
Journal Pre-proof

Assessing physical behavior through accelerometry – State of the science, best
practices and future directions

Alexander Burchartz, Bastian Anedda, Tina Auerswald, Christoph Mall, Marco
Giurgiu, Holger Hill, Sascha Ketelhut, Simon Kolb, Kristin Manz, Claudio R. Nigg,
Markus Reichert, Ole Sprengeler, Kathrin Wunsch, Charles E. Matthews

PII: S1469-0292(19)30809-X

DOI: https://doi.org/10.1016/j.psychsport.2020.101703

Reference: PSYSPO 101703

To appear in: Psychology of Sport & Exercise

Received Date: 22 November 2019

Revised Date: 30 March 2020

Accepted Date: 30 March 2020

Please cite this article as: Burchartz, A., Anedda, B., Auerswald, T., Mall, C., Giurgiu, M., Hill, H.,
Ketelhut, S., Kolb, S., Manz, K., Nigg, C.R., Reichert, M., Sprengeler, O., Wunsch, K., Matthews,
C.E., Assessing physical behavior through accelerometry – State of the science, best practices
and future directions, Psychology of Sport & Exercise (2020), doi: https://doi.org/10.1016/
j.psychsport.2020.101703.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.psychsport.2020.101703
https://doi.org/10.1016/j.psychsport.2020.101703
https://doi.org/10.1016/j.psychsport.2020.101703


Assessing Physical Behavior through Accelerometry –  State of the Science, Best 

Practices and Future Directions 

Alexander Burchartz1# & Bastian Anedda1#, Tina Auerswald², Christoph Mall³, Marco 

Giurgiu1, Holger Hill1, Sascha Ketelhut4, Simon Kolb1, Kristin Manz5, Claudio R. Nigg6, 

Markus Reichert7, Ole Sprengeler8, Kathrin Wunsch1 & Charles E. Matthews9 

#Corresponding author:   

Alexander Burchartz & Bastian Anedda 
Karlsruhe Institute of Technology (KIT)  
Institute of Sports and Sports Science  
Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany 
Telephone: +49 721 608 - 46592 
Email: alexander.burchartz@kit.edu & bastian.anedda@kit.edu 
 

Affiliations: 

1 Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-

Ring 15, 76131 Karlsruhe, Germany 

² Institute of Human Movement Science and Health, Chemnitz University of Technology, 

Thüringer Weg 11, 09126 Chemnitz, Germany 

³ Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-

Ring 62, 80992 Munich, Germany 

4 Institute of Sport Science, Martin-Luther-University Halle-Wittenberg  

5 Department of Epidemiology and Health Monitoring, Robert Koch Institute, Nordufer 20, 

13353 Berlin, Germany; 

6 Health Science Department, Institute of Sport Science, University of Bern, 

Bremgartenstrasse 145, 3012 Bern 

7 Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of 

Technology (KIT), Engler-Bunte-Ring 15, 76131 Karlsruhe, Baden-Wuerttemberg, Germany 



8 Department of Epidemiological Methods and Etiologic Research, Leibniz Institute for 

Prevention Research and Epidemiology - BIPS, Achterstraße 30, Bremen 28359, Germany 

9 Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, United 

States National Cancer Institute 

 

Acknowledgment:  This paper was developed from the 2nd International Physical Activity 

Assessment Workshop of the Center of the Assessment of Physical Activity (CAPA), Institute 

of Sports and Sports Science, Karlsruhe Institute of Technology, Germany. 

This work was supported by the Federal Ministry of Education and Research within the 

SmartAct project (funding reference number: 01EL1420A), Motorik-Modul-Study (MoMo) 

(2009 – 2021) (funding reference number: 01ER1503) and the mHealth Lab at the Institute of 

Sports and Sports Science, Karlsruhe Institute of Technology, Germany. 



Title: Assessing Physical Behavior through Accelerometry – State of the Science, Best 1 

Practices and Future Directions 2 

Abstract [296 words]  3 

Accelerometers offer opportunities for researchers to capture valid data about the intensity 4 

and amount of physical behavior (PB) in real-time over a period of several days and weeks. 5 

From this multidimensional data, a great number of metrics can be derived to capture and 6 

describe the unique aspects of PB. The goal of this paper is to help the end-user of PB 7 

monitoring devices (novice to intermediate experience) wade through sometimes excessive 8 

technical details of accelerometry to outline best practices in selecting and applying devices 9 

to quantify three major behavioral categories of common interest to the research community: 10 

physical activity (PA), sedentary behavior (SB) and sleep. The effects of these decisions on 11 

the metrics (energy expenditure, activity intensity, body position, activity patterns) can occur 12 

in a variety of ways. The device, carrying position (hip, wrist, thigh) and recording parameters 13 

(epoch length, frequency, memory capacity, recording frequency and filters) have a large 14 

influence on the measured activity. The different backgrounds such as study design 15 

(purpose, repeated measurements) and duration (time frame, wear time) as well as data 16 

storage and evaluation must be taken into account when determining the parameters. 17 

Finally, the evaluation must adjust several levers (raw data, context information, non-wear 18 

time, intensity classification, compliance) depending on the target variables. Looking into the 19 

future, current developments in statistical analysis are discussed, because the research 20 

community has not yet reached a consensus on the most promising approach. There are 21 

exciting developments ahead of us in the future. Sleep in particular is increasingly being 22 

seen as an influencing factor for health. Together with the technical developments in sensors 23 

which will become incrementally smaller, more accurate and in the near future will be 24 

integrated directly into our clothes or skin, accelerometry is facing exciting times and lots of 25 

data to evaluate. 26 
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State of the Science 3 

In the 40 years since Montoye’s team of exercise physiologists and engineers modified a phono 4 

cartridge to measure bodily acceleration (Wong et al., 1981) and predict the energy expenditure 5 

of physical activity (PA) (Servais et al., 1984), device-based measures of PA and related 6 

behaviors have emerged as an essential tool for PA and health promotion research. Indeed, the 7 

team’s prescient observations that “the accelerometer’s greatest value may be in the area of 8 

categorizing people into various activity-related groups. It could also be used as a device by 9 

which people could compare their daily activity to a prescribed level for rehabilitation, weight 10 

loss, or personal goals in training” (Servais et al., 1984, p. 170) has become fully realized in 11 

recent years. PA monitoring devices continue to be a leading fitness trend (Thompson, 2018) 12 

and more than 100 million tracking devices and accelerometer enabled smart watches were sold 13 

in 2017-18 (Lamkin, 2018). Activity monitors have emerged as important self-monitoring tools in 14 

clinical medicine (Lobelo et al., 2018) and large-scale health promotion (U.S. Department of 15 

Health and Human Services, 2018) and are now commonly used in national surveillance efforts 16 

(Burchartz et al., 2020; Colley et al., 2011; Matthews et al., 2008; Troiano et al., 2008). The 17 

number of yearly publications by search terms ‘exercise or physical activity’ and ‘acceleromet*’ 18 

rose from 10 or fewer until the year 1996 to over 600 in the years 2012 and 2013 (Troiano et al., 19 

2014). The same search term yields more than 1,200 publications on scopus.com in 2019 20 

(assessed on 7th November 2019). 21 

One of the advantages of accelerometry is that it can collect dense data over a long period of 22 

time (days, weeks and sometimes even months) allowing a detailed examination of daily 23 

behavior. From this multidimensional data, a great number of metrics can be derived to capture 24 

and describe the unique aspects of movement behavior (MB). Results from recent epidemiologic 25 

studies are providing new insights into the distinct influence of sedentary behavior (SB), light 26 

(LPA) and moderate-to-vigorous intensity physical activity (MVPA) on health enabled by 27 

accelerometry (Diaz et al., 2017; Matthews et al., 2016), and new cohort studies are using 28 

accelerometers on a much larger scale and include the assessment of sleep (Doherty et al., 29 



2017; German National Cohort Consortium, 2014). This accelerometer era in MB research might 30 

be considered a golden age with vast opportunities, but many challenges remain.  31 

