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Abstract

In the course of evolution, pecorans (i.e. higher ruminants) developed a remarkable diversity of 

osseous cranial appendages, collectively referred to as ‘headgear’, which likely share the same 

origin and genetic basis. However, the nature and function of the genetic determinants 

underlying their number and position remain elusive. Jacob and other rare populations of sheep 

and goats are characterized by polyceraty, the presence of more than two horns. Here, we 

characterize distinct POLYCERATE alleles in each species, both associated with defective 

HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn 

bud primordia, likely following the abnormal extension of an initial morphogenetic field. These 

results highlight the key role played by this gene in headgear patterning and illustrate the 

evolutionary co-option of a gene involved in the early development of bilateria to properly fix 

the position and number of these distinctive organs of Bovidae.

Keywords: Hox genes, co-option, regulatory mutation, goat and sheep genomics

Introduction

In pecorans, successive environmental and behavioural adaptations favoured the emergence and 

sometimes the secondary loss of a variety of headgear, as exemplified by bovid horns, cervid 

antlers, giraffid ossicones or antilocaprid pronghorns (Davis et al. 2011; Wang et al. 2019). As 

different as they are, these iconic organs share both a common cellular origin and a minimal 

structural organisation: they derive from neural crest stem cells and consist of paired structures, 

located on the frontal bones and composed of a bony core covered by integument (Davis et al. 

2011; Wang et al. 2019) (Fig. 1, Suppl. Fig. 1). While the development and evolution of 

headgear is a long-standing question, the underlying molecular and cellular mechanisms have 

been difficult to study, mostly because the patterning and differentiation of headgear progenitor 

cells occur early during embryogenesis (Lincoln 1973; Allais-Bonnet et al. 2013) and involve 

hundreds of genes (Wang et al. 2019).

In this context, natural mutations affecting headgear number, shape or position, such as the 

polycerate (multi-horned) phenotype occurring in small ruminants (Fig. 1a, b, OMIA entries 

000806-9940 and 000806-9925; https://omia.org/home/), offer a valuable alternative (Capitan 

et al. 2012). Polyceraty was already observed ca 6000 BCE, in the oldest ovine remains from 

Çatalhöyük, Turkey (Epstein 1971; Putelat 2005) and this dominant trait currently segregates 
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in several sheep breeds around the world. Even though the corresponding locus was mapped in 

seven distinct populations to the same region of chromosome 2 (Chr2), it has not yet been 

identified (Greyvenstein et al. 2016; He et al. 2016; Kijas et al. 2016; Ren et al. 2016). In 

contrast, polycerate goats are observed only sporadically in the Alps. They are not present in 

archaeological remains and have not been subject to any genetic studies thus far. The oldest 

record of this condition in goat dates back from 1786, when a four-horned billy-goat was 

transferred from the city of Bulle in Switzerland to the model farm of French Queen Marie-

Antoinette in Versailles (Heitzmann 2006).

In this study, we set up to determine the genetic bases of these conditions in sheep and goats. 

We show that polyceraty in Bovidae is due either to a four-base-pair deletion affecting the 

splicing of the HOXD1 gene in sheep, or to the deletion of a large regulatory region controlling 

the same gene in goats. These results thus illustrate the evolutionary co-option of this gene 

normally involved in early development to help determine the position and number of horns. 

They also show that comparable phenotypes observed in distinct species and selected and 

maintained for a long time are caused by the mis-regulation of the same gene.

Results and Discussion

Characterisation of POLYCERATE Mutations in Sheep and Goats

To identify the genetic determinants of polyceraty, we re-analysed the Illumina OvineHD 

Beadchip genotyping data (600 k SNPs) of 111 case and 87 control sheeps generated by two 

previous studies (Greyvenstein et al. 2016; Kijas et al. 2016) (Suppl. Tables 1 and 2). 

Assuming autosomal dominant inheritance and genetic homogeneity in the three breeds 

investigated, we fine-mapped the ovine POLYCERATE locus between positions 132,717,593 

and 133,151,166 bp on Chr2 (Oar_v4.0 assembly; Suppl. Fig. 2). By comparing whole genome 

sequences of 11 polycerate specimens and 1’179 controls representing the world-wide sheep 

diversity, we identified a single candidate variant in this interval: a four-nucleotide deletion 

located at position +4 to +7 bp after exon 1 of the HOXD1 gene 

(g.132,832,249_132,832,252del; Fig. 1c), i.e. encompassing three nucleotides (+4, +5, +6) of 

the consensus splice donor site (Zhang 1998). Genotyping of this variant in 236 animals from 

eight populations containing polycerate specimens showed a perfect genotype to phenotype 

association (Suppl. Tables 3 and 4). Moreover, cross-species alignments revealed that the +4 
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and +5 nucleotides are conserved amongst 103 sarcopterigian and tetrapod species, indicating 

the occurence of a genuine and consensual splice donor site and hence suggesting a detrimental 

effect of the micro-deletion in the splicing of HOXD1 precursor RNAs (Fig. 1c and Suppl. 

Table 5).

We next mapped the caprine POLYCERATE mutation to a 542 kb large region orthologous to 

that of the ovine locus (Chr2:115,143,037-115,685,115 bp on ARS1 assembly (Bickhart et al. 

