + 1 `(t : A) := `(t) + `(A) + 1
`([B]A) := `(B) + `(A) + 1

Definition 10.8 (Subset Model). We define a subset model

M = (W,W0, V1, V0, E)

85



10. Updates

for JUS by:

• W is a set of objects called worlds.

• W0 ⊆W , W0 6= ∅.

• V1 : (W \W0)× LJUS → {0, 1}.

• V0 : W0 × Prop→ {0, 1}.

• E : W × Tm→ P(W ) such that for ω ∈W0 and all A ∈ LJUS:

E(ω, s ·A t) ⊆ E(ω, s) ∩ E(ω, t) ∩WMP ,

where WMP is the set of all deductively closed worlds, formally given
by

WMP := W0 ∪W 1
MP where

W 1
MP := {ω ∈W \W0 |
∀A,B ∈ LJUS ((V1(ω,A) = 1 and V1(ω,A→ B) = 1)

implies V1(ω,B) = 1)}.

As in the previous chapters we call W0 the set of normal worlds. The
worlds in W \W0 are called non-normal worlds. WMP denotes the set of
worlds where the valuation function (see the following definition) is closed
under modus ponens.

LetM = (W,W0, V1, V0, E) be a subset model. We define the valuation
function VM forM and the updated model MC for any formula C simul-
taneously. For VM, we often drop the subscript M if it is clear from the
context.

We define V : W × LJUS → {0, 1} as follows by induction on the length
of formulas:

(1) Case ω ∈W \W0. We set V (ω, F ) := V1(ω, F );

(2) Case ω ∈W0. We define V inductively by:
a) V (ω, P ) := V0(ω, P ) for P ∈ Prop;
b) V (ω, t : F ) := 1 iff E(ω, t) ⊆ {υ ∈ W | V (ω, F ) = 1} for

t ∈ ATm;
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c) V (ω, s ·F r : G) = 1 iff
V (ω, s : (F → G)) = 1 and V (ω, r : F ) = 1;

d) V (ω,¬F ) = 1 iff V (ω, F ) = 0;
e) V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;
f) V (ω, [C]F ) = 1 iff VMC (ω, F ) = 1 where VMC is the valuation

function for the updated modelMC .

The following notation for the truth set of F will be convenient:

[[F ]]M := {υ ∈W | VM(υ, F ) = 1}.

The updated model MC = (WMC

,WM
C

0 , VM
C

1 , VM
C

0 , EM
C ) is given

by:

WM
C

:= W WM
C

0 := W0 VM
C

1 := V1 VM
C

0 := V0

and

EM
C

(ω, t) :=
{
EM(ω, t) ∩ [[C]]MC if ω ∈W0 and t = up(C)
EM(ω, t) otherwise

The valuation function for complex terms is well-defined.

Lemma 10.9. For a subset model M with a world ω ∈ W0, s, t ∈ Tm,
A,B ∈ LJUS, we find that

V (ω, s ·A t : B) = 1 implies E(ω, s ·A t) ⊆ [[B]]M.

Proof. The proof is by induction on the structure of s and t:

• base case s, t ∈ ATm:
Suppose V (ω, s ·A t : B) = 1. Case 2c of the definition of V in
Definition 10.8 for normal worlds yields that

V (ω, s : (A→ B)) = 1 and V (ω, t : A) = 1.

With case 2b from the same definition we obtain

E(ω, s) ⊆ [[A→ B]]M and E(ω, t) ⊆ [[A]]M.
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Furthermore the definition of E for normal worlds guarantees that

E(ω, s ·A t) ⊆ E(ω, s) ∩ E(ω, t) ∩WMP .

So for each υ ∈ E(ω, s·A t) there is V (υ,A→ B) = 1 and V (υ,A) = 1
and υ ∈WMP and hence either by the definition of W 1

MP or by case
2e of the definition of V in normal worlds there is V (υ,B) = 1.
Therefore E(ω, s ·A t) ⊆ [[B]]M.

• s, t ∈ Tm but at least one of them is not atomic: w.l.o.g. suppose
s = r ·C q. Suppose V (ω, s ·A t : B) = 1 then V (ω, s : (A→ B)) = 1
and V (ω, t : A) = 1. Since s = r ·C q and ω ∈W0 we obtain

V (ω, r : (C → (A→ B))) = 1 and V (ω, q : C) = 1

and by I.H. that

E(ω, r) ⊆ [[C → (A→ B)]]M and E(ω, q) ⊆ [[C]]M.