Although there are suitable and precise devices available for most applications (e.g., 32 

interventions, epidemiology, surveillance), the wide variety of devices and prediction algorithms 33 

available for a variety of metrics (e.g., step counts, energy expenditure, intensity classification, 34 

posture, sleeping pattern) and limited information from rigorous validation studies make it difficult 35 

for the average user to understand what the most appropriate options are for individual 36 

application. One device may not fit all applications, and users must make informed choices to 37 

optimize the outcomes for individual studies. The goal of this paper is to help the end-user of MB 38 

monitoring devices (novice to intermediate experience) navigate through sometimes excessive 39 

technical details of accelerometry to outline best practices and highlight necessary 40 

considerations in selecting and applying devices to quantify two major behavioral categories of 41 

common interest to the research community: PA and SB. Although sleep is an increasingly 42 

important behavioral category, it is only mentioned in extracts, as the authors of the article have 43 

little practical experience in recording sleep.  44 

Throughout this paper, no major distinction is made between accelerometers sold for research 45 

purposes (research devices) and those sold to the general population (consumer-devices), it is 46 

expected that the decision-making processes apply to each. In many instances, consumer-47 

devices are as accurate as research devices and they often provide feedback to participants 48 

more easily (Henriksen et al., 2018; Wahl et al., 2017). Nonetheless, consumer-devices rarely 49 

provide raw data and mostly use proprietary algorithms, which make the harmonization of 50 

various dataset difficult. In addition, a reanalysis of the data with different calculation methods is 51 

almost impossible with proprietary algorithms. 52 

The opinions outlined in this article reflect the accumulated experience of the authors with a wide 53 

variety of monitoring devices. The group of authors consists of inter-disciplinary researchers in 54 

the field of accelerometry and MB as well as device developers that came together at the 2nd 55 



International Workshop for the Center for the Assessment of Physical Activity (CAPA) held on 56 

the 11th and 12th of July 2019 at the Karlsruhe Institute of Technology, Germany. This is not a 57 

systematic review but rather reflects the authors’ expert consensus on the topic of accelerometry 58 

for MB assessment. 59 

The following section focuses on best practices and is divided into subsections of: 60 

- Behaviors, highlighting the differences in assessing the different facets of the MB 61 

spectrum 62 

- Metrics, providing insight on what parameters to use for different goals, 63 

- Study Design, showing differences in approaches for a variety of research questions, 64 

- Data collection, processing and (storage/accessibility), describing what still needs to be 65 

done after the study has been designed, 66 

- And current developments in statistical analysis, highlighting the need for sophisticated 67 

methods to analyze data. 68 

The last section will focus on future directions of the field. Some of these directions are already 69 

developing; others will definitely be important topics in the future. 70 

Although there is literature that provides help for users of accelerometer-based measures in 71 

surveillance (Pedišić & Bauman, 2015), which gives considerations regarding data collection and 72 

processing (Migueles et al., 2017) or focusses on methods in intervention studies (Montoye et 73 

al., 2018), the need for directions for new researchers in this field still exists. The authors provide 74 

these directions and related useful references to help practitioners and researchers when 75 

considering using accelerometers. 76 



Best Practices 77 

Currently, accelerometry is the “state-of-the-art” when it comes to device-based measurement of 78 

MB. Besides PA, SB and sleep are the most common behaviors assessed via triaxial movement 79 

acceleration methods within 24-hour measurements. 80 

 81 

Behaviors 82 

Physical activity 83 

“Physical activity is defined as any bodily movement produced by skeletal muscles that results in 84 

energy expenditure” (Caspersen et al., 1985, p. 126). When Caspersen and colleagues defined 85 

PA in 1985 accelerometers where not yet feasible and widely available for PA assessment. 86 

Technological advances created increasing interest in using accelerometry for assessment of 87 

PA today (Ward et al., 2005; Welk, 2002) using different outcomes (see Metrics for more 88 

information). The main advantage of using accelerometry over self-reported (retrospective) PA is 89 

that it is not prone to recognition, memory or social desirability biases of participants as recall 90 

measures are (Adams et al., 2005; Brenner & DeLamater, 2014; Nigg et al., 2012). A detailed 91 

discussion of the questionnaire approach can be found in the Physical Activity Questionnaire 92 

Paper (Nigg et al., this issue). A review on the comparison of indirect (i.e. questionnaires) and 93 

direct, device-based measures of PA in pediatric populations revealed 72% of indirect measures 94 

overestimated the directly measured values (Adamo et al., 2009). This trend, however, was 95 

neither confirmed for adults (Prince et al., 2008), nor for older adult populations (Kowalski et al., 96 

2012). Here, no clear patterns emerged for the mean differences between subjective self-report 97 

and device-based measures of MB. Moderating factors of overestimations are less clear and 98 

need to be examined in future studies. In general, correlations between device-based and self-99 

report measures are weak across the lifespan, showing a discrepancy between both measures. 100 

However, the need for device-based monitoring of PA, ideally 24 hours a day, for assessment of 101 

real-life activity patterns is often stated. 102 



Sedentary behavior 103 

Besides PA, it is also important to objectively measure SB (Lewis et al., 2017), especially since 104 

studies have shown that SB has negative effects on health outcomes (Katzmarzyk et al., 2019). 105 

According to the internationally accepted definition of SB (Tremblay et al., 2017), it is necessary 106 

to capture both characterizations of SB, namely: body posture (sitting/lying/reclining) and energy 107 

expenditure (≤ 1.5 MET). Moreover, there is an ongoing debate on whether the effects of SB on 108 

mental and somatic health are independent from PA or not (Biswas et al., 2015; Ekelund et al., 109 

2016). Thus, there is a growing need to assess both behaviors during a specified time frame and 110 

separate them during analysis.  111 

 112 

Sleep 113 

The effects of PA, SED, and sleep are examined by most researches in isolation (Chaput et al., 114 

2017). what is flawed because time spent in one behavior will naturally depend on the 115 

composition of the rest of the day (Taylor et al., 2018). Even if less established than PA and SB 116 

measurement, accelerometers can also be used to assess sleep, which is the third component 117 

of every day MB. Different sleep quality patterns, like bed and out-of-bed time (and therefore 118 

hours per day spent in bed) and nighttime movements or even clinical sleep issues can be 119 

assessed. But this 24-h movement recording require different methods of data analysis than 120 

standard multivariate techniques. These methods need to take into account the co-dependence 121 

and proportional nature of compositional data (Chastin et al., 2015). A study comparing 122 

sleep/wake judgements obtained via sleep diaries and accelerometers revealed good agreement 123 

for nocturnal sleep (Kawada, 2008). Similar findings were obtained by a recent review on validity 124 

and reliability of sleep time questionnaires across the lifespan with moderate to strong 125 

correlations between measurements (Nascimento-Ferreira et al., 2016) as well as in a study 126 

combining both, diaries and questionnaires with accelerometer data (van Hees et al., 2015). 127 

When validated against polysomnography, the state-of-the-art method for sleep screening, high 128 



correlations can be detected, revealing accelerometry to be a good tool for real-life assessment 129 

(Jean-Louis et al., 2001).  130 

 131 

Metrics 132 

Accelerometry is based on continuous and real-time measurement and recording of movement-133 

induced raw acceleration signals over a specific period of time (epoch length). Accelerometers 134 

register intensity and duration of single- or multi-axial accelerations and convert this raw data 135 

into manufacturer- and model-specific outcome metrics. Before the raw data is converted, it is 136 

usually filtered. This should eliminate acceleration frequencies that are not compatible with 137 

human movement. Most devices allow the user to choose between different filters when 138 

processing the data. As the different filters have a large impact on the outputs it is important to 139 

report information on the filters used.    140 

Unfortunately, there are no internationally accepted standards for signal processing (Ann V. 141 