2017); Suppl. Fig. 2), by using a panel of 35 polycerate and 51 two-horned goats obtained from 

eight European populations and genotyped with the Illumina GoatSNP50 BeadChip (Tosser-

Klopp et al. 2014) (Suppl. Table 6). Within this interval, we identified 36 private heterozygous 

variants in one heterozygous polycerate goat versus 1’160 control individuals (Suppl. Table 

7). Genotyping of five case-control pairs from distinct breeds reduced the list of candidates to 

15 short variants, affecting genomic regions not conserved amongst 103 eutherian mammals, 

as well as a rare type of structural variation located 57 kb downstream of the HOXD1 3’UTR 

(Suppl. Tables 7 and 8). The latter involved the translocation of 137 kb from Chr5 to Chr2 by 

means of a circular intermediate (Durkin et al. 2012) and the deletion of 503 kb from the 

insertion site (g.115,652,290_116,155,699delins137kb; Fig. 1d, e), as confirmed by PCR 

amplification and Sanger sequencing of the regions containing the breakpoints (Suppl. Fig. 3). 

Consequently, the mutant chromosome lacked the MTX2 gene and carried an exogenic copy of 

both RASSF3 and the first ten exons of GNS. Genotyping of this variant in 77 case and 355 

control goats originating from 24 distinct populations revealed a 100 percent association 

between polyceraty and heterozygosity for the large insertion-deletion (indel, Suppl. Table 9 

and Suppl. Fig. 4). Homozygous mutants were not detected in our panel, whereas at least 14 

polycerate animals were born from polycerate pairs of parents (binomial p = 3.4 x 10-3; Suppl. 

Note 1). Because the knockdown of Mtx2 in zebrafish is embryonic lethal at gastrulation 

(Wilkins et al. 2008) and newborn mice homozygous for a deletion including Mtx2 were never 

scored (binomial p = 5.7 x 10-6; Suppl. Note 1), we concluded that homozygosity at the goat 

POLYCERATE locus is an early lethal condition.

Remote Hoxd1 regulation in Transgenic Mice

These mapping studies identified the HOXD gene cluster as being involved in the polycerate 

phenotype in both sheep and goats. This cluster contains nine homeobox genes encoding 

transcription factors involved in the organisation of the body plan during embryogenesis 
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(Krumlauf 1994). Both their timing of activation and their domains of expression are 

determined by their respective positions along the gene cluster (Kmita and Duboule 2003). 

Accordingly, the mouse Hoxd1 gene is expressed very early on and in the most rostral part of 

the embryo (Fig. 2a). In rodents, Hoxd1 is expressed in crest cell-derived structures (Frohman 

and Martin 1992), which made this gene a particularly interesting candidate for polyceraty. 

Also, a DNA sequence conserved only amongst pecoran species carrying headgear was 

identified 15 kb downstream of HOXD1 (‘HCE’ in (Wang et al. 2019)). This sequence, 

however, is not included in the large indel observed in polycerate goats.

We assessed whether the deletion present in goat may impact the expression of HOXD1 in 

cranial crest cells by looking at a series of modified mouse strains either carrying transgenes or 

where a targeted deletion was induced at the orthologous locus (see Methods). First, the wide 

presence of cells expressing Hoxd1 both in the face and in the cranial derma, the latter being of 

crest cell origin, was detected in fetuses with a targeted integration of lacZ sequences into the 

Hoxd1 gene (Fig. 2b, Hoxd1Lac). Expression was however not scored in the crown region (Fig. 

2b, dashed circle), an area we presumably defined as corresponding to that of horn bud 

differentiation in Bovidae (Dove 1935; Capitan et al. 2011). Instead, Hoxd1 was expressed in 

various amounts in other regions of the head including the eyelids (Fig. 2b, white arrow and 

arrowhead), an observation consistent with the abnormal upper eyelids and eyebrows detected 

in a minority of polycerate sheep and goats ((Gascoigne et al. 2017); Suppl. Fig. 5-7), even 

though such alterations were not observed in mice lacking Hoxd1.

We next tried to localize the underlying regulatory elements by using transgenic BACs with 

lacZ sequences introduced within Hoxd1. A BAC covering the HoxD cluster itself did not show 

any expression in the head, suggesting that regulatory sequences are not located in the gene 

cluster (Fig. 2b, TgBACHoxD). In contrast, a transgenic BAC extending in the region upstream 

of Hoxd1 and including Mtx2 gave a subset of the staining observed with Hoxd1Lac (Fig. 2b, 

TgBACMtx2), indicating that some regulatory sequences were located upstream Hoxd1, in a 

region including and surrounding Mtx2. The latter result was controlled by using an engineered 

151 Kb deletion of a largely overlapping region, including a lacZ reporter gene, which 

expectedly abrogated Hoxd1 expression in cranial cellular populations (Fig. 2b, 

HoxDDel(151kb)lac). The weaker expression of Hoxd1Lac in the dermal component also seemed to 

disappear in the latter deletion. As a positive control for the lacZ reporter system, expression of 

Hoxd1 in neural derivatives driven by sequences within the HoxD cluster was scored, as 

expected (Fig. 2b, black arrows). These analyses in mice demonstrated that regulatory 
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sequences driving Hoxd1 expression in the head are located in a region largely comprised within 

the deletion determined in goats as causative of polyceraty, further suggesting that the latter 

deletion abrogates HOXD1 expression in goat fetuses.

Expression of HOXD1 in Pecoran Fetuses

To investigate whether the absence of mouse Hoxd1 expression in the crown region of the head 

was also observed in pecoran embryos, we isolated heterozygous polycerate and wild type 

fetuses both at 70 dpc (days post-coïtum) in goat and at 76 dpc in sheep, two stages where 

eyelids are fully grown and horn buds can be distinguished (Suppl. Fig. 8). After micro-

dissection and reverse transcription quantitative PCR (RT-qPCR), we noticed that in wild type 

fetuses of both species, HOXD1 expression was significantly lower in horn buds than in 

surrounding tissues (Fig. 3a, b), reminiscent of the weak -if any- expression of Hoxd1 observed 

in a comparable region in the mouse. In heterozygous mutant goat fetuses, however, HOXD1 

RNA levels were equally low in all three samples (Fig. 3a), re-enforcing the idea that the 

caprine POLYCERATE variant negatively affects the expression of HOXD1.