With the same reasoning as in the base case we obtain

E(ω, s) = E(ω, r ·C q) ⊆ [[A→ B]]M.

If t is neither atomic, the argumentation works analogue and since we
have then shown both E(ω, s) ⊆ [[A → B]]M and E(ω, t) ⊆ [[A]]M,
the conclusion is the same as in the base case.

Remark 10.10. The opposite direction to Lemma 10.9 need not hold. Con-
sider a modelM and a formula s ·A t : B with atomic terms s and t such
that

VM(ω, s ·A t : B) = 1

and thus also E(ω, s ·A t) ⊆ [[B]]M. Now consider a model M′ which is
defined likeM except that

E′(ω, s) := E(ω, t) and E′(ω, t) := E(ω, s).

We observe the following:
(1) We have E′(ω, s ·A t) = E(ω, s ·A t) as the condition

E′(ω, s ·A t) ⊆ E′(ω, s) ∩ E′(ω, t) ∩WMP
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still holds since intersection of sets is commutative. Therefore

E′(ω, s ·A t) ⊆ [[B]]M′

holds.

(2) However, it need not be the case that

E′(ω, s) ⊆ [[A→ B]]M′ and E′(ω, t) ⊆ [[A]]M′ .

Therefore VM′(ω, s : (A → B)) = 1 and VM′(ω, t : A) = 1 need
not hold and thus also VM′(ω, s ·A t : B) = 1 need not be the case
anymore.

Definition 10.11 (CS-Model). Let CS be a constant specification. A
subset model M = (W,W0, V1, V0, E) is called a CS-subset model or a
subset model for JUSCS if for all ω ∈W0 and for all (c, A) ∈ CS we have

E(ω, c) ⊆ [[A]]M.

We observe that updates respect CS-subset models.
Lemma 10.12. Let CS be an arbitrary constant specification and let M
be a CS-subset model. We find that MC is a CS-subset model for any
formula C.

10.3. Soundness
Definition 10.13 (Truth in Subset Models). Let

M = (W,W0, V1, V0, E)

be a subset model, ω ∈ W , and F ∈ LJUS. We define the relation 
 as
follows:

M, ω 
 F iff VM(ω, F ) = 1.
Theorem 10.14 (Soundness). Let CS be an arbitrary constant specifica-
tion. Let M = (W,W0, V1, V0, E) be a CS-subset model and ω ∈ W0. For
each formula F ∈ LJUS we have that

JUSCS ` F implies M, ω 
 F.
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Proof. As usual by induction on the length of the derivation of F . We only
show the case where F is an instance of axiom (Indep).
By induction on [C]A we show that for all ω

MC , ω 
 A iff M, ω 
 A.

We distinguish the following cases.

(1) A is an atomic proposition. Trivial.

(2) A is ¬B. By I.H.

(3) A is B → D. By I.H.

(4) A is t : B. Subinduction on t:
a) t is a variable or a constant. Easy using I.H. for B.
b) t is a term up(D). By assumption, we have that C 6= D. Hence

this case is similar to the previous case.
c) t is a term r ·D s. We know that t : B is equivalent to

r : (D → B) ∧ s : D.

Using I.H. twice, we find that

MC , ω 
 r : (D → B) and MC , ω 
 s : D

if and only if

M, ω 
 r : (D → B) and M, ω 
 s : D.

Now the claim follows immediately.

(5) A is [D]B. Making use of the fact that A is up-independent, this case
also follows using I.H.

10.4. Basic Properties
We first show that first-order beliefs are persistent in JUS. Let F be a
formula that does not contain any justification operator. We have that if
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t is a justification for F , then, after any update, this will still be the case.
Formally, we have the following lemma.

Lemma 10.15. For any term t and any formulas A and C we have that
if A does not contain a subformula of the form s : B, then

t : A → [C]t : A

is provable.

Proof. We proceed by induction on the complexity of t and distinguish the
following cases:

(1) Case t is atomic and t 6= up(C). Since A does not contain any
evidence terms, the claim follows immediately from axiom (Indep).

(2) Case t = up(C). This case is an instance of axiom (Pers).

