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1 Introduction

The properties of heavy quarks, of mass M , inserted into a plasma, at a temperature T , can

be characterized by a number of dispersive or mass terms (F (v) ≃ Mrest + Mkinv2/2 + . . .)

and absorptive or rate coefficients (diffusion constant, kinetic and chemical equilibration

rates). In the setting of a heavy ion collision experiment, the hierarchy T ≪ M is not

necessarily drastic, particularly for charm quarks. If we determine physical quantities as

a series in T/M , it may then be asked how large such corrections are, and whether they

could help for their part to explain the empirical observation that heavy quarks, such as

those identified as D mesons after hadronization, appear to interact efficiently with a hot

QCD medium [1].

In the case of dispersive corrections, the nature of the series in T/M is well understood

at low orders of perturbation theory. Computing thermal effects in unresummed pertur-

bation theory leads to a mass correction of relative magnitude O(αsT
2/M2) [2], however

taking into account plasma effects, particularly Debye screening, shows that the dominant

correction is only suppressed by O(α
3/2
s T/M). For Mrest this is known as the Salpeter

correction (cf., e.g., ref. [3]), and a similar effect also exists for Mkin [4]. The purpose of

the present investigation is to study the nature of the series for the case of rate coefficients.
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The physics of heavy quark diffusion and kinetic equilibration is closely related to that

of Brownian motion, described by the Langevin equation. In the non-relativistic limit,

this physics is described by three quantities: the diffusion coefficient, D; the momentum

diffusion coefficient, κ; and the drag coefficient, η. As already pointed out by Einstein,

these quantities are related to each other for T ≪ Mkin, in particular D = 2T 2/κ and

η = κ/(2MkinT ). Which of the quantities is viewed as “primary” depends on the context:

for any mass, D can be expressed through a Kubo relation which in principle permits for

a lattice study; in the large-mass limit, κ can be expressed through a Kubo relation which

permits for a lattice study whose systematic errors should be better under control than for

D; in the large-mass limit, η can be interpreted as a kinetic equilibration rate which leads

to a direct physical interpretation (its inverse can be compared with the medium life time).

The challenge with a non-perturbative determination of D is that the corresponding

spectral function shows a very narrow transport peak in the large-mass and/or weak-

coupling limit, of width η ∼ α2
s T 2/M [5]. A controlled reconstruction of a spectral function

from imaginary-time data is a hard problem, and practically impossible in the presence of

such sharp features. Following a suggestion in ref. [6], the possibility to rather extract κ

was worked out in ref. [7]. In particular, it was argued that the corresponding spectral

function contains no sharp transport peak, being instead flat at small frequencies. This

should allow for a somewhat controlled extraction of the transport coefficient, and indeed

many measurements have been carried out in recent years [8–13], supplementing LO [14]

and NLO [15] perturbative computations.

The definition of κ in ref. [7] is related to the standard Kubo relation for the diffusion

coefficient, D. Whereas D is obtained as a transport coefficient (i.e. height of the transport

peak) related to the 2-point correlator of the vector current (which is denoted by Ĵi), the

idea of ref. [7] is to instead consider the tail of the transport peak. Formally, this is

obtained by multiplying the vector spectral function by ω2, where ω is frequency. Inside

a Fourier transform, ω can be converted to a time derivative, so this means that we are

really considering the two-point correlator of an “acceleration”, dĴi/dt, rather than of a

“velocity”, Ĵi. The correct normalization requires that the whole is multiplied by M2,1

and divided by the quark number susceptibility, χ, which then led ref. [7] to define

κ(M)(ω) ≡ 1

3χ

∫ ∞

−∞
dt eiωt

∫

x

〈1

2

{

F̂ i(t, x ) , F̂ i(0, 0 )
}〉

, (1.1)

where a sum over the spatial indices i is implied, and F̂i ≡ MdĴi/dt. It was shown in

ref. [7] that the ordered limit κ ≡ limω→0 limM→∞ κ(M)(ω) is an ultraviolet finite observable,

which can be defined on the non-perturbative level as a transport coefficient related to the

corresponding imaginary-time correlator. In the following, we take eq. (1.1) as a starting

point, and inspect the nature of its O(T/M) corrections.

1In ref. [7] the multiplication was by the thermally corrected M2
kin = M2 {1 + O(α

3/2
s T/M)}, however

the O(α
3/2
s T/M) corrections were not treated, so one could have equally multiplied by M2. Here we use

M2, which does not break Lorentz invariance. The overall normalization of κ is fixed later while matching

onto a low-energy description, via eqs. (2.3) and (2.9).

– 2 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
0

This paper is organized as follows. We start with a consideration of Lorentz force

correlators within classical electrodynamics (cf. section 2), revealing the key patterns to

be confirmed later on in QCD. This is followed by a formal breakdown of eq. (1.1) within

the large-M expansion (cf. section 3). The colour-magnetic correlator emerging from these

considerations is analyzed perturbatively (cf. section 4), before we conclude with an outlook

(cf. section 5).

2 Classical picture

Consider the Lorentz force acting on a probe particle of momentum p and charge q:

ṗ = q
(

E + v × B
)

(t) ≡ F(t) . (2.1)

We now imagine a statistical environment, in which the velocities come from a thermal

distribution. Given the particle’s large inertia, the time scale of the variation of velocities

is larger than the time scale of the variation of the electric and magnetic field strengths.

This slow evolution is expected to be described by the Langevin equation,

ṗ − η p = f(t) , 〈fi(t)〉 = 0 , 〈fi(t
′)fj(t)〉 = κ δij δ(t − t′) . (2.2)

The dissipative coefficient η and the noise self-correlator κ are related by the fluctuation-

dissipation theorem, following from the fact that the solution of the Langevin equation

satisfies

lim
t→∞

〈p2(t)〉 =
3κ

2η
. (2.3)

Furthermore there is a dispersive correction, meaning that the mass implicit to eq. (2.2),

Mkin, differs from the vacuum mass implicit to eq. (2.1), M . The goal now is to extract

the “low-energy parameters” κ and η from properties of the microscopic force in eq. (2.1),

which involves a number of steps, enumerated as follows.