Rowlands, 2007). Due to these differences in raw data processing and filtering, outcome metrics 142 

cannot be directly compared across devices (Chen & Bassett, 2005). However, using identical 143 

software and algorithms to process outcome measures can help in harmonizing data. A recent 144 

study by Alex V. Rowlands, Mirkes et al., 2018 has shown that key physical activity outcomes 145 

derived from data of different devices, that were processed identically afterwards, were largely 146 

equivalent. 147 

Since the outcome metrics provided by accelerometers is without direct physical meaning, it has 148 

to be translated into a more interpretable unit or measure (Troiano, 2006). For Example, different 149 

age-specific cut-points can be applied to accelerometer outcome metrics in order to express raw 150 

data in terms of time spent in specific behaviors (PA, SB or sleep), in different positions and 151 

postures (standing, sitting, lying), and to determine intensities of PA (low, moderate, vigorous; 152 

e.g., Schaefer et al., 2014). When applying specific cut-points from calibration studies it is crucial 153 

to follow the same data collection protocol (processing, epoch-length, device placement, filter, 154 



etc.) which was used in the original study (Migueles et al., 2017, p. 1842). Although common 155 

metrics of interest are described in detail in this section, there are new approaches that focus on 156 

improving these existing metrics. Finding metrics for PA volume and intensity that are derived 157 

from raw acceleration has been the focus of recent studies and shows great promise. (Alex V. 158 

Rowlands, 2018; Alex V. Rowlands, Edwardson et al., 2018; Alex V. Rowlands, Fairclough et al., 159 

2019) 160 

 161 

Energy expenditure 162 

One key use of accelerometry is to interpret the raw data recorded by the device for estimating 163 

energy expenditure (EE). This is one way to make accelerometer data comparable across 164 

different types of PA and over a broad range of target groups. Therefore, accelerometer metrics 165 

often are transferred into the commonly used metabolic equivalent of task (MET). The obtained 166 

MET values can then be categorized into sedentary (≤1.5 METs), low (1.5-3 METs), moderate 167 

(3-6 METs), and vigorous (>6 METs) PA (Butte et al., 2012) for adults. Children however are 168 

known to have considerably higher basal metabolic rates per unit body mass than adults. 169 

Therefore, adult MET-thresholds do not apply to them (McMurray et al., 2015; Saint-Maurice et 170 

al., 2016). For scoring and interpretation of youth physical activity data, the new Youth 171 

Compendium of Physical Activities can be applied (Butte et al., 2018).  172 

When interpreting accelerometer data by means of energy expenditure one has to consider that 173 

multiple different algorithms to convert accelerometer outcome metrics into EE outcomes exist. 174 

This may lead to different EE outcomes depending on the algorithm used so that one cannot 175 

directly compare data from different accelerometer models if the converting algorithm is not open 176 

to the public. Furthermore, the relationship between a specific activity and EE can vary due to 177 

external circumstances (additional loading, changes in altitude, temperature). Moreover, 178 

depending on placement, accelerometers are not capable of accurately detecting the intensity of 179 



activities involving the use of upper extremities and activities with limited hip movement (Prince 180 

et al., 2008). 181 

The inclusion of heart rate monitors may be of additive informative value, especially in activities 182 

involving isometric muscular contraction such as weight-bearing exercises and activities such as 183 

carrying a load, pushing, and rowing (Jakicic et al., 2004; Kozey Keadle et al., 2010). A 184 

combination of accelerometer analysis and heart rate monitoring may further improve the overall 185 

accuracy of energy expenditure and exercise intensity assessment in free-living situations. 186 

 187 

Activity Intensity 188 

The volume and intensity of PA and SB during a specific time interval (hours, days and weeks) 189 

may be obtained by classifying outcome metrics accumulated in a specific epoch length 190 

(integration of a filtered digitized acceleration signal over a user-specified time interval, more 191 

later in Data collection) with a set of cut-points. These cut-points function as thresholds for 192 

outcome metrics and are used to categorize activities as sedentary, light, moderate, vigorous or 193 

very vigorous activities (Migueles et al., 2017). 194 

These cut-points are generally validated specifically for a certain model of accelerometer, wear 195 

location, age group, and health status of the observed population (Taraldsen et al., 2012). 196 

Thereafter, applying cut-points to a specific data set requires following the same data collection 197 

and processing criteria that were applied in the original calibration study. 198 

 199 

Body position and posture 200 

Some accelerometers have the ability to distinguish between different body postures and 201 

positions using the inclination output from the accelerometer. By using both inclination and 202 

dynamic acceleration, these devices are able to classify basic posture by distinguishing 203 



sedentary activities from upright activities. The ability to identify different body positions and 204 

postures is reliant on the placement of the accelerometer on the human body (e.g. hip, wrist, 205 

thigh etc.). 206 

However, Carr and colleagues (2012) reported that the correct body position was identified in 207 

only two-thirds of the time during sedentary activity. This may be attributed to the fact that 208 

accelerometry analyzes MB in predefined epoch lengths (Ayabe et al., 2013). Especially small 209 

activities such as transitions from a sitting or supine position only last a few seconds and thus 210 

may be below the epoch length chosen and are therefore not resolved. New methods to address 211 

this using angle for posture estimation show promise (Vähä-Ypyä et al., 2018). 212 

It is also challenging to monitor the MB of certain study populations like toddlers, children and 213 

people with movement disabilities due to the occurrence of “non-standard” postures, such as 214 

kneeling and crawling (Davies et al., 2012). These postures are “non-standard” because the 215 

devices categorize body position as either sit/lie, stand, or step. The best way to quantify non-216 

standard postures and the transitions between postures is direct observation or proxy reporting. 217 

Additionally, time spent in a posture does not indicate the effort someone must exert to attain or 218 

maintain this posture or movement. 219 

  220 

Activity patterns 221 

To date, the majority of research has focused on associations between the amount of time spent 222 

in SB, LPA and MVPA and health. However, recent evidence from controlled experimental trials 223 

suggests that the pattern of MB may also be related to health outcomes, even when accounting 224 

for the total volume of activity (Keadle, Sampson et al., 2017). Apart from MB variables like 225 

duration, intensity and volume, activity pattern has been suggested as a MB outcome that may 226 

provide additional information beyond reports of activity counts or other outcome metrics 227 

(Cavanaugh et al., 2010). Especially short PA breaks between prolonged periods of SB are 228 



important to reduce the adverse somatic and mental health effects (Ekelund et al., 2016; Giurgiu 229 

et al., 2019). Thus, determining these intermissions is of relevance especially in organizational 230 

settings such as worksites and schools. In the current literature, the term bout is often used to 231 

describe a predefined amount of time without intermission in the same MB. However, with the 232 

emerging new possibilities of data analysis the term “activity pattern” refers to more than just the 233 

summation of bouts. 234 

Another very interesting measurable characteristic is the timing of different MB. Olds et al. 235 

(2011) got results that associated late bedtimes and late wake up times with an unfavorable 236 

activity and weight status profile. Matricciani et al., 2019 used GENEActive wrist-worn 237 

accelerometers to check for sleep duration, onset, offset, day-to-day variability and efficiency. 238 

Recent studies used accelerometer to assess associations between sleep duration, timing and 239 

regularity with measures of adiposity (Zhou et al., 2018) or physical activity (Xu et al., 2019). 240 

The development of population independent outcome metrics that appropriately assess 241 

prevalence of meeting MB guidelines is another new approach to quantify accelerometer 242 

outcomes. Metrics like “magnitude of acceleration above which a person’s most active 60 (for 243 

children) or 30 (adults) minutes are accumulated” are possibly comparable across datasets and 244 

a new tool for public health to report on guidelines (Alex V. Rowlands, Sherar et al., 2019).  245 

 246 

Evaluating the Accuracy and Precision of outcome metrics 247 

Somewhat surprisingly, it can be difficult to determine the accuracy and precision of monitoring 248 

devices in the setting it is typically used in—in population-based samples of free-living 249 

individuals about their daily life, at home, work/school, or in leisure-time. If one is interested in 250 

only assessing the total volume of PA, estimated as total activity counts or a sum of all bodily 251 

acceleration during the monitoring period, then less validation work may be needed. On the 252 

other hand, if you want to know the true validity of your estimates of step counts, sedentary time, 253 



EE or the duration of activity intensities or sleep, more rigorous validation studies are needed. 254 

For example, validation of EE can be performed by validating against oxygen intake determined 255 

by spiroergometry. 256 

It has become clear that the initial assumption that simple calibration studies using laboratory-257 

based approaches alone would be sufficient to develop accurate prediction algorithms for MB in 258 

real life settings was not always tenable. Prediction methods developed using only a small set of 259 

activities in controlled environment have not always produced valid estimates of the target 260 

behaviors in real life because they cannot cover the whole spectrum of MB that occurs. 261 

