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Acute thoracolumbar spinal cord injury (SCI) is common in dogs frequently secondary to

intervertebral disc herniation. Following severe injury, some dogs never regain sensory

function to the pelvic limbs or tail and are designated chronically “deep pain negative.”

Despite this, a subset of these dogs develop spontaneous motor recovery over time

including some that recover sufficient function in their pelvic limbs to walk independently

without assistance or weight support. This type of ambulation is commonly known as

“spinal walking” and can take up to a year or more to develop. This review provides a

comparative overview of locomotion and explores the physiology of locomotor recovery

after severe SCI in dogs. We discuss the mechanisms by which post-injury plasticity

and coordination between circuitry contained within the spinal cord, peripheral sensory

feedback, and residual or recovered supraspinal connections might combine to underpin

spinal walking. The clinical characteristics of spinal walking are outlined including what

is known about the role of patient or injury features such as lesion location, timeframe

post-injury, body size, and spasticity. The relationship between the emergence of

spinal walking and electrodiagnostic and magnetic resonance imaging findings are also

discussed. Finally, we review possible ways to predict or facilitate recovery of walking in

chronically deep pain negative dogs. Improved understanding of the mechanisms of gait

generation and plasticity of the surviving tissue after injury might pave the way for further

treatment options and enhanced outcomes in severely injured dogs.
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TERMINOLOGY

- “Deep pain negative”: term synonymous with “absent pain perception” and defined as an
absent behavioral response to noxious stimulation caudal to the injury level. For thoracolumbar
SCI, this refers to absent pain perception to a mechanical stimulus in the medial and
lateral toes of both pelvic limbs and base of the tail; in dogs, this term is applied
in the acute setting with concurrent paraplegia to imply a functionally complete injury
though sensory and motor status should be considered separately in the chronic setting.
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- Sensorimotor complete injury: term used to describe
functionally and/or physically complete injury in people
where there is absent voluntary movement or pain perception
below the injury level; synonymous with AIS-A designation
using human SCI grading parameters.

- Ambulatory: the ability to rise and take at least 10 consecutive
weight bearing steps unassisted without falling.

- Chronically paralyzed: broad, non-specific term used to
capture the population of dogs with permanent neurologic
impairment (motor, sensory, and/or deficits in continence)
following severe SCI. Dogs in this group can exhibit paraplegia
(i.e., no pelvic limbmovement at all) or display varying degrees
of pelvic limb movements that fall short of being useful (i.e.,
they remain non-ambulatory).

- Spinal walking: independent ambulation in a “deep pain
negative” dog typically characterized by lack of coordination
between thoracic and pelvic limbs, difficulty turning, or going
backward, intermittent falling (especially when changing
directions), frequently intact toe knuckling response but
absent hopping, and increased spasticity.

INTRODUCTION

The majority of dogs suffering from acute spinal cord injury
(SCI) will recover adequate or even normal function (1).
However, a subset of dogs with severe injury fail to regain pain
perception caudal to the injury level (“deep pain negative”),
remain incontinent and are classified as having an unsuccessful
outcome (1–3). The permanent lack of pain perception has
been commonly, and frequently incorrectly, interpreted as an
indication of spinal cord transection, complete disconnection
from all supraspinal influence and minimal to absent chance
of meaningful recovery of function. However, a proportion
of permanently deep pain negative dogs demonstrate notable
spontaneous motor recovery over time (2, 4, 5). This can
range from non-purposeful kicking movements of the limbs,
especially following tactile stimulation below the injury level, to
overground walking with minimal apparent paresis or ataxia.
Ambulation exhibited by this population, typically known as
“spinal walking,” is commonly considered exclusively reflexive
stepping generated by the spinal cord caudal to the level
of injury as described by experimental studies of SCI in
dogs and other species (6–14). While relatively autonomous
circuits within the spinal cord are integral, gait generation is a
complex process with extensive coordination between various
components of the central and peripheral nervous systems.
Understanding the ways in which this circuitry is altered and
also how it can recover after injury has broad therapeutic and
translational implications.

This review will provide a comparative overview of
locomotion and explore the physiological underpinnings of
“spinal walking” after severe SCI in dogs. Additionally, the
clinical characteristics of motor recovery with absent pain
perception as well as proposed means to predict and facilitate its
development in this population will be described.