(i). The first step is to compare the right-hand sides of eqs. (2.1) and (2.2). Given the

different time scales of evolution, statistical averages factorize into averages of velocities

and averages of fields,2 in particular

〈

Fi(t
′)Fj(t)

〉

= q2
{

〈

Ei(t
′)Ej(t)

〉

+
1

3

〈

v2〉 〈

δijBk(t′)Bk(t) − Bj(t′)Bi(t)
〉

}

. (2.4)

Matching with eq. (2.2), κ can be extracted as a transport coefficient,

κ = lim
ω→0

∫ ∞

−∞
dt′ eiω(t′−t) 1

3

∑

i

〈Fi(t
′)Fi(t)〉 . (2.5)

According to eq. (2.4), the leading term originates from the colour-electric correlator [6],

and the first correction from a colour-magnetic one, whose contribution is suppressed by

〈v2〉 ∼ O(T/M ) according to eq. (2.9).

2In order to avoid clutter we denote all statistical averages by 〈. . .〉, even if the weight with respect to

which the average is taken differs from context to context. In point (ii) we return to certain subtleties

concerning the circumstances under which the factorization of averages applies.
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(ii). Actually, the argument above is a bit sloppy, as the spatial positions of the fields

are suppressed. In reality, if a heavy particle starts from x = 0 at time t = 0 and has the

velocity v, at a later time t it is at x(t) = vt+O(v̇t2). Then we should really insert fields as

Ei(t, x(t)) = Ei(t, 0) + t vj∂jEi(t, 0) + . . ., and similarly for Bi(t, x(t)). For instance, when

correlated with v × B, the next-to-leading terms in the expansion of Ei lead to further

effects of 〈v2〉, however multiplied by powers of t. Such corrections may be called secular

terms. Any practical study should be formulated such that secular terms are avoided,3 and

we have to watch out for them in section 3 as well.

(iii). There is a further subtlety, related to the difference between non-relativistic and

relativistic momenta. Suppose that we consider a non-relativistic momentum M v rather

than a relativistic one, p ≡ M u, with u ≡ γv (the reason for this should become apparent

around eq. (3.5)). Writing v = γ−1u we find

v̇i = γ−1u̇i − uiuj v̇j . (2.6)

Moving the last term to the left-hand side, and solving the matrix equation for v̇i, leads to

v̇i =
(

δij − vivj

)

γ−1u̇j . (2.7)

Taking the 2-point correlator of these accelerations, and expanding to second order in small

velocities, gives

M2〈

v̇i(t
′)v̇j(t)

〉

=
〈

Fi(t
′)Fj(t)

〉 − 〈

v2δikδjl + vivkδjl + δikvjvl

〉〈

Fk(t′)Fl(t)
〉

+ O(v4) . (2.8)

Here the force-force correlator can be inserted from eq. (2.4). In order to avoid the second

term in eq. (2.8), we should use relativistic momenta.

(iv). Finally, we have to consider the relation of κ and η, originating from eq. (2.3).

Equipartition in classical statistical physics implies 〈pi∂H/∂pi〉 = T , where H is the

Hamiltonian and no sum over i is taken. For a 1-particle Hamiltonian this corresponds

to 〈p · v〉 = 3T . Inserting a covariant momentum, with the mass including a dispersive

correction as we are now within the low-energy effective description, leads to

〈γv2〉 =
3T

Mkin

. (2.9)

Up to next-to-leading order in velocities, we may expand 〈γv2〉 ≈ 〈v2 + (v2)2/2〉. For the

quartic part, we can take a Gaussian average, 〈(v2)2〉 ≈ 5
3〈v2〉2. Inserting into eq. (2.9),

leads to 〈v2〉 ≈ (3T/Mkin){1 − 5T/(2Mkin)},4 and this then gives 〈p2〉 ≈ 3MkinT{1 +

3In a Langevin simulation (cf., e.g., ref. [14]), this is done by tracking separately the positions and

momenta of the heavy quarks: dx = vdt, dp = (−η p + f)dt, with v = p/
√

p2 + M2
kin. In this case, f can

be generated from a random ensemble applicable to the “old” position x.
4At leading order in αs, 〈v2〉 can also be defined as the area under the transport peak in the correlator

〈ĴiĴi〉, normalized to the susceptibility χ [7]. From eqs. (3.4), (3.5) of ref. [16], this leads to 〈v2〉 =
∫

p
(p/Ep)2n′

F(Ep)/
∫

p
n′

F(Ep), where Ep =
√

p2 + M2 and nF is the Fermi distribution. After an expansion

in T/M up to next-to-leading order, this agrees with the result we cite here.

– 4 –
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5T/(2Mkin)}. In combination with eq. (2.3), we finally find

η ≈ κ

2MkinT

(

1 − 5T

2Mkin

)

. (2.10)

To summarize, the force felt by a non-relativistic probe particle experiences four types

of corrections5 at first order in 〈v2〉 ≪ 1. Summing over the indices, the first correction is

from
〈

Bi(t
′)Bi(t)

〉

, weighted by 2
3〈v2〉 according to eq. (2.4). The second correction are sec-

ular terms, of the type discussed under point (ii). The third correction is from
〈

Ek(t′)El(t)
〉

,

weighted by −〈

v2δikδjl + vivkδjl + δikvjvl

〉

= −5
3〈v2〉δikδjl according to eq. (2.8). This a

“trivial” effect, inhibiting acceleration towards the speed of light, and eliminated simply

by going from M v back into the covariant momentum p. The fourth correction is to the

fluctuation-dissipation relation, according to eq. (2.10). Finally, there is a dispersive effect,

substituting the vacuum mass M through a thermally corrected Mkin.

3 Formal derivation of the force-force correlator

Motivated by the discussion of the previous section and in particular eq. (2.4), the goal

now is to derive an expression for the “microscopic” force-force correlator in QCD.

