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A Bayesian dose–response meta-analysis
model: A simulations study
and application

Tasnim Hamza1 , Andrea Cipriani2, Toshi A Furukawa3,4,
Matthias Egger1, Nicola Orsini5 and Georgia Salanti1

Abstract

Dose–response models express the effect of different dose or exposure levels on a specific outcome. In meta-analysis,

where aggregated-level data is available, dose–response evidence is synthesized using either one-stage or two-stage

models in a frequentist setting. We propose a hierarchical dose–response model implemented in a Bayesian framework.

We develop our model assuming normal or binomial likelihood and accounting for exposures grouped in clusters. To

allow maximum flexibility, the dose–response association is modelled using restricted cubic splines. We implement these

models in R using JAGS and we compare our approach to the one-stage dose–response meta-analysis model in a

simulation study. We found that the Bayesian dose–response model with binomial likelihood has lower bias than the

Bayesian model with normal likelihood and the frequentist one-stage model when studies have small sample size. When

the true underlying shape is log–log or half-sigmoid, the performance of all models depends on choosing an appropriate

location for the knots. In all other examined situations, all models perform very well and give practically identical results.

We also re-analyze the data from 60 randomized controlled trials (15,984 participants) examining the efficacy (response)

of various doses of serotonin-specific reuptake inhibitor (SSRI) antidepressant drugs. All models suggest that the dose–

response curve increases between zero dose and 30–40mg of fluoxetine-equivalent dose, and thereafter shows small

decline. We draw the same conclusion when we take into account the fact that five different antidepressants have been

studied in the included trials. We show that implementation of the hierarchical model in Bayesian framework has similar

performance to, but overcomes some of the limitations of the frequentist approach and offers maximum flexibility to

accommodate features of the data.
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1 Introduction

Dose-response associations examine the effect of different levels of exposure (e.g. levels of smoking or drug doses)
on a health outcome.1,2 In pairwise meta-analysis,3–5 combining dose–response associations from different studies
and settings may lead to more precise and generalizable conclusions.6 When aggregate-level data are available
from multiple studies, dose–response associations can be synthesized using either a one-stage or two-stage model.
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The one-stage model is implemented as a linear mixed model, which estimates a dose–response fixed effect and

accounts for the heterogeneity by allowing shapes to vary across studies.7 In a two-stage model, the dose–response

model is fitted first within each study, and then the regression coefficients (or shape characteristics) are synthe-

sized across studies.8–10

The one-stage model takes into account heterogeneity but provides relevant information via the estimate of a

between-studies variance–covariance matrix. The two-stage model employs standard meta-analytical techniques

and provides the usual heterogeneity measures, such as I2, in case this is of interest. However, to fit non-linear

shapes, frequentist implementation of the two-stage model requires multiple dose levels to be reported in each

study. For example, if the dose–response curve is assumed to be approximated by a p-order polynomial, all studies

need to report outcomes for at least pþ 1 dose levels. This situation will result in excluding studies that report

p dose levels or fewer levels.
The one-stage and two-stage models are implemented in a frequentist setting, and their performance has been

evaluated in simulations and examples.11 Fitting dose–response meta-analysis in a Bayesian framework, in the

form of a hierarchical model, is, in our view, highly desirable. Several papers12,13 have described the advantages of

Bayesian evidence synthesis. First, Bayesian models14,15 can be easily extended to incorporate, for example, study-

specific covariates, to combine observational and randomized data, or to deal with multiple outcomes and expo-

sure types. Second, one can employ informative priors for the dose–response shape to reflect expert knowledge or

evidence from external data sources. Third, one can easily extend the model to explore the variation in dose–

response curves within and across groups of similar exposures or drugs. Finally, probabilistic statements follow

naturally as the posterior distributions can be interpreted as the true distributions of quantities of interest as

uncertainty about all parameters is incorporated in the results.16,17

The paper is structured as follow. In Section 2 we present a Bayesian hierarchical dose–response meta-analysis

model with normal or binomial likelihood and the cluster-specific dose–response model. The evaluation of the

properties of the models follows in Section 3, alongside comparisons with the frequentist model in a simulations

study. In Section 4, we re-analyze a dataset of the dose–response association of various doses of antidepressants.