COMPARATIVE REVIEW OF

LOCOMOTION/GAIT GENERATION

Normal locomotion is a complex action that involves
coordination of multiple brain regions, circuitry within the
spinal cord and peripheral nerves and muscles. The basic
components of locomotion are evolutionarily conserved with
broad overlap even between invertebrate and vertebrate animals.
While motor systems within the brain and spinal cord are
essential to producing locomotion, integration of sensory input
at all levels is also integral to proper functioning and modulation
of locomotion in response to environmental surroundings.

Within the brain there are several motor regions from which
upper motor neurons arise to produce the descending motor
tracts, with some variability in their relative importance across
species. These include the primary motor cortex located in
the parietal lobe of each cerebral hemisphere, the red nucleus
of the midbrain and the reticular formation of the pons and
medulla oblongata. Additionally, the mesencephalic locomotor
region located just ventral to the caudal colliculi is involved in
initiating stepping movements. Axons of neurons from this area
do not directly project to the spinal cord but rather interact with
other brainstem motor regions, especially within the reticular
formation, to produce locomotion. All of these components
are also influenced and modulated by the cerebellum and basal
nuclei. Input from these areas allow for complex movements and
adjustment of locomotor activity. The overall output of the brain
activates spinal cord motor circuitry and produces voluntary
motor activity (15–18).

Axons of the upper motor neurons (UMN) in the various
motor regions of the brain form the descending motor tracts
to the spinal cord. These descending motor tracts produce both
inhibitory and excitatory influence on spinal cord interneurons
and lower motor neurons (LMN) to initiate and regulate
voluntary movement. These include the lateral and ventral (the
latter being more developed in primates) corticospinal tracts,
rubrospinal tract, and pontine and medullary reticulospinal
tracts. While the vestibulospinal tracts play a crucial role in
posture and influence locomotion, they will not be discussed in
detail. The corticospinal tract originates in the primary motor
cortex, follows the major descending white matter pathway
(internal capsule, crus cerebri, pyramids) to the medulla where
the majority of fibers cross at the pyramidal decussation to
descend in the lateral funiculus of the contralateral spinal
cord. It is primarily involved with complex and precise
movements although is reported to retain a role in overall
gait generation (17, 19, 20). The rubrospinal tract originates in
the red nucleus, immediately crossing midline to travel in the
contralateral lateral funiculus of the spinal cord. The pontine and
medullary reticulospinal tracts start in the ill-defined reticular
formation of the brainstem before descending in the ipsilateral
ventral and lateral funiculi, respectively. The rubrospinal and
medullary reticulospinal tracts facilitate flexor muscles and
inhibit extensors while the pontine reticulospinal tract does the
opposite, providing a tonic balance between facilitation and
inhibition of spinal cord lower motor neurons (15–18). Direct
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evidence in dogs is sparse, but it has been demonstrated in
cats that the reticulospinal pathways play an important role
in postural control and basic gait generation on a flat surface
while the rubrospinal tract is involved in both normal control
of locomotion and in producing adaptive movements to changes
in the environment (19, 21). The corticospinal tract is less well-
developed in domestic species (compared to people and non-
human primates) and is not considered essential to generate
basic locomotor rhythms; however, it functions in parallel with
the other motor pathways to primarily regulate and fine tune
movements (19–21).

Within the spinal cord, circuitry involved in gait generation
has been identified in multiple species and is known as the
central pattern generator (CPG) (13, 16, 18, 22–24). The
CPG organizes the basic pattern for stepping, independent
of supraspinal or sensory input. This basic rhythmic pattern
of the CPG is produced by interconnected, alternating, and
mutually inhibitory flexor and extensor interneurons (25). This
network is thought to extend the length of the spinal cord
but has been most extensively studied in the lumbar region
in relation to control of the pelvic limbs (in quadrupeds,
or legs in people). In this context, it is located in the
intermediate zone of spinal cord gray matter although the
precise cranial to caudal location of integral components
of the circuitry within the lumbar spinal cord might vary
between species (e.g., cranial lumbar in dogs, rats, people;
mid-caudal lumbar in cats) (24, 26). These interneurons, in
turn, activate lower motor neurons via additional intermediary
interneurons, the output from which serves as the final common
pathway to produce locomotion via direct innervation of
appendicular muscles (25). The CPG also provides coordination
between left and right limbs via integration of commissural
interneurons and thoracic and pelvic limbs, important in
normal quadrupedal locomotion (15, 18, 27, 28). While
autonomously capable of relatively complex patterns of activity,
under normal (non-injured) conditions, supraspinal input is
necessary for activation (29). Additionally, modifying input
to the CPG is necessary to allow adaptation of the basic
alternating stepping pattern. Sensory input derived from visual
information, vestibular input, and both exteroceptor and
proprioceptors located on the body and limbs is also an
important component of locomotion, specifically providing
information needed to adapt locomotion to an animal’s
surroundings (16).