In sheep, when primers targeting the second exon of the gene were used (Fig. 3b, upper 

histogram and methods), heterozygous mutants for the four base-pair deletion overlapping the 

splice donor site and control samples displayed similar profiles of RNA expression despite 

some variation due to slight differences in sampling. However, RT-qPCR with intronic primers 

revealed significant intron retention in all mutant tissues but horn buds, where expression was 

likely too low (Fig. 3b lower histogram). Intron retention is predicted to result in a non-

functional protein, truncated two residues after the last amino acid encoded by exon 1 and thus 

lacking the homeodomain, the DNA binding moiety (Fig. 3c and Suppl. Fig. 9). Therefore, 

both POLYCERATE variants appear to reduce the amount of functional HOXD1 RNAs in the 

horn bud region. We hypothesize that this reduction leads to the extension of the cellular field 

permissive for horn bud development following the loss of the HOXD1 boundary. This 

extension may sufficiently elongate the bud region to allow its separation into two distinct 

organs.
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Morphometric Analyses and Topology of the Horn Field

To substantiate this hypothesis, we analysed variations in horn topology in 61 ovine and 19 

caprine skulls from various populations using 3D geometric morphometrics (Suppl. Table 10). 

We performed a Principal Component Analysis (PCA) using 16 anatomical landmarks 

(anatomically homologous) and 100 sliding semi-landmarks (geometrically homologous 

(Bookstein 1992) after scaling and eliminating the effects of translation and rotation thanks to 

a generalized procrustes analysis (GPA; Rohlf and Slice 1990). This protocol, using sliding 

semi-landmarks, makes it possible to quantify, visualise and compare anatomical regions 

devoid of anatomical landmarks (Gunz and Mitteroecker 2013; see Methods). We then plotted 

the first principal components (PCs) to visualize the specimen distribution in the morphospace 

(Fig. 4a, Suppl. Fig. 10-12 and Suppl. Table 11). The first two axes represented 35.8% and 

23.3% of the total shape variability and distinguished the phenotypes and species categories, 

respectively. Along the first axis, we individualized three sub-groups of polycerate specimens 

in sheep, based on the distances between lateral horns (Fig. 4a, dlh). Of note, the group 

displaying the largest dlh (i.e. that with the highest negative values along the x axis) had no 

equivalent in goat, possibly due to early lethal homozygosity (see above).

We looked at the association between genotypes and horn implantation within polycerate 

animals by measuring the distances both between the lateral horns on the left side of the skull 

(dlhl), and between the upper horns (duh) in 29 rams (Suppl. Table 12). We found a significant 

difference in the proportions of homozygous and heterozygous specimens in animals with 

dlhl≤duh versus dlhl>duh (Fig. 4b) and no heterozygous animal was found to have dlhl>duh. 

We computed the theoretical skull shape at the maximum and minimum of PC1 axis (Fig. 4c) 

and the corresponding vectors of deformation (Fig. 4d). The results obtained were consistent 

with a splitting of horn buds in polycerate animals. This splitting always occurred along the 

major axis of the ellipse formed by the wild type horn bud, with an extension of the hemi-horn 

buds in an area where HOXD1 expression was detected in wild type specimens (Fig. 4d and 

above). In homozygous animals, the new cellular field was likely larger than in heterozygous, 

leading to a clearer separation of hemi-horns, whereas heterozygous specimens often displayed 

partially fused organs, a situation markedly different from the production of additional horns, 

as observed in subspecies of Tetracerus quadricornis (Groves 2003) (Suppl. Fig. 13).
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Conclusions

From these results, we conclude that pecorans have an intrinsic capacity to induce hornbuds 

within a presumptive head territory. This capacity appears to be associated with the non-

expression of the HOXD1 transcription factor, which is present in surrounding cells and may 

delimit this field, a function somewhat distinct from the ancestral role of Hox genes during 

development (Krumlauf 1994). Two independent haploinsufficient conditions, in sheep and 

goat, both involving reduced expression of HOXD1 presumably lead to the extension of this 

territory, a condition fully achieved in the complete absence of the wild type HOXD1 allele in 

homozygous polycerate sheep. While a weak extension of this morphogenetic field may 

correspond to the growth of twin horns, fused at their bases, a full extension would induce the 

complete splitting of the horn bud, thus generating a pair of lateral horns. We hypothesize that 

the initial expression of HOXD1 in anterior crest cells made this evolutionary co-option possible 

and thus helped to determine the position and number of horns, which became the distinctive 

trait of Bovidae.

Materials and Methods

Ethics Statement

All experiments reported in this work comply with the ethical guidelines of both the French 

National Research Institute for Agriculture, Food and Environment (INRAE) and the 

University of Geneva, Switzerland. Blood samples were collected on sheep and goats during 

routine blood sampling (for annual prophylaxis, paternity testing or genomic selection purpose) 

by trained veterinarians and following standard procedures and relevant national guidelines. 

Sample collection of small ruminants in Switzerland was approved by the Cantonal Committee 

for Animal Experiments (Canton of Bern; permit 75/16). Ovine and caprine fetuses were 

produced in an INRAE experimental farm (Bressonvilliers, France) and collected in the INRAE 

experimental slaughterhouse of Jouy-en-Josas (France). Experiments were performed in strict 

accordance with the European directive 2010/63/UE and were approved by the local 

Institutional Animal Care and Use Committee of AgroParisTech/INRAE (COMETHEA, 

permit number 19/032). All experiments involving mice were performed in agreement with the 

Swiss law on animal protection (LPA), under license No GE 81/14 (to D.D.). All the samples 
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and data analyzed in the present study were obtained with the permission of breeders, breeding 

organizations and research group providers.