3.1 Action up to O(1/M3)

Let θ be a 2Nc-component non-relativistic spinor; g a gauge coupling; Dµ ≡ ∂µ − igAµ a

covariant derivative; gEi ≡ i[D0, Di] a colour-electric field; gBi ≡ i
2ǫijk[Dj , Dk] a colour-

magnetic field; and σi the Pauli matrices. Starting from the Minkowskian QCD action for

one heavy quark flavour, SM =
∫

X ψ̄(iγµDµ − M)ψ, where
∫

X ≡ ∫

dt
∫

d3x, and carrying

out a standard tree-level computation, yields the expansion

SM ⊃
∫

X
θ†

{

iD0 − M +
D2 + gσ · B

2M
− g

[

D · E
]

+ igσ · (

D × E − E × D
)

8M2
(3.1)

+
D4 + g

{

D2, σ · B
}

+ g2
(

B2 − E2
)

+ ig2σ · (

B × B − E × E
)

8M3
+ O

(

1

M4

)}

θ ,

where the antiparticle part has been omitted. At the quantum level, further operators get

generated and the coefficients of the operators get corrected [17]. Such results are of no

direct use to us, however, given that the time derivative in section 3.2 is a short-distance

operation and thus changes quantum corrections. We note, furthermore, that the rest

mass is often omitted from eq. (3.1), but we keep it visible as a residual mass, as the

corresponding Boltzmann factor plays an important role at finite temperature. With these

specifications, eq. (3.1) serves as the starting point of our investigation.

5It is unclear to us whether the corrections discussed could be related to a generalization of the Langevin

equation used for describing heavy quarks having relativistic (i.e. non-equilibrated) momenta with respect

to the medium. It has been suggested that in this case the “comoving” forces could be correlated as [14]

〈fi(t
′)fj(t)〉 ≃

{ (

δij − p̂i p̂j

)

κT(p) + p̂i p̂j κL(p)
}

δ(t − t′) , (2.11)

where p̂i ≡ pi/p. In our equilibrated case, considering local forces as described in footnote 3, the correlator

is proportional to δij , implying effectively that κL(p) = κT(p) = κ, where κ includes corrections of O(T/M).

– 5 –
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3.2 Lorentz force up to O(1/M2)

The goal now is to derive the Lorentz force originating from eq. (3.1). Viewing θ and θ∗

as independent fields, the Noether current can be defined as

J µ ≡ i

[

θ∗
αr

δ

δ(∂µθ∗
αr)

− θαr

δ

δ(∂µθαr)

]

SM , (3.2)

where α ∈ {1, . . . , Nc} labels colour and r ∈ {1, 2} spin. This yields the components

J 0 = θ†θ , (3.3)

J i =
iθ†

(←−
Di − −→

Di

)

θ

2M
+

gǫijkθ†σjEkθ

4M2
− iθ†

{

Di, D2 + gσ · B
}

θ

4M3
+ O

(

1

M4

)

. (3.4)

Before proceeding, let us note that if we consider a spinless 1-particle plane wave,

θ ≃ Z e−iEt+ip·x, θ† ≃ Z† eiEt−ip·x, then the on-shell point of eq. (3.1) corresponds to the

relation E = M + p2

2M − p4

8M3 + . . . =
√

p2 + M2. The Noether charge density in eq. (3.3)

evaluates to J 0 ≃ |Z|2, and the current in eq. (3.4) to

J i ≃ |Z|2
(

pi

M
− pip

2

2M3
+ . . .

)

=
|Z|2pi

√

p2 + M2
= |Z|2vi . (3.5)

Therefore, J i/J 0 represents the velocity rather than the covariant velocity, and we expect

the argument around eqs. (2.7) and (2.8) to apply to considerations following from eq. (1.1).

To obtain the Lorentz force, we take a time derivative of the current, and use equations

of motion. As the observable in eq. (1.1) involves a spatial average, partial integrations are

permitted in spatial directions. Obviously the Noether charge
∫

x J 0 is conserved, but the

spatial currents are not, obeying

∫

x
M∂0J i =

∫

x
θ†

{

−gEi +

[

Di, D2 + gσ · B
]

2M
+

g
[

D0, σ × E
]

i

4M

−g
[

Di, [D · E] + iσ · (D × E − E × D)
]

+ ig
[

D2 + gσ · B, σ × E
]

i

8M2

− i
[

D0, {Di, D2 + gσ · B} ]

4M2
+ O

(

1

M3

)}

θ . (3.6)

Let us stress again that at the quantum level, further operators and non-trivial Wilson

coefficients are generated, but here we remain at the tree level.

In view of a lattice study or thermal field theory computation, the final step is to Wick

rotate the result to Euclidean signature: D0 → iD0, Ei → iEi. Furthermore we reduce the

number of explicit derivatives appearing in eq. (3.6), by making use of

[

Di, D2 ]

= −ig
(

D × B − B × D
)

i
, (3.7)

[

D0,
{

Di, D2 }]

= −ig
(

Ei

−→
D2 +

←−
D2Ei + Ej

−→
Dj

−→
Di +

←−
Di

←−
DjEj − ←−

DjEj

−→
Di − ←−

DiEj

−→
Dj

)

. (3.8)

Lowering the index i on the left-hand side of eq. (3.6), in order to insert an overall minus

sign, but suppressing it from the notation, the Lorentz force operators originating from

– 6 –
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eq. (3.6) can then be enumerated as

O0 ≡ θ†igEiθ , (3.9)

O1a ≡ θ†ig(D × B − B × D)iθ

2M
, (3.10)

O1b ≡ θ†(−g)[Di, σ · B ] θ

2M
, (3.11)

O1c ≡ θ†g[D0, σ × E ]i θ

4M
, (3.12)

O2a ≡ θ†ig[Di, [D · E ]] θ

8M2
, (3.13)

O2b ≡ θ†(−g)[Di, σ · (D × E − E × D) ] θ

8M2
, (3.14)