(3) Case t = r ·B s. From r ·B s : A we get by (App)

s : B and r : (B → A).

By I.H. we find

[C]s : B and [C]r : (B → A).

Using Lemma 10.6 we conclude [C]r ·B s : A.

Let us now investigate higher-order beliefs. We argue that persistence
should not hold in this context. Consider the following scenario. Suppose
that you are in a room together with other people. Further, suppose that
no announcement has been made in that room. Therefore, it is not the case
that P is believed because of an announcement. Formally, this is expressed
by

¬up(P ) : P. (10.2)

We find that
the fact that you are in that room (10.3)

justifies your belief in (10.2). Let the term r represent (10.3). Then we
have

r : ¬up(P ) : P. (10.4)
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Now suppose that P is publicly announced in that room. Thus we have in
the updated situation

up(P ) : P. (10.5)

Moreover, the fact that you are in that room justifies now your belief
in (10.5). Thus we have r : up(P ) : P and hence in the original situation
we have

[P ]r : up(P ) : P (10.6)

and (10.4) does no longer hold after the announcement of P .
The following lemma formally states that persistence fails for higher-oder

beliefs.

Lemma 10.16. There exist formulas r : B and A such that

r : B → [A]r : B

is not provable.

Proof. Let B be the formula ¬up(P ) : P and consider the subset model

M = (W,W0, V1, V0, E)

with
W := {ω, υ} W0 := {ω} V1(υ, P ) = 0 V0(ω, P ) = 1

and
E(ω, r) = {ω} E(ω, up(P )) = {ω, υ}.

Hence [[P ]]M = {ω} and thus E(ω, up(P )) 6⊆ [[P ]]M. Since ω ∈ W0, this
yields V (ω, up(P ) : P ) = 0. Again by ω ∈W0, this implies

V (ω,¬up(P ) : P ) = 1.

Therefore E(ω, r) ⊆ [[¬up(P ) : P ]]M and using ω ∈W0, we get

M, ω 
 r : ¬up(P ) : P

.
Now consider the updated modelMP . We find that

EM
P

(ω, up(P )) = {ω}
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and thus EMP ((ω, up(P ))) ⊆ [[P ]]MP . Further, using ω ∈WMP

0 we get

VMP (up(P ) : P ) = 1

and thus VMP (¬up(P ) : P ) = 0. That is ω /∈ [[(¬up(P ) : P ]]MP . We have
EM

P (ω, r) = {ω} and, therefore, EMP (ω, r) 6⊆ [[(¬up(P ) : P ]]MP .
With ω ∈WMP

0 we getMP , ω 6
 r : ¬up(P ) : P . We conclude

M, ω 6
 [P ]r : ¬up(P ) : P.

Next, we show that JUSCS proves an explicit form of the Ramsey axiom

�(C → A)↔ [C]�A

from Dynamic Doxastic Logic.

Lemma 10.17. Let the formula [C]s : (C → A) be up-independent. Then
JUSCS proves

s : (C → A) ↔ [C]s ·C up(C) : A. (10.7)

Proof. First observe that by (Up), we have [C]up(C) : C.
Further, since [C]s : (C → A) is up-independent, we find by (Indep) that

s : (C → A)↔ [C]s : (C → A).

Finally we obtain (10.7) using Lemma 10.6.

Frequently, completeness of public announcement logics is established
by showing that each formula with announcements is equivalent to an
announcement-free formula. Unfortunately, this approach cannot be em-
ployed for JUSCS although (10.7) provides a reduction property for certain
formulas of the form [C]t : A. The reason is the hyperintensionality of
justification logic as discussed in [9] and in Chapter 4, i.e. justification
logic is not closed under substitution of equivalent formulas. Because of
this, the proof by reduction cannot be carried through in JUSCS, see the
discussion in [14].
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Conclusion
In the first part of this thesis we have introduced new sound and complete
semantics for justification logics in which justifications are interpreted as
sets of worlds instead of sets of formulas. There have already been simi-
lar approaches in epistemic logics and justification logics. However, they
do not provide a semantics for the standard justification logics that also
allows second order justifications. We have investigated several versions
of standard justification logics and compared them with each other. Con-
trary to other interpretations of terms, hyperintensionality does not come
for free when terms are interpreted as sets of worlds. We have shown how
non-normal worlds can be used to regain this important aspect of justifi-
cation logic. Furthermore, we have given variants of subset models which
are sound and complete with respect to L?CS even in presence of the jd-
axiom and regardless of whether the constant specification is axiomatically
appropriate or not.