Animals

Live sheep and goats. Animals from a wide diversity of breeds around the world were involved 

in at least one of the analyses performed in this study. Briefly, they fall into four categories: 1) 

Individuals genotyped with Illumina OvineHD or GoatSNP50 (Tosser-Klopp et al. 2014) 

BeadChip for mapping the POLYCERATE locus in both species (Supplementary Tables 1 and 

6). 2) A set of whole genome sequences used for identifying and filtering candidate mutations 

(Supplementary Table 13). 3) Individuals genotyped by PCR and Sanger sequencing for 

candidate mutations (Supplementary Tables 3 and 7). 4) Polycerate sheep animals genotyped 

for verifying putative differences between heterozygous and homozygous individuals in terms 

of distances between the lateral horns and between the upper horns (Supplementary Table 12).

Mouse models. Five different transgenic mouse stocks were used (see Supplementary Table 

14). The HoxD(Del365) allele was produced by CRISPR-Cas9 technology. sgRNA were designed 

manually, ordered as DNA oligos at Eurogentec and cloned into px330. sgRNAs were 

synthetized with HiScribe T7 high yield RNA synthesis kit (New England Biolabs), incubated 

together with Cas9 mRNA and electroporated into fertilized mouse zygotes (see also 

Supplementary Note 1). The HoxD(Del151) allele was obtained by using CRE-mediated 

recombination (Andrey et al. 2013). The Transgenic fetuses from four strains containing 

different lacZ constructions were collected from stage E12.5 to E.15.5. The Hoxd1Lac strain was 

obtained by inserting a LacZ cassette in the HindIII site of the second exon of Hoxd1 (Zakany 

et al. 2001). The BACHoxD and BACMtx2 strains result from the introduction of a LacZ-

SV40promoter-Hoxd1-zeocin cassette into the HindIII site of the second exon of Hoxd1 (Schep 

et al. 2016). The BACs were selected based on their localization on the physical map of the 

mouse genome (Gregory et al. 2002) and obtained from the RPCI-23 and -24 Mouse 

(C57BL/6J) BAC Libraries from the Children’s Hospital Oakland Research Institute 

(https://bacpacresources.org/libraries.php). The modified BACs were purified, linearised and 

microinjected into mouse fertilised oocytes to obtain each of these strains in a mixed Bl6XCBA 

hybrid background, by standard procedures. Gene expression analyses were performed on 

heterozygous specimens. A precise map of the orthologous Hoxd region in mouse and goat was 

obtained by aligning on murine GRCM38/mm10 genome assembly the BAC end sequences 
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and goat genome sequences of 10 kb segments encompassing the breakpoints of the large indel. 

Alignments were carried out using the BLAT tool from the UCSC Genome Browser 

(http://genome.ucsc.edu/cgi-bin/hgBlat).

Animals subject to post-mortem clinical examination. The eyelids and eyes fundus were 

examined in a 3-weeks old polycerate male Provençale kid who died from a natural cause and 

a matched control, as well as in an eight-year-old polycerate Jacob ewe and her wild type half-

sister after slaughter.

Ovine and Caprine fetuses. Fetuses were generated by mating heterozygous polycerate males 

of the caprine Provençale and ovine Jacob breeds with wild type cull females after oestrus 

synchronization. Oestrus cycles were synchronized using intravaginal sponge impregnated with 

progestagen for 15 days followed by PMSG (Pregnant Mare Serum Gonadotropin) injection 

48h after sponge removal. Pregnant females were anaesthetized by electronarcosis and 

euthanized by immediate exsanguination on day 70 or 76 post-coïtum in the INRAE 

slaughterhouse of Jouy-en-Josas (France). Directly after, the fetuses were recovered from their 

genital tracts and exsanguinated. ‘Skin’ samples comprising the epidermis, dermis and 

hypodermis were collected at different locations on the left side of the head of the 70 dpc goat 

and 76 dpc sheep fetuses (see Fig. 3) for expression studies. Of note, the skin of the back of the 

head was sampled slightly more caudally in polycerate animals due to the specific localization 

of the posterior pair of horns. The same skin samples were collected on the right side of the 

head with the underlying bone for histological analyses. Four case fetuses and four sex-matched 

controls were selected in each species for expression studies. Finally, for verification, liver 

samples were also collected for DNA extraction and subsequent genotyping of the fetuses for 

the sheep and goat POLYCERATE mutations.

Skull specimens. The skulls from 61 sheep (32 polycerate and 29 wild type) and 19 goats (12 

polycerate and 7 wild type) were obtained from different anatomical collections. These 

specimens were sampled over the last 170 years and originate from a wide variety of 

populations. Information on horn phenotype, species, gender, age, population or breed, 

collection, and year of entry in the collection is given in Supplementary Table 10.
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Phenotyping

The polycerate phenotype is an autosomal dominant trait readily visible on fetuses at 70 dpc in 

goat and 76 dpc in sheep (Supplementary Fig. 8). Phenotyping at birth is difficult due to the 

presence of hairs and it is necessary to wait for after the first month to distinguish horns growing 

amid fur. In polycerate animals, horns have a nearly circular cross section but, depending on 

their relative placement, they may progressively fuse at the base with other horns located on 

the same side of the skull. The growth in width of horns is expected to affect the measure of 

distances between the lateral horns (dlh) and the upper horns (duh), but not their relative sizes. 

This, together with the fact that we never observed any case of fusion between the upper horns, 

led us to consider the dlh/duh ratio on the left side of the head to distinguish different types of 

four-horned animals in one of the analyses performed in this study. Polyceraty is sometimes 

associated with defects of the eyelid in both species. While we did not systematically record 

this particular phenotype, we performed post-mortem clinical examination of the eyelids and 

eyebrows in one case and one control animal per species (Supplementary Fig. 5-7).