O2c ≡ θ†g[σ × E, D2 ]i θ

8M2
, (3.15)

O2d ≡ θ†g2[σ × E, σ · B ]i θ

8M2
, (3.16)

O2e ≡
θ†ig(Ei

−→
D2 +

←−
D2Ei + Ej

−→
Dj

−→
Di +

←−
Di

←−
DjEj − ←−

DjEj

−→
Di − ←−

DiEj

−→
Dj) θ

4M2
, (3.17)

O2f ≡ θ†(−g)[D0, {Di, σ · B} ] θ

4M2
. (3.18)

The Euclidean action with respect to which thermal averages are taken (eiSM → e−SE )

becomes

SE = S0 + S1 + S2 + O
(

1

M3

)

, (3.19)

S0 =

∫

X
θ† (

D0 + M
)

θ , (3.20)

S1 = −
∫

X

θ†
(

D2 + gσ · B
)

θ

2M
, (3.21)

S2 =

∫

X

θ†(ig)
[

D · E
]

θ − θ† gσ · (

D × E − E × D
)

θ

8M2
, (3.22)

where
∫

X ≡ ∫ β
0 dτ

∫

x. We note that in normal HQET, only S0 appears as a weight in the

thermal average, whereas S1 and S2 are expanded into correlation functions, however in

the thermal context taking this limit requires care, as will be discussed in section 3.4.

3.3 Force-force correlator up to O(1/M2)

Let us consider the 2-point correlation function of the operator defined as a sum of

eqs. (3.9)–(3.18). As alluded to at the end of section 3.2, we do not expand the action

in powers of 1/M yet, i.e. we are working within the NRQCD rather than HQET action

for a moment.

After inserting the operators, we carry out Wick contractions for the fermion fields. A

fermion propagator (which is a 2Nc × 2Nc-matrix) is defined as

∆(τ2, y; τ1, x ) ≡ 〈

θ(τ2, y ) θ†(τ1, x )
〉

, (3.23)

– 7 –
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and covariant derivatives acting on it as

−→
Di

−→
Dj . . . ∆(τ2, y; τ1, x ) . . .

←−
Dk

←−
Dl ≡ ∆ij...;...kl(τ2, y; τ1, x ) . (3.24)

Correlators are denoted by

Gmn(τ) ≡
∑3

i=1

∫

x

〈

Om(τ, x )On(0, 0 )
〉

3χ
, G{mn}(τ) ≡ Gmn(τ) + Gnm(τ) , (3.25)

where the quark number susceptibility reads

χ ≡
∫

x

〈

θ†θ(τ, x ) θ†θ(0, 0 )
〉

, τ > 0 . (3.26)

The value of χ is independent of the choice of τ , because
∫

x θ†θ is a conserved charge within

the NRQCD/HQET action.

At leading order in the 1/M -expansion, i.e. with the operator from eq. (3.9), the

definitions above lead to

G00(τ) = − g2

3χ

∫

x
Tr

〈

∆(β, 0; τ, x )Ei(τ, x )∆(τ, x; 0, 0 )Ei(0, 0 )
〉

, (3.27)

where a sum over the index i is implied.

Proceeding to O(1/M), we are faced with the correlators G{01a}, G{01b}, and G{01c}.

Given that the operators O1b and O1c contain a Pauli matrix and that spin effects only

appear at O(1/M) in eq. (3.21), the latter two vanish up to O(1/M2). The remaining one

gives

G{01a}(τ) =
g2ǫijk

6Mχ

∫

x
Tr

〈

∆(β, 0; τ, x )Ei(τ, x )∆;j(τ, x; 0, 0 )Bk(0, 0 )

− ∆j;(β, 0; τ, x )Ei(τ, x )∆(τ, x; 0, 0 )Bk(0, 0 )

+ ∆;j(β, 0; τ, x )Bk(τ, x )∆(τ, x; 0, 0 )Ei(0, 0 )

− ∆(β, 0; τ, x )Bk(τ, x )∆j;(τ, x; 0, 0 )Ei(0, 0 )
〉

. (3.28)

We return to a discussion of this correlator in section 3.4.

Finally, at order 1/M2, the correlators are G1a1a, G1b1b, G1c1c, G{1a1b}, G{1a1c}, G{1b1c},

G{02a}, G{02b}, G{02c}, G{02d}, G{02e}, and G{02f}. Among these, G{1a1b}, G{1a1c}, G{02b},

G{02c}, and G{02f} are really of O(1/M3), because only one of the operators contains a

Pauli matrix, and spin-dependent effects are suppressed by 1/M in the action, cf. eq. (3.21).

Among the rest, G1b1b, G1c1c, G{1b1c}, G{02a}, and G{02d} are of O(1/M2). The two re-

maining ones, G1a1a and G{02e}, are the most important ones, as they contain derivatives

acting on the heavy quark propagators that cannot be eliminated by partial integrations.

As discussed in section 3.4, these two correlators are really of O(T/M), and deserve to be
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given explicitly:

G1a1a(τ) = −
g2ǫijkǫimn

12M2χ

∫

x
Tr

〈

∆;j(β, 0; τ, x )Bk(τ, x )∆;m(τ, x; 0, 0 )Bn(0, 0 )

+ ∆n;j(β, 0; τ, x )Bk(τ, x )∆(τ, x; 0, 0 )Bm(0, 0 )

+ ∆(β, 0; τ, x )Bj(τ, x )∆k;m(τ, x; 0, 0 )Bn(0, 0 )

+ ∆n;(β, 0; τ, x )Bj(τ, x )∆k;(τ, x; 0, 0 )Bm(0, 0 )
〉

, (3.29)

G02a(τ) = − g2

12M2χ

∫

x
Tr

〈

∆jj;(β, 0; τ, x )Ei(τ, x )∆(τ, x; 0, 0 )Ei(0, 0 )

+ ∆(β, 0; τ, x )Ei(τ, x )∆;jj(τ, x; 0, 0 )Ei(0, 0 )

+ ∆ji;(β, 0; τ, x )Ei(τ, x )∆(τ, x; 0, 0 )Ej(0, 0 )

+ ∆(β, 0; τ, x )Ei(τ, x )∆;ij(τ, x; 0, 0 )Ej(0, 0 )

− ∆i;(β, 0; τ, x )Ei(τ, x )∆;j(τ, x; 0, 0 )Ej(0, 0 )

− ∆j;(β, 0; τ, x )Ei(τ, x )∆;i(τ, x; 0, 0 )Ej(0, 0 )
〉

. (3.30)

In eq. (3.30) we have displayed only one ordering, with the other one in G{02a} = G02a+G2a0

giving a similar result.