Finally, we discuss the strengths and limitations of the model in Section 5.

2 Methods

We introduce a Bayesian hierarchical model for dose–response meta-analysis. We focus on a dichotomous out-

come, although the models could easily accommodate continuous outcomes.

2.1 Notation

Table 1 summarizes the notation. Suppose there are ns studies (i ¼ 1; . . . ; ns) and each study has a number

of doses ndi (j ¼ 1; . . . ; ndi). Each study reported an empirical estimate of the outcome at each dose

level. The doses are denoted by Xij where the minimum dose Xi0 is set as the reference level (control group).

The observed outcome is expressed as number of events out of total observed or relative treatment effects.

The dose-specific number of events is rij out of a total sample size nij. The estimated change in the

outcome from the reference dose Xi0 to dose Xij, summarized for the nij participants, is indicated by Yij.Yij can

be log odds ratio (logOR), log risk ratio (logRR), log hazard ratio (logHR), or any relative treatment effect for

continuous outcomes such as mean difference. Relative effects rather than number of events are commonly

reported in the context of studying environmental exposures or other exposures examined in observational stud-

ies.18 In this case, the relative effects Yij are the estimates from multivariable models adjusted for possible

confounding variables. The vector Yi ¼ Yi1; Yi2; . . . ; Yiðndi�1Þ
� �

comprises all relative effects, on a natural log-

arithmic scale, for study i.

2.2 Dose–response meta-analysis model

We propose a hierarchical two-level model. In the first level, the dose–response model is fitted within each

study assuming either normal (normal dose–response model) or binomial likelihood (binomial dose–response

model) for the observed data. In the second level, we synthesize the dose–response regression coefficients

across studies. The hierarchical structure allows coefficients to borrow strength across studies, via the exchange-

ability assumption.
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2.2.1 Dose–response model within each study.

Within each study i, a multivariate normal distribution is assumed for Yi

Yi � MVNðDi; SiÞ

where the vector Di ¼ ðdi1; . . . ; diðndi�1ÞÞ contains the underlying relative effects of dose Xij relative to dose Xi0. The
(ndi�1) � (ndi�1) variance–covariance matrix Si can be estimated assuming a multinomial distribution for
the number of events per dose and using the delta-method for large sample sizes.19,20 For logOR, the elements
of Si are

br2 ijm ¼ 1=ri0 þ 1=ti0; if j 6¼ m

1=rij þ 1=tij þ 1=ri0 þ 1=ti0; if j ¼ m

(

where t refers to the number of non-events and the zero index refers to the quantities in the reference dose. The
formula above is suitable when the logORs are estimated from 2� 2 tables. If the logORs originate from
adjusted logistic models from observational studies, then a correction in the correlations between dose
strata should be applied to Si, using the Longnecker and Greenland method9,10 or the approach suggested by
Hamling.21

If the data are from a randomized trial and the table of counts is available, it is straightforward to assume a
binomial distribution of events

rij �Binomial pij; nijð Þ

where pij are the underlying probabilities of having an event in dose j within study i. Then the underlying relative
treatment effects are parametrized as

k pi0ð Þ ¼ ui

k pijð Þ ¼ ui þ dij

with dij defined as above. The function k is specified based on the effect size we want to estimate; for example, it is
the logit function for logOR and the log function for logRR. The parameter ui is the log-odds of the event in the
reference dose level.

Note that continuous outcome data can be accommodated if Yi are mean differences or standardized mean
differences. Alternatively, if the outcome is available for each dose level, the normal likelihood is used instead of
the binomial, and dij is parameterized as the mean difference or standardized mean difference.