DNA Extraction

Ovine and caprine DNAs were extracted from hair root, blood or liver samples using the 

DNeasy Blood and Tissue Kit (Qiagen). Murine DNA was isolated from ear snip after 

Proteinase K digestion using standard phenol/chloroform protocol. DNA quality was controlled 

by electrophoresis and quantified using a Nanodrop spectrophotometer (Thermo Scientific).

IBD-Mapping of Caprine and Ovine POLYCERATE Loci

Assuming autosomal dominant inheritance and genetic homogeneity in each of the species 

investigated, all polycerate animals share at least one copy of the same causative mutation and 

of a surrounding chromosomal segment inherited-by-descent from a common ancestor. 

Therefore, comparing SNP array genotyping data of two distantly related polycerate animals is 

expected to reveal a number of Mendelian incompatibilities (i.e. homozygosity for different 

alleles) throughout their genomes but not within shared IBD segments. Accordingly, we 

screened Mendelian incompatibilities in all the possible pair combinations of polycerate x 

polycerate (4H4H pairs) and polycerate x wild type (4H2H) individuals. Pairs with a proportion 

of Medelian incompatibilities below 1 percent of the total number of markers tested were 
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declared as constituted of parent and offspring and were not considered in the analysis. Then, 

for sliding windows of n markers (n set to 10 in goat and 50 in sheep, considering differences 

in marker density) we scored the numbers of 4H4H pairs and 4H2H pairs for which ‘no’ versus 

‘at least one’ Mendelian inconsistency has been recorded. Finally, we compared the 

contingency tables produced using Fisher's exact test.

SNP array genotypes, sample and variant pruning. Illumina GoatSNP50 BeadChip genotypes 

specifically generated for this research and Illumina OvineHD Beadchip genotyping data 

generated by two previous studies (Greyvenstein et al. 2016; Kijas et al. 2016)  were considered 

in the analyses. Polled (i.e hornless) animals were removed from the sheep dataset. Markers 

with a minor allele frequency below 5% or which were called in less than 95 % of the samples 

were eliminated. Moreover, in sheep, genotyping data were extracted for markers located in a 

10 Mb region (Chr2:127,500,001-138,500,000 on Oar_v4.0 assembly) corresponding 

approximately to the HOXD gene cluster +/- 5 Mb and encompassing all the mapping intervals 

of the POLYCERATE locus reported in the literature (Greyvenstein et al. 2016; He et al. 2016; 

Kijas et al. 2016; Ren et al. 2016). The final datasets contained 111 cases, 87 controls and 2’232 

markers in sheep and 35 cases, 51 controls and 48’345 markers in goat.

Analysis of Whole-Genome Sequences

The genomes of one polycerate Provençale goat and one polycerate Jacob sheep were 

sequenced specifically for this study. Both were born from polycerate x wild type crosses and 

thus were predicted to be heterozygous for the caprine and ovine causative variants, 

respectively. Paired-end libraries with a 450 bp (goat) and 235 bp (sheep) insert size were 

generated using the NEXTflex PCR-Free DNA Sequencing Kit (Biooscientific). Libraries were 

quantified with the KAPA Library Quantification Kit (Cliniscience), controlled on a High 

Sensitivity DNA Chip (Agilent) and sequenced on a HiSeq 2500 (with 2*100 bp read length in 

goat) and a HiSeq 3000 (with 2*150 bp read length in sheep). The average sequence coverage 

was 16.7 and 11.1 x, for the polycerate goat and sheep individuals, respectively. Additional 

whole-genome sequences available in public databases were also considered in the analyses. 

These consisted of FASTQ files (for 10 additional case and 341 control sheep) and of VCF files 

(for 1160 goat and 838 sheep control individuals) generated by previous studies (see 

Supplementary Table 13). When necessary, the NCBI Genome Remapping Service 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab021/6126410 by U
niversitaetsbibliothek Bern user on 04 February 2021



15

(https://www.ncbi.nlm.nih.gov/genome/tools/remap) was used to convert positions in VCF 

files between older and most recent versions of genome assemblies.

The sequence reads from FASTQ files were mapped on goat ARS1 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_0017 04415.1/) and sheep Oar_v4.0 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2) genome assemblies using the 

BWA-MEM software v 0.7.17 with default parameters (Li and Durbin 2009) and converted to 

bam format with v 1.8 of SAMtools (Li et al. 2009). Duplicate reads were marked using Picard 

tools v 2.18.2 MarkDuplicates option (http://broadinstitute.github.io/picard) and base quality 

recalibration and indel realignments were done with v 3.7 of GATK (McKenna et al. 2010). 

Reads located in the mapping intervals of the ovine and caprine POLYCERATE loci +/- 1 Mb 

were extracted using SAMtools view option before processing to the calling of SNPs and small 

indels with GATK-HaplotypeCaller in ERC mode. The minimum read mapping quality and 

phred-scaled confidence threshold were set to 30 for each sample (‘-stand_call_conf 30.0 -mmq 

30 -ERC GVCF -variant_index_type LINEAR -variant_index_parameter 128000’). In goats we 

retained only heterozygous variants found in the heterozygous polycerate individual and absent 

from 1160 control animals, while in sheep we focused our attention on variants which were 

shared (either in heterozygous or homozygous state) in all the 11 polycerate sheep (1 Jacob and 

10 Sishui Fur Sheep) and absent from the 1179 control animals. Finally, to ensure that we did 

not miss any candidate variants, we performed a detection of structural variants in the same 

regions using Pindel (Ye et al. 2009) and a visual examination of the whole genome sequences 

for 11 goats (1 case, 10 controls) and 22 sheep (11 cases and 11 controls) using IGV 

(Thorvaldsdóttir et al. 2013). The count command in IGVtools was used to produce ‘.tdf’ files 

and identify changes in read coverage in the intervals investigated (with parameters: zoom 

levels = 10, window function = mean, window size = 1000, and extension factor = 500).