3.4 Physical effects up to O(T/M)

In a vacuum setting, when heavy quarks are bound inside mesons, their momenta are

balanced against those of the light constituents, and thus of order ΛMS or mπ. In this case,

the counting of powers of 1/M is simple: the explicit terms appearing in the denominator

represent also the true suppression factors. The situation changes at high temperatures

T ≫ ΛMS, because thermal kicks can give the heavy quarks large momenta. In fact, in the

asymptotic limit of small αs, equipartition asserts that heavy-quark momenta are of order

p2 ∼ MT . Therefore we should count covariant derivatives acting on heavy quark fields as

p ∼
√

MT , and heavy quark velocities as shown in eq. (2.9).

Given that p ∼
√

MT ≫ T >∼ ΛMS, the spatial momenta of the heavy quarks should

be “integrated out”, if we want to arrive at a HQET type formulation for studying non-

perturbative effects from the light parton sector. As a result of the integration, we should

be left over with HQET type correlation functions, multiplied by Wilson coefficients that

account for the effects of the hard modes. Specifically, we may expect 〈v2〉 to play the role

of a (tree-level) Wilson coefficient, which would be modified by a multiplicative correction

at the loop level.6

6The Wilson coefficient generically displays a non-vanishing anomalous dimension, corresponding to that

of the correlation function that it multiplies. Its determination entails two matching steps: first, between

full QCD and the non-relativistic operator in eq. (3.10); second, between thermal NRQCD and thermal

HQET from which the momenta p ∼
√

MT have been integrated out.
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For a concrete leading-order implementation of this ideology, we note that in the static

limit, i.e. with the action from eq. (3.20), the heavy quark propagators reduce to (τ > 0)

〈

θαs(τ, x) θ∗
βr(0, y)

〉 M→∞
= Uαβ(τ ; 0) δsr e−τM lim

M→∞

∫

p
eip·(x−y)−τǫp , (3.31)

〈

θαs(β, y) θ∗
βr(τ, x)

〉 M→∞
= Uαβ(β; τ) δsr e(τ−β)M lim

M→∞

∫

q
eiq·(y−x)+(τ−β)ǫq , (3.32)

where U is a Wilson line in the fundamental representation and ǫp ≡ p2/(2M) from

eq. (3.21). Derivatives acting on the propagators yield powers of p or q, up to radiative

corrections from short-distance gauge field fluctuations. If we denote by k the momentum

transfer from the magnetic or electric field insertion (so that q = p + k) and shift p by

−k/2 for maximal symmetry, then the two propagators from eqs. (3.31) and (3.32) combine

into an exponential

(τ − β)ǫp+k/2 − τǫp−k/2 = −β

(

ǫp +
k2

8M

)

+

(

τ − β

2

)

v · k . (3.33)

The part −βǫp is of O(1) and cannot be expanded in, whereas βk2/M ∼ T/M ≪ 1

represents a small correction, similar to the Pauli-term in eq. (3.21). The last part of

eq. (3.33) generates secular terms in the sense discussed under point (ii) of section 2,

with τ − β/2 representing an imaginary-time interval and k ↔ −i∇ generating spatial

translations.

Summarizing these considerations, the term in the exponential that cannot be ex-

panded is −βǫp. We normalize the integral over powers of pi by the same factor appearing

in the denominator (i.e. χ),

〈pipj . . .〉 ≡
limx→0

∫

p pipj . . . eip·x−βǫp

limx→0

∫

p eip·x−βǫp
. (3.34)

The Pauli term in eq. (3.21) can be expanded in. Furthermore, in a perturbative integration

out of heavy quark momenta, −βk2/(8TM) in eq. (3.33) can be expanded in, whereas the

treatment of the last term in eq. (3.33) requires a decision on how to handle secular terms.

Let us now apply this recipe to the denominator,

χ =

∫

x

〈

(θ†θ)(τ, x) (θ†θ)(0, 0) e−S1−S2−...
〉

0
, (3.35)

where S1,2 are from eqs. (3.21) and (3.22), respectively, and 〈. . .〉0 denotes averaging of the

heavy quark fields with respect to S0 from eq. (3.20). At leading order we find

χ(0) = 2e−βM
∫

p
e−βǫp Tr

〈

U(β; 0)〉 . (3.36)

There is no first-order correction, because the Pauli term from eq. (3.22) vanishes by the

spin trace. There are corrections at 1/M2, but these are not needed, as we want to extract

effects of O(T/M). In short, χ can be replaced by χ(0) at O(T/M). The same arguments
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apply also in the numerator: at O(T/M), we do not need to worry about the expansion of

the Pauli term in eq. (3.21) nor of eq. (3.22).

With this recipe, the correlator G{01a} from eq. (3.28) of naive O(1/M) vanishes at

leading order, because it contains one spatial derivative and is thus proportional to 〈p〉 = 0

or 〈q〉 = 0. However, if we expand the last term of eq. (3.33) into the correlator, we get

a contribution proportional to 〈v2〉 ∼ T/M which does not vanish. This contribution

contains the prefactor τ − β/2 and is a secular term in the sense discussed under point (ii)

of section 2. As explained there, we do not think that it is physically sensible to consider

these effects, if the goal is to match onto a Langevin description.