Additionally, high quality validation studies (described in more detail below) are actually relatively 262 

rare, especially with the use of free-living data. Many new prediction methods have been 263 

created, but few have been tested rigorously. Limited information about which of these prediction 264 

methods (e.g., moderate-vigorous intensity cut-points, Lee et al., 2019) are most accurate have 265 

led to much confusion in the field. To help clarify this area, and to identify studies that may 266 

provide better estimates of validity, Keadle and colleagues (2019) have recently proposed a 267 

framework outlining specific steps in the monitor development, calibration, and validation 268 

process. Drawing on frameworks employed for drug development, they proposed four phases of 269 

monitor development, validation, and application. The initial step (Phase 0) relies on bench 270 

testing and refining the technical reliability of the monitor. The next steps reflect monitor 271 

calibration or development of the prediction algorithms. Phase I testing includes simpler and 272 

more controlled laboratory-based testing of selected activities using fixed start/stop times and 273 

development of initial prediction method(s). Phase II testing extends the earlier phase and 274 

includes implementation of semi-free-living protocols including transitions between activities to 275 

further develop and refine prediction methods. Criterion measures such as direct observation 276 

and indirect calorimetry are integral to monitor calibration process, and these data are often 277 

used to provide initial validity information about new devices or prediction methods. However, 278 

since the data employed in these “validation” studies are derived from the same study population 279 

from which the prediction methods were developed, they may overestimate the actual validity of 280 



the method, when it is applied in a new study population. Phase III of the development process 281 

involves rigorous validation studies of previously developed prediction methods using strong 282 

criterion measures (i.e., indirect calorimetry, direct observation, doubly labelled water) in a study 283 

sample different from that used to develop prediction method (i.e., independent sample). 284 

Examples of strong Phase III validation studies include that of Toth and colleagues (2018) who 285 

evaluated the validity of step counts from a variety of devices in comparison to video direct 286 

observation; Lyden and colleagues (2014) who evaluated estimates of MVPA using a new 287 

machine-learning algorithm in comparison to direct observation; Chomistek and colleagues 288 

(2017) who compared a variety of ActiGraph prediction methods for energy expenditure to 289 

doubly labeled water; and Crouter et al. (2013) who compared estimates of MVPA duration 290 

using several ActiGraph prediction methods to indirect calorimetry. Implementation of strong 291 

criterion measures in independent samples of free-living individuals can provide clear evidence 292 

for most accurate precise methods, while reliance on Phase I/II can be useful but leaves much 293 

more uncertainty. Unfortunately, Phase III validation studies in most cases are relatively rare and 294 

only Phase I or II studies are available to evaluate a method of interest.  295 

The final phase (Phase IV) of the development process involves application and dissemination 296 

of methods that have successfully progressed through previous phases. As data processing and 297 

prediction algorithms become more complex, to minimize the requirements of specialized 298 

expertise, development of more user-friendly methods will be required for more effective 299 

dissemination and use by the research community.  300 

 301 

Limitations/Perspectives 302 

The accelerometry data should be both directly comparable and understandable in physical 303 

terms and valid over a broad range of target groups (Taraldsen et al., 2012). Unfortunately, only 304 

little data is available to provide evidence to determine the most valid variables for different 305 

purposes. 306 



A common problem with all acceleration monitors is processing and classifying the data into MB 307 

outcome variables. Specifically, different methods for handling the same data can result in 308 

significantly different values for the same outcome variables. Thus, although MB measurement 309 

with accelerometers may be considered “objective”, there are subjective elements such as 310 

setting the epoch length and cut points, and consensus guidelines for collecting and processing 311 

these device-based measured  data are lacking (Heil et al., 2012). Furthermore, contextual 312 

information related to the setting and type of activity in accelerometry is limited. Thus, 313 

information from other sources (i.e. behavior logs) and sensors should be integrated to better 314 

understand MB in different contexts and to increase the measuring comparability by imputing 315 

non-weartime (Sprengeler et al., 2017). This however will increase participant burden as well as 316 

evaluation effort from researchers. 317 

 318 

Study Design 319 

Choosing a monitor and monitor placement 320 

Choosing the “best” monitor for a given research, clinical, or intervention application depends on 321 

the characteristics of the MB one wants to measure; the type of study or intervention project at 322 

hand; the amount of burden that participants might accept; and the staff and resources available 323 

to administer the monitors. These resources include cost of the devices, logistics of monitor 324 

administration, data storage and analytic resources available, and increasingly specialized 325 

expertise to implement more advanced prediction methods/algorithms.  326 

The first question to ask when deciding on which monitor to use in a given setting and where to 327 

locate it on the body is—what aspects of human behavior and metrics from those behaviors 328 

should be measured? Different monitoring devices have different strengths and weaknesses for 329 

predicting different summary metrics. For example, thigh worn devices generally provide more 330 

accurate and precise measures of body posture than do waist- or wrist-worn accelerometers, 331 



although devices worn at each of these sites may output a summary metric for sedentary time. 332 

Additionally, there can be important differences in the accuracy and precision of a given metric—333 

even when they are derived from the same type of monitor. For example, more advanced 334 

pattern recognition methods are likely to be more accurate and precise than simple cut-points 335 

derived from the same device (Lyden et al., 2014). It is recommended to think about identifying 336 

the most valid algorithm to predict the specific metrics of interest, and then select the monitor 337 

and monitor placement that can capture data to feed into that algorithm. In other words, identify 338 

the summary metrics of primary importance for the study, select the monitoring device and 339 

placement that has adequate validity for the specific study population and study type. These 340 

choices also need to fit within the resources available for the project and be within an acceptable 341 

range of burden for the participants.   342 

Measurement time frame 343 

The time frame for data collection depends mainly on the research question, or the broad 344 

measurement objective. In planning a study, researchers have to decide how long the monitors 345 

should be worn each day (e.g., a few hours, waking day, 24-hours), how many days the data 346 

collection period should include, and whether seasonal variation in behavior may affect the 347 

results (Atkin et al., 2016; Matthews et al., 2001). Choosing a device or prediction method that 348 

has higher validity/accuracy should minimize systematic errors in the estimation of the PA 349 

metrics of primary interest. However, human behavior is inherently variable because humans are 350 

not robots that do exactly the same thing every day. This result in a natural day-to-day variation 351 

in behavior and our patterns of behavior often change with the seasons and from one year to the 352 

next. Thus, natural variation in behavior must be taken into account when designing 353 

measurement protocols and matching the protocol with the broad objectives of the study.  Study 354 

designs with shorter measurement time frames with a goal of estimating mean values within a 355 

study population (vs. individual prediction), such as population surveillance and intervention 356 

studies, may be more susceptible to the influence of seasonal variation and the measurement 357 

schedule may need to be designed to minimize these effects.  Short data collection periods 358 



within the day might be useful if the research aim is to measure the PA behavior in a specific 359 

setting or situation such as during physical education in schools. The waking day, or time out of 360 

bed, is often used for studies of SB and PA, while a 24-hour protocol is needed if sleeping 361 

behavior is part of the research question as well. In addition, wearing the device for 24 hours 362 

increases recording time as well as wear time compliance, thus a recording time of 24 hours per 363 

day is recommended when possible (Migueles et al., 2017; Tudor-Locke et al., 2015). However, 364 

from an ethical perspective it should be reconsidered carefully if a 24 hours measurement period 365 

is justified if only daytime data is of interest. 366 

In terms of the number of days of monitoring needed, this choice may depend on the study 367 

objectives. If the goal is to estimate mean values in a population for surveillance purposes, in 368 

theory only a single day of observation is needed. Migueles and colleges (2017) recommend a 369 

minimum of four days of valid data (wear-time of at least 8-10 hours per day), while Trost and 370 

colleagues (2005) claim that MB patterns can be determined with only 3-4 days of measurement 371 

with over 80% reliability. The general recommendation to capture seven consecutive days of 372 

data collection is typically a feasible approach for assessing habitual MB patterns in children and 373 

adults (Addy et al., 2014; Barreira et al., 2015; Trost et al., 2000). Sampling 7-day periods 374 

increases the chance of capturing an adequate number of valid days, meaning a compromise 375 

between sample size and reliability (Migueles et al., 2017), for meaningful data analysis and it 376 

enhances the opportunity that week and weekend days are part of the data collection period 377 