Definition of the Boundaries of the 503 kb Deletion-137 kb Insertion in Goat

The boundaries of variant g.115,652,290_116,155,699delins137kb were reconstructed 

manually using split read and paired-end read information obtained from IGV. Sequences of 

reads affected by the mutation were extracted from the .bam file using linux command lines 

and aligned manually to reconstruct the nucleotide sequence at each fusion point. For 

verification, amplicons encompassing these fusion points were PCR amplified in a 

Mastercycler pro thermocycler (Eppendorf) using Go-Taq Flexi DNA Polymerase (Promega), 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab021/6126410 by U
niversitaetsbibliothek Bern user on 04 February 2021

https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://www.ncbi.nlm.nih.gov/assembly/GCF_0017
https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2
http://broadinstitute.github.io/picard


16

according to the manufacturer’s instructions and primers listed in Supplementary Table 15. 

Amplicons were purified and bidirectionally sequenced by Eurofins MWG (Hilden, Germany) 

using conventional Sanger sequencing.

Genotyping of DNA Sequence Variants

SNP and small Indels were genotyped using PCR and Sanger sequencing as described above. 

PCR primers were designed with Primer3 software (Rozen and Skaletsky 1999) and variants 

were detected using NovoSNP software (Weckx et al. 2005). Transgene insertions and large 

indels were genotyped by PCR and electrophoresis on a 2% agarose gel. Ovine variant 

g.132,832,249_132,832,252del was genotyped with primers TTTGGGGCCACACTAGAATC 

and CCTAGAGGGGGCCTACGAG while caprine and murine variants were genotyped with 

the primers listed in Supplementary Table 7 and 14 respectively.

Analysis of Nucleotide Sequence Conservation at the HOXD1 Exon 1 –Intron 

1 Junction

Nucleotide sequences of the HOXD1 gene in 103 sarcopterygian and tetrapod species were 

obtained from the Ensembl (http://www.ensembl.org/index.html; release 98) and UCSC 

(http://genome.ucsc.edu/) genome browser databases. The localization of the nucleotide 

sequence (between MTX2 and HOXD3) was verified in each genome assembly to avoid possible 

confusion with paralogs. In addition, only one sequence was arbitrarily retained when genome 

assemblies for distinct individuals of the same species were available. Then sequences were put 

in the same orientation and trimmed to get 40 nucleotides before and 20 nucleotides after the 

splice donor site of HOXD1 exon 1. A multispecies alignment was generated with ClustalW 

software (Thompson et al. 1994), version 2.1 (https://www.genome.jp/tools-bin/clustalw) and 

a sequence logo was generated using WebLogo (Crooks 2004) (http://weblogo.berkeley.edu/). 

Information on species, sequence and genome assemblies are presented in Supplementary 

Table 5.
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Fluorescence In Situ Hybridization in Goat

Skin biopsies were sampled from one heterozygous polycerate and one wild-type fetuses. 

Fibroblast cultures and metaphases were obtained according to (Ducos et al. 2000). Nucleotide 

sequences from the segments of caprine chromosomes 2 and 5 involved in the candidate 

causative mutation were aligned against bovine bacterial artificial chromosome (BAC) end 

sequences using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Two INRA BAC clones 

(Eggen et al. 2001) were selected and obtained from the Biological Resources of @BRIDGe 

facilities (abridge.inrae.fr): INRAb 230B11, targeting the segment deleted on Chr2, and INRAb 

348A12, targeting the region of Chr5 that is duplicated and inserted on Chr2. FISH experiments 

were carried out according to (Yerle et al. 1994). The two BACs were labeled with biotin and 

digoxygenin, respectively, using the BioPrime DNA Labeling System kit (Life Technologies, 

Carlsbad, CA, USA). Finally, they were revealed by Alexa 594 conjugated to streptavidin 

(Molecular Probes, Eugene, OR, USA) and FITC conjugated mouse anti-digoxygenin 

antibodies (Sigma, St Louis, MO).

Histological Analyses

Tissues were fixed in paraformaldehyde (4%) for 24 h at +4°C. Samples were subsequently 

dehydrated in a graded ethanol series, cleared with xylene and embedded in paraffin wax. 

Microtome sections (5 µm, Leica RM2245) were mounted on adhesive slides (Klinipath- KP-

PRINTER ADHESIVES), deparaffinized, and stained with haematoxylin, eosin and saffron 

(HES). Slides were scanned with the Pannoramic Scan 150 (3D Histech) and analyzed with the 

CaseCenter 2.9 viewer (3D Histech).

Quantitative RT-PCR

RNA was extracted using the RNeasy Mini Kit (Qiagen). Super-Script II (Invitrogen) was used 

to synthesize cDNA from 2 µg of total RNA isolated from each tissue sampled in 70 dpc goat 

and 76 dpc sheep fetuses. Gene sequences were obtained from Ensembl v92 

(www.ensembl.org) and PCR primers (Supplementary Table 16) were designed using Primer 

Express Software for Real-Time PCR 3.0 (Applied Biosystems). Primer efficiency and 

specificity were evaluated on genomic DNA in each species. Quantitative PCR was performed 
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in triplicate with 2 ng of cDNA using the Absolute Blue SYBR Green ROX mix (Thermo Fisher 

Scientific) and the StepOnePlus Real-Time PCR System (Applied Biosystems). The expression 

stability of five genes (RPLP0, GAPDH, H2AFZ, YWHAZ and HPRT1) was tested at each time 

point using the GeNorm program (Vandesompele et al. 2002) to identify appropriate qRT-PCR 

normalizing genes. Three normalizing genes (GAPDH, H2AFZ and HPRT1) were retained and 

the results were analyzed with qBase software (Hellemans et al. 2007).