The correlator G{02e} from eq. (3.30) does not vanish, but evaluates at O(T/M) to

G{02e}(τ) =
5
〈

v2
〉

3

g2 Tr
〈

U(β; τ)Ei(τ)U(τ ; 0)Ei(0)
〉

3 Tr
〈

U(β; 0)〉 . (3.37)

We have suppressed spatial coordinates, as they are all the same. This is just −5
〈

v2
〉

/3

times the leading-order correlator originating from eq. (3.27), and corresponds to the effects

discussed below eq. (2.8). As elaborated upon there, the corresponding effects can be

eliminated by going over to covariant momenta in the Langevin description.

Finally, there is genuine effect of O(T/M) from G1a1a in eq. (3.29),

G1a1a(τ) =
2

〈

v2
〉

3

g2 Tr
〈

U(β; τ)Bi(τ)U(τ ; 0)Bi(0)
〉

3 Tr
〈

U(β; 0)〉 . (3.38)

Both expectation values are real in the physical ground state, so we may add a real part

in order to eliminate noise, and define somewhat more explicitly

GB(τ) ≡
∑

i Re Tr 〈U(β; τ) gBi(τ) U(τ ; 0) gBi(0) 〉
3 Re Tr 〈U(β; 0)〉 . (3.39)

Then the full transport coefficient reads

κtot ≃ κE +
2

3
〈v2〉 κB , (3.40)

where 〈v2〉 is given by eq. (2.9) and the discussion below it, and κE,B are the transport

coefficients corresponding to GE,B, respectively.

4 Perturbative evaluation

The purpose of this section is to look in more detail into the correlator GB defined in

eq. (3.39), determining both the temporal correlator and the transport coefficient at leading

order.

4.1 Temporal correlator

Let us start by recalling the form of the electric correlator from eq. (3.27),

Tr
〈

U(β; τ)Ei(τ)U(τ ; 0)Ei(0)
〉 O(g0)

=
N2

c − 1

2

∑

∫

K

(3ω2
n + k2)eiωnτ

ω2
n + k2

ω2
n=ω2

n+k2−k2

= −(N2
c − 1)

∑

∫

K

k2 eiωnτ

ω2
n + k2

, (4.1)
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where in the second step a contact term vanishing in dimensional regularization was omit-

ted. For GB the corresponding evaluation gives

Tr
〈

U(β; τ)Bi(τ)U(τ ; 0)Bi(0)
〉 O(g0)

=
N2

c − 1

2

∑

∫

K

ǫijlǫimn kjkm δlneiωnτ

ω2
n + k2

= (N2
c − 1)

∑

∫

K

k2 eiωnτ

ω2
n + k2

. (4.2)

Recalling the overall minus sign in the colour-electric correlator, cf. eq. (3.27), the cor-

relators GE and GB agree at leading order. Adding the denominator, carrying out the

Matsubara sum, and denoting by G
(n)
B the contribution of order gn, we get [7]

G
(2)
B (τ) =

g2CF

3

∫

k

[

eτk + e(β−τ)k]

k nB(k)

= g2CF π2T 4
[

cos2(πτT )

sin4(πτT )
+

1

3 sin2(πτT )

]

, (4.3)

where nB is the Bose distribution. This can serve as a normalization for lattice results.

4.2 Transport coefficient

The determination of the transport coefficient κB is non-trivial so we give some details,

following the presentation for GE and κE in ref. [18].

4.2.1 Setup

Formally, after the Fourier transformation

G̃B(ωn) =

∫ β

0
dτ eiωnτ GB(τ) , (4.4)

we may extract the spectral function

ρB(ω) = Im G̃B(ωn → −i[ω + i0+] ) . (4.5)

The transport coefficient is given by

κB = lim
ω→0

2TρB(ω)

ω
, (4.6)

where the factor 2T/ω transforms a spectral function (commutator) into the anticommu-

tator appearing in eq. (1.1).

As is normally the case with transport coefficients, practical computations necessitate

a resummation of the perturbative series. We may write

κB = κQCD,expanded
B − κHTL,expanded

B + κHTL,full
B . (4.7)

Here “expanded” denotes an unresummed computation, i.e. a naive expansion in the cou-

pling g2; HTL stands for Hard Thermal Loop resummation [19–22]; and the subtraction
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 1. The LO and NLO graphs contributing to the colour-magnetic correlator, GB, defined in

eq. (3.39). The big circle denotes a Polyakov loop; the small dots colour-magnetic field strengths;

and the grey blob the 1-loop gauge field self-energy.

removes the danger of double counting. If there were no IR divergences, or if we could

compute to all orders in the expansion, the latter two terms would cancel against each other.

The full spectral function, computed as in ref. [18], contains a vacuum part proportional

to ω3 as well as a thermal part with a complicated functional dependence on ω. According

to eq. (4.6), we only need the part linear in ω at small ω, which can only originate from

thermal corrections. Therefore, in the following, we omit those vacuum corrections which

are of NLO in the weak-coupling expansion (for completeness we do display the LO vacuum

term in eq. (4.10)).

We carry out the computation with dimensional regularization, in D ≡ 4 − 2ǫ dimen-

sions. Introducing a scale parameter µ, the MS scale is defined as µ̄2 ≡ 4πµ2e−γE . The

Levi-Civita-symbol is written as ǫijkǫlmn ≡ δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm −
δimδjlδkn−δinδjmδkl. Often we are faced with δilδjmǫijkǫlmn = (D−3)(D−2)δkn. Following

ref. [18], we denote a massless propagator as

G(x0, x) ≡ ∑

∫

K

ei(knx0+k·x)

K2
. (4.8)

4.2.2 QCD contributions

We start by extracting the part denoted by κQCD,expanded
B in eq. (4.7). This originates from

graphs that are of NLO, i.e. O(g4), with diagrams as shown in figure 1. We have carried

out the computation in a general covariant gauge, verifying its gauge independence; below,

graph-by-graph results are listed for the Feynman gauge.