In the second part we have investigated how subset models can model
things like probabilistic evidence, intuition and presumptions, belief exten-
sions and contraction. We have presented logics that model these aspects
and we have established corresponding subset models. Furthermore, we
have investigated alternative interpretations of the sum-operator that are
not necessarily monotone. This is of special interest if we work in a context
where both are relevant: the D-axiom as well as justifications that do not
need to be consistent among them. We have shown how subset models can
be adapted to model this by introducing a preorder on the worlds. For all
the presented logics and their models we have proven soundness and model
existence. Unfortunately, we do not have any completeness proofs in this
second part and leave this to future research.

Nevertheless, we hope that with the results so far we have been able
to develop some new aspects of justification logics that will inspire future
research.
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AEΓ(X), see aggregated evidence
aggregated evidence, 48
application, 12
atm, see set of atomic subterms
axiom

A1, 48
A2, 48
A3, 48
A4, 48
A5, 48
C1, 78
C2, 78
NM1, 59
NM2, 59
NM3, 59
NM4, 59
NM5, 59
NM6, 59
P1, 70
P2, 70
P3, 70
P4, 70
P5, 70
cl, 8
j, 21
jd, 8
j4, 8
j+, 8
jt, 8
noc, 34

App, 83
Funct, 83
Indep, 83
Norm, 83
Pers, 83
Taut, 83
Up, 83

axiomatically appropriate, see con-
stant specification

canonical model
for JDCS, 35
for L?CS, 15
forLA, 24

completeness
JDCS, 35
JNoCCS, 37
L?CS, 20
for LA, 25

CS, see constant specification
constant specification, 8, 84

axiomatically appropriate, 16, 84
constants

0, 49, 70
1, 49, 70
c?, 7

constructive necessitation, 85

depth
δ, 74
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hyperintensionality, 31

language
LJA, 21
LJ , 7
LJUS, 82
LPJ , 70
Lprob, 50
LnmJ , 58

length `, 85
Lindenbaum Lemma, 15
logic

JD, 34
JNoC, 34
JUSCS, 84
L?CS, 8
L?, 8
LA
α, 21

LA
β , 22

LC, 78
Lnm
α , 59

Lnm
β , 59

LA, 22
L?α, 8
L?β , 8
PE, 48

logic:JUS, 83
logic:Lnm, 59

monotonicity
in L?CS, 27
inLA

CS, 27

Non-B world, 78
non-normal worlds, 5

preorder <, 60
Prop, 7

rule
(AN), 84
AN!, 8
MP, 8

set of atomic subterms, 82
smoothness, 61
soundness

JDCS, 35
JNoCCS, 37
JUS, 89
L?CS, 11
LA

CS, 23
Lnm

CS, 62
LC, 78
LP

CS, 72
PE, 50

special sets of formulas
APPw(s, t), 22, 61
pset, 74

special sets of worlds
WMP , 86
W 1
MP , 86

WMP , 10
Ww(s, t), 22
W 6⊥, 35
Wnc, 37
max<(S), 55
opt<(S), 54

subset model
D-arbitrary subset model, 35
for JUS, 85
for JUSCS, 89
for LC, 78
for L?CS, 9
for LA

CS, 22
for Lnm, 60
for LP, 71
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for PE, 50
for NoC , 37

symbols
∪, 49, 55
+̀ , 55
+̂ , 55

term
ATm, 7
Tm, 7
TmA, 21
Tmnm, 58
TmP, 49
c?-term, 7
pterm, 73
up(A), 82
s−B , 77
tΓ, 70

truth
JUS, 89
in LP-subset models, 71
in L?CS-subset models, 10
in LA

CS-subset models, 23
in Lnm

CS-subset models, 62
Truth Lemma

L?CS, 20
for LA

CS, 25
truthset [A], 9
truthset [[A]], 87

up-independent, 83

validity
L?CS, 10
LA

CS, 23
Lnm

CS, 62
LP, 71
PE, 50

D-arbitrary , 35
NoC , 37

wB , 78
worlds, 9
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