Consequences of Intron Retention Due to the Four-Nucleotide Deletion in 

HOXD1 intron 1

The complete nucleotide sequence of ovine HOXD1 gene was obtained from Ensembl v97. A 

mutant mRNA characterized by (i) a retention of intron 1 and (ii) a deletion of nucleotides 

located at position +4 to +7 bp after the end of exon 1 was designed. This mutant mRNA was 

translated using ExPASy Translate tool (https://web.expasy.org/translate/). Information on 

HOXD1 functional domains was obtained from UniProt Knowledgebase 

(https://www.uniprot.org/uniprot/W5Q7P8).

Three-Dimensional Geometric Morphometrics

Three-dimensional models were generated for 80 skulls consisting of 32 polycerate and 29 wild 

type sheep specimens, as well as 12 polycerate and 7 wild type goat specimens (for information 

on skulls and reconstruction methods see Supplementary Table 10). Most of the 3D models 

(n=47) were reconstructed using a Breuckmann StereoScan structured light scanner and its 

dedicated software OptoCat (AICON 3D systems, Meersburg, Germany). Twenty-nine skulls 

were digitized with the Artec Eva structured-light scanner and ScanStudioHD software 

v12.1.1.12 (Artec 3D, Luxembourg, Luxembourg). In addition, four skulls were digitized with 

a photogrammetric approach, similar to that described in (Evin et al. 2016). In brief, hundred 

pictures per sample were taken on different angles and inclinations with a Nikon D3300 camera 

equipped with an AF-S Micro Nikkor 85mm lens (Nikon, Tokyo, Japan) and a self-made fully 

automatic turntable. Then 3D models were reconstructed with the ReCap Photo software 

(Autodesk, San Rafael, CA, USA). Previous studies indicated no significant differences 

between 3D models obtained with three-dimensional scanners or photogrammetry (Evin et al. 

2016; Fau et al. 2016). Both approaches are comparable in terms of measurement error (less 
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than 1 mm). Bone surfaces were extracted as meshes and geometric inconsistencies (i.e., noise, 

holes) were cleaned using Geomagic software (3D Systems, Rock Hill, USA).

For shape analyses, 116 3D landmarks and sliding semi-landmarks were placed on each 

specimen by the same operator using the IDAV Landmark software (Wiley et al. 2005) v3.0. 

Out of them 16 were anatomical landmarks, and 100 were sliding semi-landmarks individually 

placed around the basis of the horns on the suture between the bony core and the frontal bone. 

On each side, the first of these 50 sliding semi-landmarks was placed on the upper horn, at the 

intersection between the upper ridge of the bony core and the suture previously mentioned. 

Details on landmark locations on polycerate and wild type specimens are provided in 

Supplementary Table 11 and Supplementary Fig. 11.

Following the procedure detailed by (Botton-Divet et al. 2015), a template was created using 

the specimen 2000-438 on which all anatomical landmarks and surface sliding semi-landmarks 

were placed. Then, a semi-automatic point placement was performed (Gunz and Mitteroecker 

2013) to project sliding semi-landmarks on the surface of the other 3D digitized skulls. Sliding 

semi-landmarks on surfaces and curves were allowed to slide in order to minimize the bending 

energy of a thin plate spline (TPS) between each 3D meshes and the template. After this first 

TPS relaxation using the template, three iterative relaxations were performed using the 

Procrustes consensus of the previous step as a reference.

To remove non-shape variation (i.e. differences in position, scale, and orientation of the 

configurations) and provide optimal comparability between the specimens, we performed a 

generalized Procrustes Analysis (GPA) (Rohlf and Slice 1990). Since our dataset contained 

more variables than observations, we performed a Principal Component Analysis (PCA) on the 

procrustes residuals to reduce dimensionality, as recommended by (Gunz and Mitteroecker 

2013), and plotted the first Principal Components (PCs) to visualize the specimen distribution 

in the morphospace. In addition, the mean shape of our sample was used to compute theoretical 

shapes associated with the maximum and minimum of both sides of the first PC axis for each 

species using thin plate spline. GPA, PCA and shape computations were done using the 

‘Morpho’ and ‘geomorph’ packages (Adams and Otárola-Castillo 2013; Adams et al. 2018; 

Schlager 2018) in the R environment (R Core Team 2018).

Repeatability and reproducibility of landmark placement. The 116 landmarks and sliding semi-

landmarks were placed ten times independently on the skulls from two polycerate and two 

control male sheep sampled between 1852 and 1909 in Tunisia (A-12130, A12132, 1909-4) 
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and neighboring Algeria (A12157; see Supplementary Table 10). The measurements were 

superimposed using a GPA and analyzed using a PCA. Since the variation within specimens 

was clearly smaller than the variation between specimens (Supplementary Fig. 12), we 

considered that the 116 landmarks and sliding semi-landmarks were precise enough to describe 

shape variation.

Data Availability

Raw sequencing data reported in this study were deposited to the European Variation Archive 

(EVA, https://www.ebi.ac.uk/eva/) under accession number PRJEB39341. Sequences from 

previous studies can be found at the following URL 

(www.goatgenome.org/vargoats_data_access.htm) or in the NCBI BioProject and EVA 

databases under accession numbers PRJEB6025, PRJEB6495, PRJEB9911, PRJEB14098, 

PRJEB14418, PRJEB15642, PRJEB23437, PRJEB31241, PRJEB31930, PRJEB32110, 

PRJEB35553, PRJEB35682, PRJEB37460, PRJEB39341, PRJEB39341 and PRJNA624020. 