The LO graph gives

δ(a)GB(τ) =
g2CF(D − 3)(D − 2)

3
(−∇2)G(τ, 0) . (4.9)

This leads to

δ(a)ρB(ω)
D=4
=

g2CFω3

6π
, (4.10)

so there is no contribution to κB. We also need the NLO correction to the denominator,

Re Tr 〈U(β; 0)〉 = Nc

{

1 − g2CF

∫ β

0
dτ ′

∫ τ ′

0
dτ ′′ G(τ ′ − τ ′′, 0)

}

. (4.11)
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Consider next the diagrams (b-f). In Feynman gauge, the diagrams (d,e,f) are absent.

The diagrams (b,c) yield a term proportional to C2
F, which cancels when the LO term in

eq. (4.9) is combined with the NLO correction from eq. (4.11). The combined effect is thus

proportional to NcCF,

δ(a)GB(τ) × χ
LO

χ
NLO

+ δ(b-f)GB(τ) =
g4NcCF(D − 3)(D − 2)

3
I4(τ) + O(g6) , (4.12)

where

I4(τ) ≡ ∑

∫

K

k2eiknτ

K2

∑

∫

Q′

eiqnτ − 1

q2
nQ2

(4.13)

was defined in eq. (3.28) of ref. [18].

Proceeding further, graph (g) is absent in Feynman gauge. Graphs (h) and (i) give

δ(h)GB(τ) =
g4NcCF(D − 3)(D − 2)(D − 1)

6
I1(τ) , (4.14)

δ(i)GB(τ) = −g4NcCF(D − 3)(D − 2) I2(τ) , (4.15)

where I1,2 were defined in eqs. (3.25,3.26) of ref. [18],

I1(τ) ≡ ∑

∫

K,Q

eiknτ

Q2(K − Q)2
, I2(τ) ≡ ∑

∫

K,Q

k2eiknτ

K2Q2(K − Q)2
. (4.16)

Graph (j) is a fairly complicated one, yielding

δ(j)GB(τ) =
g4NcCF(D − 3)(D − 2)

6
I6(τ) , (4.17)

I6(τ) ≡
[
∫ β

τ
dτ ′ −

∫ τ

0
dτ ′

]
∫

X
G(x0 − τ ′, x)

×
[

∂iG(x0 − τ, x) ∂0∂iG(x0, x) − ∂0∂iG(x0 − τ, x) ∂iG(x0, x)
]

, (4.18)

where X ≡ (x0, x). The function I6 is similar but not identical to I5, defined in eq. (3.18)

of ref. [18]; in fact we get I6 if we set D → 3 in a prefactor appearing in I5, and carry out

a partial integration. Finally, the self-energy graph (k) yields

δ(k)GB(τ) =
g4CF(D − 3)

3

{

(D − 2)Nc

[

−(D − 2)(D − 1)

2
I0(τ) + 2 I2(τ) + 2 I7(τ)

]

+ Nf

[

(D − 2)(D − 1) I{0}(τ) − (D − 2) I{2}(τ) − 4 I{7}(τ)

]}

, (4.19)

where the four-momentum Q is fermionic in I{0}, I{2} and I{7}; we have made use of the

identity
∫

k

k2

K4
=

D − 1

2

∫

k

1

K2
(4.20)

in order to express results in terms of the factorizable structure I0 defined as

I0(τ) ≡ ∑

∫

K,Q

eiknτ

K2(K − Q)2
, (4.21)
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and we have denoted

I7(τ) ≡ − lim
λ→0

d

dλ2

∑

∫

K,Q

[k2q2 − (k · q )2]eiknτ

(K2 + λ2)Q2(K − Q)2
. (4.22)

Even if not obvious at first sight, the thermal part of I7 turns out to be closely related to

the thermal part of I3, defined in eq. (3.27) of ref. [18].

In order to extract κB, we denote, in accordance with eqs. (4.4)–(4.6),

Ĩi(ω) ≡ Im

∫ β

0
dτ eiωnτ Ii(τ)|ωn→−i[ω+i0+] , κi ≡ lim

ω→0

2T Ĩi(ω)

ω
. (4.23)

The functions Ĩ1,2,4(ω) are given in eqs. (A.54,55,57), respectively, of ref. [18], whereas Ĩ0

can be extracted from eq. (B.9), multiplied by the tadpole Σ
∫

Q
1

Q2 = T 2

12 or Σ
∫

{Q}
1

Q2 = −T 2

24 .

This leads to

κ0 =
T 3

24π
, κ1 = κ2 =

T 3

12π
, κ4 = − T 3

12π
, κ{0} = − T 3

48π
, κ{2} = − T 3

24π
. (4.24)

For the function Ĩ6, originating from eq. (4.18), we find the thermal part

Ĩ6(ω) ⊃ 1

8π3

∫ ∞

0
dq nB(q)P

{

4qω

(

1 +
ω2

ω2 − q2

)

+ 5ω2 ln

∣

∣

∣

∣

q + ω

q − ω

∣

∣

∣

∣

(4.25)

+
2ω4

q

[

1

q + ω
ln

q + ω

ω
− 1

q − ω
ln

|q − ω|
ω

]}

,

where P denotes a principal value. The small-ω limit amounts to

κ6 =
T 3

6π
. (4.26)

The function Ĩ7(ω), originating from eq. (4.22), can be obtained in close analogy with the

discussion in appendices A.1-3 of ref. [18], and its thermal part agrees, up to a sign, with

that of Ĩ3(ω) in eq. (A.56) of ref. [18]:

Ĩ7(ω) ⊃ 1

16π3

∫ ∞

0
dq nB(q)

{

q2 ln

∣

∣

∣

∣

q + ω

q − ω

∣

∣

∣

∣

+ qω ln

∣

∣

∣

∣

q2 − ω2

ω2

∣

∣

∣

∣

}

. (4.27)

In the fermionic Ĩ{7}, we need to replace nB → −nF. The corresponding transport coeffi-

cients amount to

κ7 ≈ T 3

24π

[

ln

(

T

ω

)

+ 2 − γE +
ζ ′(2)

ζ(2)

]

, (4.28)

κ{7} ≈ − T 3

48π

[

ln

(

2T

ω

)

+ 2 − γE +
ζ ′(2)

ζ(2)

]

, (4.29)

where “≈” indicates that the limit ω → 0 has not been taken inside the logarithm.