Table 1. Notation in aggregated-level data in dose–response meta-analysis.

i ¼ 1; . . . ; ns study id

j ¼ 1; . . . ; ndi dose levels in study i

Xij dose level j in study i

Xi0 reference dose in study i

rij number of events in dose j within study i

nij sample size in dose j within study i

Yij within study i, the relative effect (on a log-scale) of dose j contrasted to the

effect in the reference dose (Xi0) e.g. log odds ratio

Yi ¼ Yi1; Yi2; . . . ; Yiðndi�1Þ
� �

vector of all dose-specific (log) relative effects in study i

k ¼ 1; . . . p number of dose transformations associated with the dose–response shape.

For a linear shape p ¼ 1 and for quadratic and restricted cubic splines p ¼ 2

c ¼ 1;2; . . . ;C exposure clusters

1360 Statistical Methods in Medical Research 30(5)



2.2.2 Dose–response functions.

The underlying relative effect dij can be modelled as

dij ¼ f Xij;Xi0; bið Þ

where f is the dose–response function and bi are the shape parameters that need to be estimated. Note that the f
function could also be any transformation, including linear, quadratic, cubic or fractional polynomials and
resulting in bi ¼ ðbkiÞ being a vector of length p and k ¼ 1;2; . . . ; p.22 The simplest case is to assume a linear (f
is the identity function) shape p ¼ 1 where the statistical model needs to estimate only one parameter in study i;
bi ¼ bi and dij ¼ f Xij;Xi0; bið Þ ¼ biðXij � Xi0Þ. However, investigating dose–response relations underlying several
studies may require non-linear models.23 A flexible choice is using restricted cubic splines.24 With m knots, there
are p ¼ m� 1 regression coefficients in bi to be estimated. Setting m ¼ 3 (say k1; k2; k3), will result into f
consisting of p ¼ 2 dose-transformations; f1 is the identity function and f2 is the restricted cubic spline transfor-
mation24 with coefficients bi ¼ ðb1i; b2iÞ.

dij ¼ b1iff 1ðXijÞ � f 1ðXi0Þg þ b2i ff 2ðXijÞ � f 2ðXi0Þg

where

f 1 Xijð Þ ¼ Xij;

and

f 2 Xijð Þ ¼
ðXij � k1Þ3þ � k3�k1

k3�k2
ðXij � k2Þ3þ þ k2�k1

k3�k2
ðXij � k3Þ3þ

k3 � k1ð Þ2

with ðxÞþ ¼ x if x > 0 and 0 otherwise.
The total number and location of knots should be identical for all studies, when bi are to be pooled. To set the

location of knots, Harrell suggests to use fixed sample quantiles. With three knots, we set them at the 10%, 50%
and 90% percentiles of the observed dose range (see Section 2.4 in Harrell24). It has been shown that the location
of knots in restricted cubic spline is not very critical in most situations as Stone found in a series of simulations.25

However, we further examine this issue in our simulations study.

2.2.3 Synthesize dose–response functions across studies.

In dose–response meta-analysis, the study-specific regression coefficients bi ¼ ðb1i; b2i; . . . b2pÞ can then be syn-
thesized. Random dose–response coefficients model assumes that the underlying study-specific coefficients bi are
normally distributed with mean B ¼ ðB1;B2; . . .BpÞ and variance–covariance matrix, R; that is

bi �MVNðB;RÞ

This model acknowledges the presence of a distribution of true dose–response relationships underlying the
studies and is capable of predicting study-specific curves by borrowing strength from their variation across
studies. R is a p� p variance-covariance matrix with diagonal elements s2p and in the off-diagonal there are the
p� 1 covariances between the coefficients. To improve estimation, we will assume that s2p ¼ s2 and we will
explore whether the correlations q in R are different from zero. Note that this model assumes that the heteroge-
neity across the study-specific estimates is fully captured by heterogeneity in the dose–response shapes. For a
model with a common dose–response coefficient we set bi ¼ B.