Illumina GoatSNP50 Beadchip genotyping data generated for this study have been deposited in 

the Dryad Digital Repository (doi: 10.5061/dryad.rxwdbrv6n). Illumina OvineHD Beadchip 

genotyping data from previous studies can be found in the same repository (doi: 

10.5061/dryad.6t34b and 10.5061/dryad.1p7sf). Coordinates of landmarks and source data 

underlying Fig. 3 and 4, and Suppl. Fig. 2, 10 and 11 are provided as a Source Data file.
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Figure Legends

Figure 1. Polyceraty in sheep and goats and candidate genetic variants. a) Polycerate Manx 

Loaghtan ram. b) Wildtype and polycerate male goats from a local German population. These 

individuals represent the most common phenotype. Polycerate animals with asymetric horns 

and partial fusion of lateral horns are also regularly observed. c) A 4bp deletion causing 

polyceraty in sheep. Integrative Genome Viewer (IGV) screenshot with the localization of the 

variant with respect to HOXD1. Below is a graphical representation of nucleotide conservation 

at the exon 1-intron junction across 103 sarcopterigian and tetrapod species. d) Plot of read 

coverage in a heterozygous polycerate goat animal carrying a deletion of 503 kb downstream 

the HOXD gene cluster on Chr2 and a duplication of 137 kb on Chr5.  e) FISH-mapping in a 

heterozygous polycerate goat with BAC clones corresponding to the region deleted in Chr2 

(labeled in red) and to the segment of Chr5 inserted at the deletion site (labeled in green). 

Magnification: X1000. Sheep and goat icons were made by ‘Monkik’ from 

www.thenounproject.com.

Figure 2. Regulation of Hoxd1 expression pattern in crest cell-derived head structures in 

mouse. a) On top is the structure of the mouse HoxD gene cluster with arrows showing the 

timing and localisation of gene expression along the body axis during development. The 

position of Hoxd1 is highlighted in red. Below is a 1 Mb view of the locus, with Hoxd1 in red 

as well as the relative positions of the POLYCERATE variants in sheep (black arrowhead) and 

goat (black line). Below are depicted the various murine alleles, with the lacZ insertion in 

Hoxd1 (blue arrowhead), the two BAC clones (thick blue lines) and the engineered deletion 

(black line). b) Heads of E12.5-E13.5 mouse fetuses after X-gal staining. The dashed circle 

highlights the absence of Hoxd1 expression in the crown (corresponding to the localization of 

hornbuds in Bovidae), whereas the surrounding dermal cells are positive. The conservation of 

Hoxd1 expression in the back of the neck (black arrows) contrasts with the presence/absence of 

expression in the facial muscle precursors (white arrows) and in the eyelids (arrowhead). The 

comparison between the four strains indicate that Hoxd1 expression in all these cranial 

derivatives is controlled by regulatory elements located in a region orthologous to the proximal 

portion of the segment deleted in polycerate goats.

Figure 3. RT-qPCR gene expression analyses in sheep and goat foetuses. a, b) Schemes of 

the tissues sampled at stage 70 dpc in goat (a) and 76 dpc in sheep (b) in four control (+/+) and 

four heterozygous (+/-) polycerate fetuses within each species. bs: skin from the back of the 

head; hb: skin from the hornbud; h1: skin from the lower horn bud; and h2: skin from the upper 
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horn bud in polycerate specimens; fs: frontal skin; el: eyelids.  RT-qPCR gene expression 

analyses in these tissues are shown below (means and standard errors of the means from 

triplicate experiments). Gene expression was normalized using GAPDH, H2AFZ and HPRT1 

as reference genes. *: p<0.05, **: p<0.01 (Welch two sample t-test with the alternative 

hypothesis that the means are not equal). For the sake of clarity, the symbols # and @ were also 

used to show significant differences (p <0.05) between distant bars. c) Schematic representation 

of the ovine HOXD1 gene and corresponding wildtype and putative mutant proteins. The 

localisations of the amplicons studied in b) are indicated with double arrows. HD: 

Homeodomain.

Figure 4. Results of three-dimensional geometric morphometric analyses of 61 ovine and 

19 caprine skulls. a) Distribution of the specimens along the first two axes of the PCA. The 

proportion of variance explained by the main principal components is indicated on each axis. 

Green dots: polycerate sheep with a distance between lateral horns (dlh) larger than the distance 

between upper horns (duh); light blue: polycerate sheep with a dlh≤duh; blue: polycerate sheep 

with at least two lateral horns partially fused at their basis; purple: wild type sheep; black: 

polycerate goats; and red: wild type goats. Representative specimens illustrate each cluster and 

symbols are used to indicate their respective locations in the PCA analysis (see Suppl. Fig. 10 

for intraspecies analyses and further information). b) Number of heterozygous (+/-) and 

homozygous (-/-) polycerate rams amongst groups of live animals with different dlhl (dlh on 

the left side) and duh relative sizes (see Suppl. Table 12 for further information); ***: p-value= 

3.5 x 10-7 (Fisher's exact test). c) Theoretical shapes associated with the maximum (upper three) 

and minimum values (lower three) of PC1 axis for a sheep skull. Red dots correspond to 

anatomical landmarks while the other dots correspond to sliding semi-landmarks; light blue and 

purple dots highlight the sites of division of lateral horns. d) Shape differences for the sliding 

semi-landmarks located at the basis of the left horn. Light blue and purple dots correspond to 

the maximum and minimum values of PC1 axis, respectively. Dashed squares indicate the 

estimated position of dissected tissues in Fig. 3 (bs: skin from the back of the head; fs: frontal 

skin) in which HOXD1 expression was observed in fetuses.
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