Summing up the effects from all the diagrams, we obtain

κQCD,expanded
B ≈ g4CFT 3

18π

{

Nc

[

ln

(

T

ω

)

+ 1 − γE +
ζ ′(2)

ζ(2)

]

+
Nf

2

[

ln

(

2T

ω

)

+
3

2
− γE +

ζ ′(2)

ζ(2)

]}

. (4.30)

Clearly the result is IR-divergent for ω → 0, and necessitates resummation.
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4.2.3 Hard Thermal Loop resummation

Plasma effects from the colour-electric scale, m2
E

D = 4
= g2T 2

(Nc
3 + Nf

6

)

, can be incorporated

by carrying out HTL resummation [19–22]. The ingredients needed for the current problem

are described in appendix B of ref. [18], and can be adapted to GB with minor modifications.

For the “expanded” version we obtain, in analogy with eq. (B.14) of ref. [18],

κHTL,expanded
B ≈ 2g2CFm2

ET (D − 3)

3

µ−2ǫ

8π

(

1

ǫ
+ ln

µ̄2

4ω2
− 1

)

. (4.31)

The “full” HTL computation does not regularize GB, as colour-magnetic fields play a role.

We introduce an intermediate ad hoc IR regulator, m
G
, as a colour-magnetic scale, and

represent the full HTL result, in analogy with eq. (B.18) of ref. [18], as

κHTL,full
B =

2g2CFm2
ET (D − 3)

3
lim

m2
G

→0

∫

k

k2πδ(k · v)

(k2 + m2
G
)2

=
2g2CFm2

ET (D − 3)

3
lim

m2
G

→0

µ−2ǫ

8π

(

1

ǫ
+ ln

µ̄2

m2
G

− 1

)

. (4.32)

Clearly the result is IR divergent; it is rendered finite by non-perturbative dynamics at

the colour-magnetic scale ∼ αsNcT [23]. The difference κHTL,full
B − κHTL,expanded

B , appearing

in eq. (4.7), is however UV finite as it should (i.e. 1/ǫ cancels), and effectively replaces the

ln ω’s in eq. (4.30) with logarithms of the colour-magnetic scale.

4.2.4 Summary

Summing up the effects from eqs. (4.30), (4.31), (4.32) according to eq. (4.7), and replacing

the artificial scale m
G

by the physical colour-magnetic scale αsNcT , which however is

associated with a process-dependent non-perturbative constant, cB, we obtain

κB =
g4CFT 3

18π

{

Nc

[

ln

(

2cB

αsNc

)

+ 1 − γE +
ζ ′(2)

ζ(2)

]

+
Nf

2

[

ln

(

4cB

αsNc

)

+
3

2
− γE +

ζ ′(2)

ζ(2)

]}

+ O(g5) . (4.33)

Even if cB remains unknown, the coefficients of the logarithms are unambiguously predicted,

as they characterize contributions from a ratio of scales. It is worth remarking that 1 −
γE + ζ′(2)

ζ(2) ≈ −0.147, so the argument of the first logarithm should exceed 1.16 for a sensible

result.

The expression for κB is quite similar to that for κE [14], with the difference that in the

latter IR sensitivity is regularized by mE rather than αsNcT . In the extreme weak-coupling

limit, αsNcT ≪ mE, so we might expect κB to be larger than κE, however the difference is

inside a logarithm so this argument is weak. In general, colour-magnetic corrections tend

to be large compared with those from the scale mE (cf., e.g., ref. [24] for a review), however

NLO corrections to κE are large and positive [15], so it is hard to anticipate whether there

is a clear hierarchy between κE and κB at practically reachable temperatures.
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5 Conclusions and outlook

The purpose of the present paper has been to consider effects of relative order O(T/M) to

the heavy quark momentum diffusion coefficient, κ. We have argued that one correction

originates from a colour-magnetic correlator dressing a Polyakov loop (cf. eq. (3.39)), and

that the corresponding contribution to κ, denoted by κB (cf. eq. (3.40)), is non-perturbative

already at leading order of the weak-coupling expansion (cf. eq. (4.33)). Apart from the

known dramatic increase of κE through interactions [8–13, 15], additional O(T/M)-effects

originating from κB could help to explain why charm quarks show fast kinetic equilibration

at temperatures not much above the confinement scale (cf., e.g., ref. [1]).

It should be stressed, however, that κB does not represent the only potential O(T/M)

effect. On the side of rate coefficients, further corrections of O(T/M) could be eliminated by

taking care to avoid secular terms (cf. point (ii) in section 2), by using covariant momenta

in Langevin simulations (cf. point (iii) in section 2), and by including corrections in the

relation of κ and η (cf. point (iv) in section 2). On the side of dispersive effects, a correction

originates from the difference between the vacuum pole mass M and the thermal kinetic

mass Mkin, even if it is difficult to quantify this effect, given that M is ambiguous by

∼ O(ΛMS); in practice, Mkin should probably be treated as a fit parameter. In spite of

these additional ingredients, we hope that an estimate of κB could give a fair impression

about the size of finite-mass corrections to heavy quark rate observables.

As far as a lattice study of κB goes, the prospects look quite good. Previous investiga-

tions of the colour-electric correlator [8–13] show that a signal can be obtained, and a con-

tinuum extrapolation is feasible. On the aspect of renormalization, where only perturbative

factors have been worked out for κE [25], the non-perturbative level has been reached for a

particular discretization of colour-magnetic fields [26]. Conceivably, gradient flow [27] could

offer further tools for studying the colour-magnetic correlator, along the lines discussed in

ref. [28], and physical insight could be obtained from classical lattice gauge theory simula-

tions [29, 30]. Finally, it might be worth considering whether the colour-magnetic correlator

captures some dispersive effects as well, in analogy with the colour-electric one [31].
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