(Addy et al., 2014; Trost et al., 2005). Interestingly, Wolf-Hughes and colleagues (2016) noted 378 

that purposeful sampling of weekend days can lead to biased estimates of population mean 379 

values compared to random sampling, raising questions about the common practice of requiring 380 

fixed numbers/types of days in our analyzes. There may be no right or wrong approach and for 381 

some purposes including participants with only a single day of observation is appropriate, while 382 

studies with other goals may need to ensure more days and specific types of days should be 383 

included in the analysis.    384 



The research community has carefully examined the number of days or observation required to 385 

achieve adequate reliability for short-term measures (e.g., ICCs > 0.8). However, less work has 386 

been done to understand variation in behavior from one administration period (e.g., one 7-day 387 

period) to the next. In general, studies that examined this type of variation in behavior have 388 

observed relatively high reliability from one 7-day administration to the next in older women from 389 

the United States (Keadle, Shiroma et al., 2017) and middle-aged and older adults in Germany 390 

(Jaeschke et al., 2018), indicating that 7-day administration periods reflect relatively long-term 391 

average values for PA and SB in the population.   392 

Interestingly, behavioral variation in measures, conceptualized as random fluctuations around 393 

long-term average behavior (i.e., random measurement error), has a differential impact on 394 

statistical results depending on whether the MB variable is used as a dependent or independent 395 

variable in models (Hutcheon et al., 2010). When MB variables are used as dependent 396 

variables, random error results in no bias in the model-based estimates, but does reduce their 397 

precision (i.e., standard errors increase). In contrast, when the MB variables are used as 398 

independent variables in our models, random error can introduce bias into the model-based 399 

estimates of association (i.e., attenuated beta coefficients) – a phenomenon called regression 400 

dilution bias (Elliott et al., 1990).  This effect should be considered when interpreting analysis 401 

including an independent MB variable. 402 

  403 

Studies with Repeated Measurements 404 

Study designs, like interventional or longitudinal studies, that require repeated measurements 405 

need some additional considerations in the planning stages to enable the best comparability of 406 

the device-based measured MB data collected over time. The monitor administration methods, 407 

including wearing position and periods, as well as device settings (e.g. sampling frequency) 408 

should remain as consistent as possible within each administration period. Additionally, the wear 409 

time determinations and metric prediction methods applied to the raw data should be consistent 410 



over time. Furthermore, external factors which could influence the MB, but that are not part of 411 

the research question, should be standardized by consistent and purposeful sampling over time. 412 

For example, sampling MB with attention to season of the year and/or the days of the week 413 

monitored is important to minimize variation due to these factors. A documentation of all 414 

procedures and decisions made is recommended, e.g. in form of a standard operation procedure 415 

(SOP). 416 

  417 

Measurement Reactivity 418 

Wearing an accelerometer might influence the behavior of the participants which is known as 419 

measurement reactivity (Baumann et al., 2018). Studies showed that participants modified their 420 

PA pattern by the presence of an accelerometer. For instance, in an adult sample a small portion 421 

of SB was changed to LPA. In another study, Clemes and colleagues (2008) compared step 422 

counts of participants that knew they were being tracked with those of participants that did not 423 

know and found a significant increase in the first condition. Devices that display the archived 424 

activity or sedentary time might even enhance the effect and motivate participants to change 425 

their behaviour. However, if the typical activity behavior should be measured, a modification of 426 

the normal activity pattern is not wanted and could bias the results. Therefore, it is 427 

recommended to give only as much information as necessary about the outcome measure (e.g. 428 

explaining “measuring activity” rather than “measuring steps” or “measuring movement at the 429 

hip”) and use devices which do not display any results to reduce the bias of measurement 430 

reactivity. Furthermore, longer measurement periods as well as the exclusion of the first 431 

measurement day from data analysis can counteract bias due to measurement reactivity 432 

(Dössegger et al., 2014). 433 

 434 



Data collection and processing 435 

It is critical to document all technical decisions for comparison purposes. 436 

Data collection 437 

Three decisions need to be made before collecting accelerometer data.  438 

First, it is a basic requirement to measure and store the accelerometer raw data. In contrast to 439 

previous decades that required accumulating data in formats like counts, the storage capacity of 440 

accelerometer devices is not limited as emphasized ten years ago (Ann V. Rowlands & Eston, 441 

2007). The storage of raw data enables researchers to process the data offline with different 442 

algorithms (analyzing body position with static components, time course of the magnitude of 443 

activity, time-frequency analyzes) or to reanalyze the data with algorithms newly developed in 444 

future. The measurement range (e.g. +/-8g) and resolution (e.g. 0.01 g respectively 0.1 m/s² per 445 

bit) depends on the characteristics of the Micro-Electro-Mechanical Systems (MEMS) sensor 446 

selected by the manufacturer of the accelerometer and covers usually the full range of naturally 447 

occurring human acceleration values. Sampling frequency (defining the temporal resolution) 448 

must be at least twice as high (Nyquist Frequency or Nyquist-Shannon sampling theorem 449 

(Shannon, 1949)) as the highest movement frequency component to avoid aliasing effects (this 450 

means generating virtual frequency components when the analogue accelerometer signal is 451 

digitized). Human movement frequencies can reach values of 10 Hz in writing (Teulings & 452 

Maarse, 1984) or 10.5 Hz in piano playing (Furuya & Soechting, 2012). Considering these two 453 

examples, a sampling rate of 21 Hz (2 x 10.5 Hz) is required to assess the movement frequency. 454 

For the assessment of MB, a sampling frequency of 30 Hz normaly meets the Nyquist criterion. 455 

If the magnitude of the activity or the movement pattern (e.g. for biomechanical analyses) is in 456 

the focus of interest the sampling rate must be multiple times higher, whereas the accuracy of 457 

the measured pattern increases with sampling rate (accuracy – sample-rate trade-off; e.g. a 458 

sampling rate of five or ten times higher than the movement frequency results in a more or less 459 

amount of distortion of the measured signal. Therefore it depends on the research question how 460 



precisely a movement pattern should be measured, respectively which grade of distortion is 461 

acceptable to increase measuring time (depending on the storage capacity of the device). Kang 462 

& Rowe, 2015 developed a method for an automated, task specific optimisation of sampling 463 

rates. 464 

Secondly, like mentioned before it needs to be decided how many days or weeks need to be 465 

measured. This decision mainly depends on the study question (for a detailed discussion see 466 

Study Design and Measurement Objectives).  467 

The third issue is the epoch setting, i.e. the aggregation level/period length used to analyze the 468 

raw acceleration.  Aggregation into epochs is necessary to feed raw data into various prediction 469 

methods, whether they are equations or simple cut-points.  Particularly in children, whose MB 470 

pattern is known to be spontaneous and intermittent, an epoch length between 1-5 seconds, or 471 

the shortest possible epoch length is recommended (Banda et al., 2016; Bornstein et al., 2011; 472 

Heil et al., 2012; Kettner et al., 2013; Migueles et al., 2017; Sigmund et al., 2014). In contrast, 473 

long epoch setting such as 60 seconds are known to underestimate MVPA in children 474 

(Guinhouya et al., 2013). Here it must be noted that with longer epoch lengths, short vigorous 475 

PA intervals are more often detected as moderate PA and short intervals of moderate PA are at 476 

the same time only detected as LPA. The accelerometer studies chose to use an EL of 60s due 477 

to the smaller storage capacities in the early years. With better storage capacities today, smaller 478 

EL are not a problem any more and highly recommended. The optimal epoch length in terms of 479 

health outcomes is as of yet unknown. 480 

 481 

Context Information 482 

Using diaries or questionnaires assessing the MB context is essential for specific research 483 

questions. For example, the simultaneous application of self-reports and device-based 484 

measurements enables to reliably quantify the volume/intensity of MB within a specific time 485 

frame such as working or school hours, and timing of organized sports (Helmerhorst et al., 2012; 486 