Gait generation itself consists of two major phases, the
postural stance phase and the protraction or swing phase.
However, based on the activation pattern of specific pelvic
limb muscles, the step cycle should really be considered as
having four phases: flexion and first extension occur during
swing while second and third extension occur during stance
(30, 31). Second extension happens during the early part of
the stance phase when the knee and tarsus joints actually flex
despite contracting extensor muscles as the animal prepares
to bear weight (30, 31). Third extension is characterized by
hip, knee and tarsus extension as the weight of the body is
pushed forward (30, 31).

PLASTICITY OF LOCOMOTOR SYSTEMS

AFTER SCI

The central nervous system is largely considered to have poor
regenerative capacity; however, remarkable plasticity is possible.
In fact, much of what is known about the organization and
function of locomotor systems has been elucidated via various
experimental spinal cord transection and decerebrate animal
models (6, 7, 9–14, 32). Reorganization and adaptations that
occur at all levels might influence recovery of motor function
below the level of severe injury. These include regrowth of
axons across the epicenter, recovery/reactivation of conduction
of residually intact UMN axons traversing the lesion epicenter,
a more autonomous role for the CPG, alterations in excitability
of interneurons and LMNs below injury, activation of silent
synapses, changes in synaptic weight, and alterations in sensory
input or how afferent input is integrated at the level of the spinal
cord below injury (29, 33–38).

Axonal regeneration of UMN axons has been demonstrated
via experimental transection models although the capacity for
regeneration varies between axon types and is limited compared
to axons in the peripheral nervous system (37, 39–41). While
serotonergic axons have demonstrated robust sprouting ability
after injury, there are substantial deterrents to meaningful
regrowth of most other disrupted axon systems (41). These
include the size of the defect, astroglial scar formation, growth
inhibitory molecules (e.g., chondroitin sulfate proteoglycans)
and myelin-based growth inhibition (37, 39, 40). Additionally,
there is no guarantee that regenerating axons will reconnect
with the appropriate below-injury targets. These factors lead
to minimal functional recovery in most complete transection
models. There is active research regarding how to facilitate more
effective regrowth through the use of various grafts, scaffolds,
inhibitors of scar formation and other modulators of axonal
growth (37, 39, 40, 42–47).

Fortunately, even with severe injury, physical spinal cord
transection is uncommon. Residually intact, small diameter,
subpial UMN axons traversing the lesion epicenter have been
shown in various animals and people with functionally complete
injury (33, 35, 48, 49). While the degree of loss of large diameter
axons and abnormal myelination of residual fibers contribute to
persistent neurologic deficits in chronic SCI, there is evidence
of reactivation of surviving long tract axons within rubrospinal
and other descending motor tracts (50, 51). This might serve
to reestablish supraspinal influence on spinal cord circuitry and
LMNs and contribute to recovery of voluntary motor control
(35, 50). Prior work in rats and cats has shown that as little as
5–10% of the original population of axons can allow voluntary
ambulation after severe injury (33, 50, 51).

Additionally, collateral sprouting of spared UMNs and
regrowth of local propriospinal fibers traversing the site of injury
have each been shown in experimental injury in rodents and
lampreys (52–55). These mechanisms serve to produce novel,
multisynaptic pathways, and reestablish the connections between
UMNs and LMNs with associated improvements in motor
function (39, 52). Interestingly, propriospinal neurons have

Frontiers in Veterinary Science | www.frontiersin.org 3 August 2020 | Volume 7 | Article 560

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Lewis et al. Spinal Walking in Dogs

also been shown to activate CPGs, highlighting their potential
importance in achieving useful locomotor recovery after severe
injury (39, 55–57).

Below the level of injury, notable changes also occur. There is
increased importance of the integration between sensory input
and CPG activity to coordinate motor output due to limited
or lack of supraspinal control (29). Alterations in both motor
neuron pool excitability and sensory input to the dorsal horn
occur and likely contribute to functional status after injury
(38, 58–62). For example, pharmacologic inhibition of post-
synaptic inhibition with strychnine has been used to facilitate
spinal walking in experimentally transected dogs (63). However,
maladaptive plasticity and development of aberrant neuronal
circuits commonly manifested as neuropathic pain or spasticity
can also occur and impair functional recovery (58, 60).

SPINAL WALKING DEFINITION AND BRIEF

OVERVIEW

Dogs with chronic, permanent (i.e., more than 3 months
after injury) loss of pain perception following acute severe,
naturally-occurring thoracolumbar SCI are generally considered
to have a limited capacity for locomotor recovery. Despite this
presumption, a proportion of these dogs regain the ability to walk
independently (2, 4). Unassisted ambulation in dogs chronically
lacking pain perception (“deep pain negative”) has commonly
been referred to as “spinal walking.”

Dogs without pain perception that exhibit such walking
tend to show a spastic pelvic limb gait in which the stepping
pattern of the pelvic limbs is not apparently coordinated
with the thoracic limbs (the step cycles are out of phase)
(Supplementary Materials 1–3). There is a tendency to fall
to one side, especially when turning. Some dogs will exhibit
“attempts” to correct the falling due to excessive spasticity in
the limb ipsilateral to the fall. However, other dogs demonstrate
the ability to walk much longer distances without falling.
Limb movements during ambulation are variable; dragging
of the toes is observed in some animals, but many also
show excessively high stepping associated with dramatic flexor
spasticity, especially when changing directions. It is also common
for dogs to lean forward to facilitate standing up when initiating
ambulation. This population commonly demonstrates intact
toe knuckling response but very delayed to absent hopping,
absent extensor postural thrust and inability to step backwards.
Spinal reflexes are typically hyper-reflexive, flexor, and extensor
spasticity are common. Chronic reflex perturbations are also
common including an abnormal crossed extensor reflex between
pelvic limbs (stimulating flexion in one pelvic limb that
elicits reflex extension of opposite pelvic limb in a non-
weight bearing position) and the presence of a “mass reflex”
(simultaneous, below-injury movements including flexor spasms
of the limbs, tail flagging, and evacuation of the bladder or colon
elicited by tactile or other sensory stimulation such as manual
bladder expression).

Spinal walking has been proposed to reflect reflexive stepping
generated autonomously at the level of the spinal cord CPG in

the absence of any supraspinal input (8, 16). This is supported
by experimental transection models in dogs showing recovery of
treadmill and over ground ambulation in the months after injury
with similar electromyographic patterns to normal walking dogs
(11, 13, 63–65). While Liu et al. found that no transected
dogs without additional therapeutic intervention (polyethylene
glycol at the site of transection) regained any pelvic limb motor
function, they were only followed for two months which is
likely premature to its typical development (65). Other work has
showed spontaneous recovery of ambulation in a majority of
dogs by an average of four months after transection without any
specific therapy (11).

While preservation and/or effective reorganization of the
CPG circuitry is integral to motor output after SCI, there
are distinct differences between experimental and naturally-
occurring SCI as well as between treadmill walking and over
ground walking (2, 66). Importantly, simple activation of
exclusively CPG-induced reflexive stepping post-injury might
not adequately explain the broad variability in when and in which
dogs develop independent, over ground ambulation despite
persistently absent pain perception. In the normal, uninjured
state, supraspinal input is considered necessary for initiation
and control of voluntary over-ground locomotion mammals
(16). Whether this requirement for supraspinal input to produce
functional ambulation is maintained following severe SCI
remains uncertain. In one study evaluating electrophysiologic
evidence of long tract function in a group of dogs lacking
pain perception, results suggested that recovery of supraspinal
connections and walking were independent of each other (5). In
another study of dogs with permanently absent pain perception,
all dogs that recovered ambulation were noted to have a
voluntary tail wag within one-month post-injury (2). This finding
demonstrated intact brain to tail connections traversing the site
of some so-called complete injuries and implied a potential
association between such translesional connections and recovery
of walking (2). While there is conflicting evidence regarding the
role of supraspinal influence in severely injured dogs, there are
also other factors to consider such as maintenance of certain
sensory input that are likely crucial to guide the appropriate
CPG-directedmotor output in the post-injury setting (16, 29, 67).