Reilly et al., 2008; Sprengeler et al., 2017; Westerterp, 2009). If schedules are available, this 487 



information can be gathered on groups’ level in a less time-consuming manner, e.g. school 488 

classes (Sprengeler et al., 2019). If they are not available the use of wear-time-protocols or log-489 

books needs to be considered (Burchartz et al., 2020). The combination of self-reports and 490 

device-based measures can enable a comprehensive understanding of  MB  (Sallis & Saelens, 491 

2000). The accelerometer can only capture accelerations to create an activity profile about the 492 

frequency, intensity, and duration of the activity when it is worn, so detailed information about 493 

the activity type, quality and context is needed for a complete understanding of the MB 494 

assessed.  495 

 496 

Non-wear time 497 

Since most accelerometers are not waterproof (a few exceptions are the latest sensors from 498 

GENEActiv and Axivity), essential amounts of aquatic PA will not be measured. In this case or 499 

when the participants forget to wear the accelerometer, the non-wear-time must be identified (via 500 

self-report or algorithms). In general, algorithms for detecting non-wear times consist of time 501 

intervals with successive values of the lowest valid acceleration with or without a tolerance of 502 

several minutes in which small accelerations are allowed, with optional windows of zero 503 

acceleration before and after this tolerance. The algorithm of Barouni et al. (2020) additionally 504 

analysed respiration pattern to differentiate wear from nonwear time. Toftager et al. (2013) 505 

recommend that the different algorithms should be used only for the specific subgroups in which 506 

they have been validated. There are different algorithms for different age groups and more 507 

studies are needed to test the accuracy of each algorithm for these different age groups 508 

(Migueles et al., 2017). 509 

The non-wear-time data need to be excluded from the data analysis or it will likely be 510 

categorized as SB. This introduces a bias as non-wear-time normally is associated with some 511 

kind of activity with an intensity higher than SB. As mentioned before 24-h movement recording 512 

require different methods of data analysis since during sleeping the movment is even lower than 513 

during SED (Chastin et al., 2015). When devices are not worn during sports activities, imputing 514 



MVPA for the duration of sports activities should be considered with caution. It is highly unlikely 515 

that the entire duration is spend doing MVPA. It is not recommended to enter the complete time 516 

spent during a sport as MVPA as stated in the diary. An imputation of 50% of the reported 517 

duration is a good solution if the average PA value is to be analyzed from an epidemiological 518 

point of view, particularly in children (Fairclough & Stratton, 2006; Hollis et al., 2016; Sprengeler 519 

et al., 2019). 520 

 521 

Compliance 522 

Trained study staff should hand out the devices and motivate the participants to wear the device 523 

at all times. It is best if the participants are introduced how to wear the device correctly. 524 

Important points of wearing the accelerometer (placement, wearing times, data protection and 525 

return of the device) should be summarized in an information sheet to be handed out to the 526 

participants. In particular, concerns can be dispelled by pointing out that only an activity sensor 527 

(accelerometer) is present and used to detect MB (as opposed to camera, GPS, WLAN, 528 

Bluetooth or similar). In some countries, it is possible to get an ethics statement to collect GPS 529 

data – even for children, which provides rich data sets on MB.  530 

In some sports, it is prohibited by the organizing association/organization to wear electronic 531 

devices for recording and real-time evaluation of activities. Additional information sheets with 532 

further information about the study for teachers, trainers, coaches, parents or employers, 533 

depending on the setting in which the study takes place, should be provided, too. This 534 

information may prevent the devices from having to be removed at sporting events or during 535 

work/school that would result in data loss. When returning the device per mail, an addressed 536 

and stamped envelope should be provided to the participants to make it as easy as possible for 537 

them to send it back. A follow-up protocol by telephone if the devices were not returned can be 538 

implemented (Burchartz et al., 2020). The already recommended 24h recording time can also 539 

increase compliance. On the one hand, it provides a comprehensive picture of activity during 540 

waking hours, sleep patterns and inactive phases. On the other hand, the compliance is better, 541 



as the participants do not have to pay attention to taking off the device at certain times (e.g. 542 

sleep). 543 

 544 

Current developments in statistical analysis 545 

Acknowledgement of the intrinsic co-dependency between human behaviors 546 

during a finite amount of time 547 

The measurement of human behavior such as PA, SB and sleep with accelerometer devices 548 

results in data sets representing observations of a finite amount of time, e.g. 8h, 12h, 24h or 7 549 

days. Within the observed time frame, the amount of an individual’s behavior sum up to 100% 550 

and an increase in one behavior ultimately leads to a decrease in at least one of the other 551 

behaviors. These circumstances have important implications for interpreting the results from the 552 

statistics used and the interpretation of the results in relation to health benefits. 553 

Standard procedures of multivariate statistical analyzes (e.g. linear regression, ANOVA) assume 554 

that time spent in one behavior is independent of the time spent in any other behavior and that 555 

the amounts are potentially infinite. However, accelerometry always deals with finite amounts of 556 

time and applying, for example, a standard linear regression technique may in some cases lead 557 

to multicollinearity issues. Over decades, research on human behavior in relation to health most 558 

often has not taken advantage of the inter-relationships between time-linked behaviors by 559 

examining the specific behavior of interest in isolation, rather than investigating the 560 

dependencies that do exist (Mekary et al., 2009). Recently, several research groups have 561 

worked on different strategies to acknowledge the co-dependency between behaviors, and to 562 

apply more sophisticated statistical approaches, such as Isotemporal Substitution Model (ISM), 563 

Compositional Data Analysis (CoDA), Multivariate Pattern Analysis or Bayesian Dirichlet 564 

distributions (Aadland et al., 2018; Chastin et al., 2015; Mekary & Ding, 2019; van der Merwe, 565 

2018). In October 2019 an international workshop took place in Granada organized by Francisco 566 

Ortega with the focus on statistical methods to analyse accelerometer-measured physical 567 



activity. As a result of this workshop, there will be a detailed consensus paper on analytical 568 

approaches to assess associations with accelerometer-determined physical behavior in 569 

epidemiological studies. This will give an expert description and discussion of currently available 570 

statistical approaches to use in epidemiological studies as well as highlighting their strengths 571 

and limitations. 572 

 573 

Isotemporal Substitution Model / Compositional Isotemporal Substitution Model 574 

The ISM was originally developed by Mekary and colleagues (2009) to analyze data of SB and 575 

PA. The overall aim of the ISM is to estimate the effect of replacing one specific behavior with 576 

another behavior for the exact same amount of time. With a setup of different models, the 577 

association with a specific health outcome variable (e.g. BMI, biomarkers) for a predicted 578 

replacement of one behavior with another can be estimated. The ISM approach is able to control 579 

for all relevant behavior-related variables and the observed total time. It is important to note that 580 

in most cases, absent multiple measure of behavior over time, that the association only 581 

describes the predicted influence of changing behavior rather than the effect of an actual 582 

change.   583 

 584 

Compositional Data Analysis 585 

The CoDA approach was developed by Chastin and colleagues (2015) to analyze PA and SB 586 

data. CoDA accounts for the constraint structure of the data, namely the finite amount of time of 587 

e.g. 24h. Such data can only exist in a specific constraint geometric space, the so-called 588 

simplex, according to the Aitchison geometry (Aitchison, 1982). However, standard statistical 589 

techniques apply the Euclidean geometry and assume potentially infinite data. To analyze data 590 

of compositional nature, the data first has to be expressed as so-called isometric log ratios (ilr). 591 

Compositions of ilr-coordinates can then by analyzed in the Euclidean geometry with standard 592 



statistical techniques. CoDA can be applied with the aim to use the composition of human 593 

behaviors as an explanatory variable or to predict the change in specific health related outcome 594 

variables (e.g. BMI, biomarkers) in relation to behavior change. Dumuid and colleagues (2018) 595 

have recently developed and tested a compositional ISM in an empirical study. 596 