Overall, development of ambulation in pain perception
negative dogs likely reflects a reorganized CPG in complex
coordination with multiple other factors that might include
some degree of spared supraspinal influence, a certain
threshold of motor neuron pool excitability, appropriate
peripheral sensory input, activity specific locomotor
training and yet to be determined combinatorial therapeutic
interventions (4, 5, 68, 69).

CLINICAL DESCRIPTION IN DOGS WITH

NATURALLY OCCURRING INJURY

Ambulation in pain perception negative dogs secondary to
naturally occurring injury is reported to range from 10 to 59%,
with the large discrepancy likely due, in part, to differences in
the patient population, the injury itself, and variable definitions
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of walking and pain perception (2, 4, 5, 69). Although it can be
seen with a number of causes of acute SCI, the majority of what
we know about this population comes from dogs that suffered
intervertebral disc herniation (IVDH), the most common cause
of acute SCI in dogs. While an association between injury type
and development of spinal walking has not been identified, it
appears to be less common in dogs who suffered vertebral column
trauma (2, 4, 69). This might reflect that a large percentage of
dogs are euthanized at the time of traumatic injuries due to
poor prognosis relative to IVDH, but differences in the impact of
injury type (e.g., higher rate of more extensive ormultiple injuries
and physical spinal cord transection in traumatic injuries) on
locomotor systems is also possible.

The timeframe during which ambulation develops is also
variable. In Olby et al. 2003, 7/18 (38%) dogs with absent pain
perception secondary to IVDH regained ambulation on average
over 9 months with a range of four to 18 months (2). Among
a cohort of 94 dogs examined in the chronic setting in which
nine were ambulatory with absent pain perception, the median
time since injury at examination was 12 months (range of 3–
89 months) (5). While time to develop ambulation was not
specifically reported for the nine dogs, the overall timeframe is
similar to Olby et al. In contrast, Gallucci et al. found median
time to regain ambulation was just 75 days and ranged from
16 to 350 days for the 48/81 (59%) dogs with functionally
complete injuries who walked again (4). Differences in study
design likely contributed to this discrepancy. Most notably,
dogs with shorter average time to ambulation underwent early
post-injury, intensive rehabilitation which might have positively
impacted recovery (4).

Development of ambulation in pain perception negative dogs
is typically considered to require intact local reflex arcs to the
pelvic limbs (i.e., an injury level cranial to the fourth lumbar
vertebrae) to provide appropriate muscle tone and necessary
weight bearing ability (8, 14). However, the importance of lesion
location within the T3-L3 spinal cord region remains unclear.
It has been suggested that lesions cranial to the thoracolumbar
junction might impair supraspinal postural control of epaxial
muscles and therefore prevent functional manifestation of the
reflexive stepping, even if such spinal circuitry is intact (8). On
the contrary, it has also been proposed that more cranial lesions
(cranial to L2) might facilitate its development due to sparing
of the intrinsic circuitry of the CPG integral to pelvic limb
locomotor function (70, 71). The most common site among deep
pain negative dogs who walked in one study was T12-T13 and
ranged from T4-5 to L2-3 (4). No association between lesion
location and ambulation has yet been identified (4, 5, 72).

Body weight but not body condition score has also
been reported to influence development ambulation in pain
perception negative dogs, with smaller dogs being more likely to
become spinal walkers (4). The role of body weight distribution
is unclear but compensatory forward loading on to the thoracic
limbs has been demonstrated in dogs with SCI (73–75). It is
possible that smaller dogs more effectively shift weight off of
their pelvic limbs making it easier to “stand” and for stepping
movements to become functional walking compared to larger,
heavier dogs. The impact of limb length has not been specifically

investigated. Anecdotally, taller dogs with a higher center of
gravity are less likely to regain ambulation, perhaps due to greater
demands on supraspinal postural control to maintain balance
which might be lacking after severe injury. Deficiencies in lateral
stability have been demonstrated in dogs with both complete
and incomplete SCI and might support postural control as an
additional factor contributing to return of functional ambulation
beyond just regaining pelvic limb stepping movements (76).
Clinically, lateral instability can be noted in this population as
a tendency to ambulate reasonably well in straight lines but
falling when attempting to turn or change directions. Younger
age has also been suggested to promote its development (4).
Other patient factors that logically might negatively influence
motor recovery include lack of behavioral motivation, limb
contractures, and severe limb muscle atrophy.

Among chronically deep pain negative dogs, clinical
examination of spasticity has also been described in relationship
to motor function (77). A canine spasticity scale was developed
that specifically quantifies duration of patellar clonus and degree
and duration of pelvic limb flexor spasms induced by pin prick
to the bottom of the paw. The overall spasticity scale score
and duration of flexor spasms were each positively associated
with gait scores (77). While spasticity is typically considered
a maladaptive response to severe injury in people resulting in
pain, reduced quality of life and inconsistent impacts on daily
functioning, its potential role in recovery of motor function is
poorly understood (77–82). However, the data in dogs suggests
that development of flexor spasms might indicate increased
excitability of the intraspinal circuitry and improved recovery
of stepping (77). Cutaneous sensory stimulation of the hind
quarters after injury (especially of the perineum, tail, and paw)
has also been suggested to produce stepping movements in dogs
(11). The importance of afferent input has been demonstrated
in cat and rodent models where sural nerve stimulation, tail
electrical stimulation or manual tail or perineum manipulation
enhanced pelvic limb stepping (6, 12, 26, 83, 84). In humans with
incomplete SCI, cutaneous plantar sensory stimulation during
motor training increased spinal cord excitability and has been
suggested as a means to enhance recovery of motor function
(85). Additionally, it has been advocated to incorporate a variety
of walking surfaces for incomplete injury patients supporting
an integral role for sensory input in promoting locomotor
recovery (86). Although the role of targeted sensory input on
the development of spinal walking has not been prospectively
evaluated in dogs with naturally occurring injury, providing
different sensory environments (e.g., grass versus hard surface
flooring) and targeted afferent stimulation might be useful to
facilitate walking in this population.

Electrodiagnostic testing has also been utilized to try to
shed light on the long tract and local spinal pathways involved
in the development of ambulation in dogs with absent pain
perception (5, 68, 87). Evaluation of spinal cord long tracts
utilizing transcranial magnetic stimulation (TMS) and cortical
and spinal cord somatosensory evoked potentials (SSEPs) have
produced conflicting results (5, 68, 87). In Lewis et al., no
SSEPs traversing the injury site were identified but pelvic limb
motor evoked potentials (MEPs) following TMS were noted in
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4/20 dogs (including 3/5 ambulatory dogs) (68). Trans-lesional
motor conduction was associated with higher open field gait
scores and ambulation. One of the four dogs included in this
group had present but blunted pain perception which supports
a less severe injury and might have explained the MEP and
recovery of ambulation (68). In contrast in Hu et al. 2018, cortical
SSEPs and MEPs were noted in 12/34 (0/9 spinal walkers) and
19/85 (1/9 spinal walkers) chronically injured dogs, respectively,
but no relationship was identified between the presence of
either SSEPs or MEPs and ambulation (5). It is possible that
trans-lesional conduction in chronic SCI provides insufficient
influence in some injuries or is unrelated to the reorganization of
spinal cord circuitry that produces walking. Clarification of these
electrodiagnostic results and the role of residual or reestablished
supraspinal input on long-term recovery of function below
clinically complete injuries requires further study.

Local spinal reflex circuitry aimed at evaluating motor neuron
pool excitability has also been evaluated in chronically injured
dogs using the H-reflex (68). The H-reflex was present recording
from the plantar interosseus muscles following tibial nerve
stimulation in 19/19 of chronically injured dogs compared to
3/6 controls, and the H-reflex threshold (stimulus intensity at
which the waveform first appeared) was lower in SCI dogs
than in controls (68). This lowered threshold supports increased
motor neuron pool excitability below injury compared to healthy
animals without SCI. Notably, the H-reflex threshold was also
inversely associated with open field gait scores among the dogs
with chronic SCI (68). This suggests that increased motor neuron
pool excitability might also play an important role in motor
recovery following severe injury.