 597 

Multivariate Pattern Analysis 598 

Multivariate pattern analysis is widely used in pharmaceutical and metabolomics studies and has 599 

recently been adapted by Aadland et al., 2018 to analyze accelerometry-derived SB and PA 600 

data in relation to cardiometabolic health. Multivariate pattern analysis accounts for the 601 

multicollinearity of SB and PA data and provides a solution to analyze a more detailed spectrum 602 

of PA intensities in comparison to the established, but rather broad overall summary measures 603 

(e.g. SB, LPA and MVPA). Furthermore Aadland, Kvalheim et al., 2019b showed that the 604 

explained variance of metabolic health was tenfold when applying the full spectrum of PA 605 

intensities from three-axis in comparison to the traditional MVPA summary derived by counts per 606 

minute from the vertical axis only. 607 

 608 

Bayesian Dirichlet distribution 609 

For several research questions, it may be of interest that a composition of human behaviors 610 

such as SB and PA is the dependent variable. A Bayesian approach using a Dirichlet distribution 611 

is suggested (van der Merwe, 2018), which accounts for the compositional nature and allows for 612 

one or more independent variables in a regression model. As an empirical example, how player 613 

positions in team sports affect the amounts of standing, walking and running is examined - 614 

measured via accelerometry - during the game, which can be of great importance in sport 615 

science and practical coaching situations. 616 

 617 



Practical suggestion 618 

The research community has not yet reached a consensus on the most promising approach, and 619 

both, traditional isotemporal substitution models and compositional ISM, have tended to show 620 

broadly similar results (Dumuid, Stanford, Pedišić et al., 2018). Mekarey and Ding (2019) argue 621 

in their comment article in relation to a compositional ISM study by Biddle and colleagues (2018) 622 

that their original ISM has several advantages compared to the compositional ISM such as a 623 

straightforward interpretation and an intuitive articulation of the results with regard to PA 624 

guidelines. The original ISM uses absolute values of time spent in a specific behavior instead of 625 

relative values that are used in the Compositional ISM by Biddle et al. Biddle et al., 2018, 626 

Dumuid et al. (2018) and Fairclough et al. (2017). Aadland, Kvalheim et al., 2019a compared 627 

multiple linear regression, CoDA and multivariate pattern analysis in an empirical study. 628 

Substantial differences for the associations between PA intensities and cardiometabolic health 629 

were identified and the authors argue that multivariate pattern analysis should be considered in 630 

future studies. 631 

Each approach has its strengths, limitations and practical relevance. Therefore, researchers 632 

must carefully inspect the approach that fits best to their research aim and data. Helpful 633 

guidelines for the analytical process are available: Mekary et al., 2009 provide detailed 634 

information regarding the applied substitutional model and other related models in the appendix; 635 

Chastin et al., 2015 provide detailed information regarding the compositional nature of sleep, SB 636 

and PA  and Dumuid, Stanford, Pedišić et al., 2018 provide a description and sample R code in 637 

the Supplementary Material accompanied to the respective article. Aadland, Andersen et al., 638 

2019 provide a tutorial that guides the reader on how to conduct multivariate pattern analysis 639 

with respect to PA and health. van der Merwe, 2018 also provides a description, sample R code 640 

as well as an example data set to adapt his Bayesian approach to handle compositional data in 641 

regression modelling. 642 



It is important to note that the application of these statistical approaches is rather complex in 643 

comparison with standard procedures of multivariate statistical analyzes (e.g. linear regression, 644 

ANOVA). Researchers are therefore encouraged to seek advice from appropriate experts. 645 

 646 

Future Directions 647 

Algorithms for intensity detection and validation s tudies 648 

Traditionally, the intensity of PA determined by accelerometers is determined by the 649 

accumulated number (the outcome metric, sometimes referred to as “counts”) of threshold 650 

exceedances (so-called cut-points) per time unit (epoch length). The raw signals of the 651 

accelerations measured by the accelerometer are processed and evaluated by various methods. 652 

Various validation studies for across age groups and devices determine cut-point values for SB, 653 

light, moderate and vigorous intensities (Migueles et al., 2017; Schaefer et al., 2014). This has 654 

proven to be successful, as the intensities for different age groups and different target groups 655 

differ greatly from each other. Due to the large number of available devices, however, the 656 

number of intensity algorithms is also very high. So far, there are no uniform international 657 

standards that specify how validation studies should be conducted for the different target groups, 658 

so that the results calculated afterwards would be comparable. Relatedly, an unanswered 659 

question using epoch lengths is if and how measuring at smaller epochs affect estimates of PA 660 

minutes and meeting PA guidelines.  661 

However, we recommend not using device-based outcome metrics anymore because it is not 662 

always known or reported how they are computed. Many commercially available devices keep 663 

these methods for count calculation proprietary. Newer device manufacturers (e.g. activpal, 664 

movisens, GENEActiv), mostly with a scientific background, have therefore increasingly opted 665 

for an open science approach, making comparability between devices possible. Future intensity 666 

calculation algorithms should be based on raw data from accelerometers and be open for the 667 



public. This open science approach would facilitate studies to compare their data with raw data 668 

from other studies by applying the different algorithms to their own raw data set. 669 

This is why pattern recognition algorithms are emerging in the field right now. Due to the amount 670 

of raw data available for evaluation, different algorithms, for example from the field of speech 671 

recognition, are being tested in the last years to be used to find MB patterns in accelerometer 672 

data. Different studies and researcher like Farrahi et al. (2019), Smith et al. (2019) or the group 673 

around Stewart Trost (Ahmadi et al., 2019; Tong et al., 2019) are currently working on using 674 

supervised learning algorithms as well as deep learning and convolutional neural networks to 675 

predict activity patterns and energy expenditure from body worn accelerometers. 676 

 677 

Sleep detection 678 

As sleep is related to many health outcomes, future studies should also use the opportunities of 679 

accelerometers to assess different sleep outcomes, like sleep duration, sleeping habits including 680 

sleep movements, sleep-related health issues like apnea, or daytime naps. The differentiation of 681 

sleep and sedentary behavior can be difficult at times (e.g. the difference between lying on the 682 

couch watching TV and sleeping on the couch in front of the TV). An important point to consider 683 

is the positioning of the accelerometer. Positioning the sensor on the thigh makes it possible to 684 

detect different body positions very well. Smith et al (2019) validated different body placements 685 

of accelerometer and found that the hip may be superior for sleep timing and quantity metrics, 686 

whereas the wrist may be superior for sleep quality metrics. In the future more studies like the 687 

one by Barouni et al., 2020 are needed that differentiate between wake, sleep and nonwear 688 

periods. Studies that confirm the best placement for accelerometers during PA, SB and sleep 689 

like (Leppänen et al., 2019) are needed as well. 690 

 691 

Timing of PA 692 

Sleep/active cycles 693 



Moreover, the inclusion of sleep pattern assessment can provide deeper insights into 694 

sleep/wake patterns of participants. After achievement of more accurate algorithms for sleep and 695 

daytime nap detection (potentially by inclusion of other sensors, or measuring heart-rate 696 

variability), gaining deeper insights into inter-individual daily routines and making it possible to 697 

more precisely determine the relationship between active and sedentary versus sleep times 698 

should be the focus of future research. 699 

Activity throughout the day 700 

Moreover, accelerometer use makes it possible to examine different activities regarding duration 701 

and intensity over the whole day (if the device is worn throughout the whole day). Using this 702 

data, researchers can make specific statements about when, for how long and in which intensity 703 

a person is active. Here, daily patterns can be examined, i.e. if someone is walking to work 704 

every day at the same time, or if someone has any activity routines. This also allows the 705 

investigation of within-day transfer or compensation effects of PA or SB. 706 

 707 

Non-wear-time protocols via Ambulatory Assessment 708 

The manual input of non-wear-time protocols to the PA data is too time consuming and distorts 709 

the device-based collected data set with subjective assessments of activity. A more sustainable 710 

approach is to use ambulatory assessment in combination with 24h recording. Triggered e-711 

diaries can ask the subjects about activity right after certain events have been detected (device 712 

not worn, periods of high activity or SB). This means that non-wear times and especially reasons 713 

for that can also be recorded relatively precisely. This allows at least the recording of PA while 714 

the device was not worn and the participant can be given feedback on how much activity was 715 

not recorded as well as the activity type and context. Due to the continuous technical progress 716 

and the constantly decreasing size of the sensors, the simultaneous use of several sensors will 717 

be conceivable in the future. This could combine the advantages of different carrying positions 718 

and additionally improve the detection of certain MB (Reichert et al., this issue) 719 