Magnetic resonance imaging (MRI) features of dogs with
chronic SCI have also been described in relationship to below-
injury functional status (72, 88, 89). On conventional MRI
performed in the chronic setting, a longer length of apparent
complete parenchymal compromise (i.e., no normal tissue
discernible on consecutive transverse images at the lesion
epicenter) was inversely associated with open field gait scores
(72). Similarly, more extensive chronic intramedullary lesions or
cavitations have been associated with failure to regain ambulation
by 7 months after presentation (88). Diffusion tensor imaging
(DTI), an MRI application in which images are derived from
the cellular motion of water, and associated tractography, which
provides a visual representation of spinal cord white matter
tracts, have also been evaluated in this population (89). Decreased
anisotropy at the lesion epicenter (i.e., loss of directional
dependence of water diffusion which is high in the normal spinal
cord) as measured by the DTI parameter, fractional anisotropy,
and complete loss of fiber tracts traversing the site of injury
on tractography were each inversely associated with gait scores
(89). Interestingly, of the four deep pain negative dogs that were
reported to have no trans-lesional fibers on tractography (two
secondary to IVDH and two following vertebral column trauma),
none was independently ambulatory. These findings suggest a
role for supraspinal input in motor recovery after severe injury
in at least some animals but the numbers were small and results
require validation in a larger population of dogs.

PREDICTION AND FACILITATION OF

SPINAL WALKING

While a variety of factors have been associated with the
development of ambulation in dogs with absent pain perception,
no predictors in the acute or subacute stage of its subsequent
development have yet been established. Considerations worthy
of further investigation include clinical parameters such as the
onset of spasticity, imaging biomarkers such as DTI indices
and tractography, electrodiagnostic evaluation of descending
motor tract function or motor neuron pool excitability and
serum and cerebrospinal fluid biomarkers of inflammation
or structural spinal cord proteins (5, 68, 77, 89–98). While
specific markers in serum and cerebrospinal fluid have not
been evaluated to predict spinal walking, serum glial fibrillary
acidic protein (GFAP) and phosphorylated neurofilament heavy
chain (pNFH) have been reported to be useful among deep
pain negative dogs in predicting outcome and the development
of progressive myelomalacia (96–98). Biomarkers as potential
prognostic indicators have been described in detail in the
companion article in this issue, “Prognostic Factors in Acute
Intervertebral Disc Disease,” and it is possible some of these will
be useful in this population.

There is also currently limited evidence for specific treatments
to facilitate the recovery of ambulation in dogs lacking pain
perception. However, a variety of therapeutic interventions
have been investigated in experimental models and human
SCI to optimize recovery that might prove useful in this
population. These include task-specific physical rehabilitation,
functional electrical stimulation and epidural stimulation,
targeted somatosensory stimulation, treating neuropathic pain,
and other pharmacologic interventions (12, 26, 42, 70, 71, 99–
108). Importantly, there is growing evidence that multimodal
approaches to facilitate motor recovery might prove most
useful in improving outcomes in conjunction with traditional
approaches directed at the lesion epicenter (36, 70, 109, 110).
This is supported by work in chronically sensorimotor complete
people and rodent models in which epidural stimulation aimed
at motor networks below the level of injury produced some
voluntary control of limb function perhaps by unmasking
limited residual supraspinal connections (71, 101, 106, 111).
Thus, epidural stimulation with locomotor training efforts
might be enhanced by combining them with strategies that
also promote tissue level recovery at the site of injury.
Additionally, combination therapy with task-specific training
and chondroitinase ABC in experimental SCI models has been
shown to promote regeneration and synergistic plasticity with
a greater degree of effective synaptic connections reestablished
below injury in an activity dependent manner (112–114).
Chondroitinase therapy alone has been shown to be effective in
dogs with chronic SCI including recovery of ambulation in 10%,
the effect of which might be enhanced by combining it with other
treatment modalities (115).

Among dogs lacking pain perception, early in-patient
rehabilitation has been suggested as one factor that positively
impacted the recovery of ambulation (4). Further evaluation of
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specific rehabilitation protocols, focusing on specific components
of gait re-training, is warranted. Potassium channel antagonist,
4-aminopyridine, has also been demonstrated to improve
ambulation in a subset of chronically paralyzed dogs (69,
116). While promising, the intrinsic value of such therapies
as chondroitinase, rehabilitation, or 4-aminopyridine cannot be
determined without widespread clinical use in this population.
Epidural stimulation or functional electrical stimulation have
not been evaluated in dogs with spontaneous SCI, but these
techniques might prove useful and preliminary work to develop
such devices are underway (117). Overall, exploring multimodal
therapeutic approaches will likely provemost useful in enhancing
motor recovery after severe, spontaneous SCI in dogs.
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