 720 



Smart Patches and Clothes 721 

To encounter compliance problems and the difficulties in comparing data inter-individually due to 722 

different wear-times, body-mounted sensors, smart patches or smart clothes are promising 723 

attempts. This technology also has the potential to be used in automated activity profiling 724 

systems which produce a continuous record of activity patterns over extended periods of time 725 

(Preece et al., 2009). However, a 24-hour assessment faces multiple challenges: First, 726 

adherence of participants must be ensured. People are more likely to wear a monitoring device if 727 

it does not interfere with their daily habits and activities (Evenson et al., 2015). A hip-worn 728 

device, for example, is not feasible for tight clothes; a wrist-worn device is not suitable for a 729 

craftsperson wearing gloves, and either device is not suitable for a swimmer if it is not 730 

waterproof. A promising approach to encounter these issues is the establishment of more 731 

(validated) user-friendly equipment, like (waterproof) smart patches (Schneller et al., 2017). A 732 

microchip gathering tri-axial acceleration data (and possibly more) mounted in a small patch that 733 

can easily be adhered at any body location. The first commercial products (e.g. biobeat patch or 734 

Moio.care smart patch) are already on the market. At present, these products are still associated 735 

with high costs for individual smart patches. In addition, these devices can often only be used 736 

once or a limited number of times and must then be disposed which produces a lot of waste and 737 

is not as sustainable as reusable devices such as typical accelerometers. Reusable devices that 738 

are attached to the body with bio patches are preferable to one-use devices. Due to the 739 

technological development, the sensors and device sizes are getting smaller and smaller and 740 

are therefore easier to use. A promising approach into this direction has already been made by 741 

leading sports manufactures by inserting such microchips into sportswear (e.g. shirts like the 742 

Hexokin Smart Shirt, or shoes, like the Digitsole Smartshoe, or the Skiin smart underwear) which 743 

can be used more than once. But even smart clothes still have a very limited lifespan, moisture 744 

during washing and the strain on cables and sensors caused by movement limit the length of 745 

time they can be used. A potential future direction is developing sub-dermal accelerometer 746 

computer chip implants. The potential in terms of data collection is great; however, this does 747 



raise major ethical issues as subdermal microchips cannot easily be removed. This would limit 748 

human rights with respect to privacy and making them to “transparent humans” with no chance 749 

to escape a permanent (possible) observation through data gained within these chips. 750 

 751 

Combining accelerometry with other PA assessment me thods 752 

To obtain more comprehensive pictures of PA, SB and sleep behavior it is recommended to 753 

integrate accelerometry with ecological momentary assessment (EMA). EMA is a reliable 754 

instrument to gain Big Data, allowing to make differentiated assumptions about peoples’ 755 

everyday lives due to high-resolution data points which can be obtained by 756 

a) collecting data from large numbers of subjects using e.g. mobile phones and by 757 

b) assessing a large number of different measures from subjects (e.g., GPS, heart rate, heart 758 

rate variability, electrodermal activity, context, etc.; Hesse et al., 2015; Hidalgo-Mazzei et al., 759 

2016). Both approaches can help to understand real life settings in different ways and are 760 

valuable approaches in various science topics (Berger et al., 2017). A detailed discussion of this 761 

approach can be found in the Ambulatory Assessment Paper (Reichert et al., this issue). 762 

 763 

Conclusion 764 

Accelerometry is the “state-of-the-art” when it comes to device-based measurement of MB. The 765 

advantage of accelerometry is that it can collect dense data over a long period of time allowing a 766 

detailed examination of daily behavior. From this multidimensional data, a great number of 767 

metrics can be derived to capture and describe the unique aspects of MB.  768 

Besides PA, SB and sleep are the most common behaviors being assessed. Various carrying 769 

positions and sensors are available for the different areas of application.  The complex and 770 

dense data resulting from device-based measured MB as well as the various options regarding 771 

devices, data collection and data analysis can also be a challenge for researchers. In addition, 772 



the different approaches used in studies can lead to limited comparability and reproducibility of 773 

study results. 774 

The numerous considerations mentioned lead to concluding that: 775 

� A recording time of 24 hours per day is recommended for at least seven days (Migueles 776 

et al., 2017; Tudor-Locke et al., 2015); 777 

� Consider existing validation studies when planning one's own studies and to document 778 

as many technical decisions as possible when recording and evaluating data to enable 779 

data comparison across studies; 780 

� There is a critical need for better validation studies (phase III studies in the Keadle et al., 781 

2019 Framework). They are needed to clarify questions about the accuracy of various 782 

prediction methods, 783 

� Determine format and sampling frequency of acceleration data (a sampling frequency of 784 

30 Hz normaly meets the Nyquist criterion) the recording time (a 24h recording of at least 785 

one complete week using the shortest possible epoch length (1s) is recommended) 786 

which can be converted to longer epoch lengths if needed,  787 

� In addition to the accelerometer, assess the type of activity performed during non-wear 788 

time and reasons for non-wear of the devices for a complete understanding of the PA 789 

behavior assessed;  790 

� There are algorithms that can determine non-wearing periods, but ecological momentary 791 

assessment (EMA) methods are endorsed to capture contextual information and 792 

activities during non-wearing periods as mentioned in (Reichert et al., this issue). 793 

 794 

Accelerometer-based PA measures are often assumed accurate and to reflect actual PA 795 

behaviors. However, the values from accelerometers are still estimates and in the absence of 796 

satisfactory agreement with ground-truth gold standard measures of free-living PA should not be 797 

interpreted as ‘actual’ PA levels. The research community has not yet reached a consensus on 798 

the most promising approach in statistical analyses of accelerometer data, besides that the 799 



inherent multicollinearity within data based on human behavior during a finite amount of time 800 

should be carefully considered. Each approach has its strengths, limitations and practical 801 

relevance. Therefore, researchers must carefully inspect the approach that fits best with their 802 

research aim and data.  We propose that researches choose their method based on the most 803 

valid approach for their given behavioral metric. From that perspective, the method chosen will 804 

dictate the device type and prediction algorithm. 805 

 806 

In exercise psychology, accelerometry is a valuable tool for experimental and correlational 807 

research as well as for developing individualized training programs. Besides gaining information 808 

like duration, length and height and triaxial acceleration within a passed training session, 809 

accelerometer data is also used in post-match analyses in team sports. For (self-) observational 810 

purposes, accelerometer-based information can be helpful in two main areas focused by 811 

exercise psychology: in motivation of people to engage in any kind of exercise, or athletes; and 812 

in barrier management. Here, a combination of accelerometry with other features (like EMA, 813 

diaries) is expected to be the means of choice. Moreover, individual feedback methods can be 814 

used to enhance enjoyment of exercise or training.  815 

The best practices section of this paper provides valuable information also for exercise 816 

psychologists and points to further literature to reach a fundamental understanding of 817 

accelerometer use in exercise psychology. It should be used as a starting point for exercise 818 

psychologists that consider the use of accelerometers. The future directions section shows 819 

opportunities for further research and especially ambulatory assessment shows great promise in 820 

the field of exercise psychology. 821 

 822 

The goal of this report is to help the end-user of MB monitoring devices wade through 823 

sometimes excessive technical details of accelerometry to outline best practices in selecting and 824 

applying devices to quantify three major behavioral categories of common interest to the 825 

research community: PA, SB, and sleep. There are still many challenges, but we also have 826 



exciting developments ahead of us in the future. Together with the technical developments in 827 

sensors which will be even smaller and more accurate. 828 

  829 
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Highlights 

• 24h objective recording of physical activity in real life over a period of several days and 
weeks. 

• Can easily be used in various applications like interventions, epidemiology and 
surveillance. 

• Together with the technical developments in sensors (smaller, more accurate and longer 
recording, integrated in clothing) accelerometers can collect even more data to evaluate. 
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