Note that for studies with ndi < pþ 1, bi is not identifiable. However, because of the exchangeability (or
equality) of bi across studies, we are able to estimate them.

2.3 Dose–response meta-analysis model accounting for clustering in the exposure

Consider an exposure (or drug) variable that can take on different values. For example, daily intake of omega 3
fatty acids in relation to risk of cardiovascular events, possibly accounting for the different assessment of omega 3
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(food supplements versus diet with fish and nuts). The differences between these two dose–response curves can be

modelled by inserting type-specific regression coefficients bci ¼ ðbc1i; bc2i; . . . bcpiÞ, where

c ¼ 1 : food supplements; 2 : diet with fish and nutsf g:

Overall, for a random of exposure clusters c ¼ 1;2; . . . ;C the relative effects are mapped to the transformed

dose as

dij ¼ f Xij;Xi0; b
c
i

� �
Next, bci ; the vectors of coefficients from study i examining the same cluster of exposures, are synthesized using

a multivariate normal distribution with a common mean Bc ¼ ðBc
1;B

c
2; . . .B

c
pÞ and variance–covariance matrix

Rwithin; that is a p� p matrix with diagonal s2within and on the off-diagonal the p� 1 covariances between the

coefficients

bci �MVN Bc;Rwithin
� �

At the next step, the cluster-specific dose–response associations Bcare synthesized across the C clusters. Again,

a multivariate normal distribution with mean vector B and variance–covariance matrix Rbetween is employed.

Rbetween has the same dimension as Rwithin and in the diagonal the parameter s2between measures the heterogeneity

between the clusters

Bc �MVN B;Rbetween
� �

2.4 Predicting an absolute mean response to a dose

Once the data are synthesized and the dose–response parameters are estimated, we can predict the absolute mean

response for any dose within the range of studied dose levels. These predictions are straightforward within a

Bayesian model as the total uncertainty in the parameters is propagated in the final predictions. Assume there is a

natural reference dose, such as a dose zero or no-exposure (baseline dose). The observations ri0; ni0 from the zero

dose levels can be parametrized to estimate an average summary response to zero-dose R0

ri0 �Binomial pi0; ni0ð Þ;

k pi0ð Þ�N R0; r
2
0

� �
Then, the estimated common baseline mean effect R0 (measured on the log or logit probability scale) can be

combined with B to obtain the predicted absolute response to any given dose level Xj

k�1 B1ff 1ðXjÞ � f 1ðX0Þg þ B2ff 2ðXjÞ � f 2ðX0Þg þ R0

� �

2.5 Bayesian estimation

We will use Markov chain Monte Carlo (MCMC) techniques to estimate all parameters in a Bayesian setting. An

approximate non-informative prior distribution is chosen for the coefficients and the baseline effects ui0 ¼
logit pi0ð Þ in the binomial model

Bk �N 0; 103
� �

ui0 �N 0; 103
� �

1362 Statistical Methods in Medical Research 30(5)



Given that both in the simulations and in the example our outcome is dichotomous and measured on the

natural log scale, we place a half-normal prior to the heterogeneity parameter

s�N0 0; 1ð Þ

This heterogeneity prior is minimally informative in most cases as ORs rarely exceed 5 and hence the under-

lying values of Bk’s should not often exceed |0.2|.
For correlations q in the off-diagonal of the variance–covariance matrices, we use a uniform prior

q�Unifð�1; 1Þ

All Bayesian models are implemented in JAGS within R.26,27 The codes can be found in GitHub at https://gith

ub.com/htx-r/DoseResponsePMA. To obtain the spline transformations, we use the rcs function from the rms

package.28 To evaluate the convergence of the models, we employed various diagnostic tools for MCMC included

in the coda package.29 We explored convergence plots for the MCMC (histograms, trace plots, Geweke plot and

Gelman-Rubin plot) and relevant statistics (Raftery and Lewis statistic and Heidelberger and Welch test).30

3 Simulations study

We aim to investigate the agreement between the estimations of the dose–response meta-analysis curve under our

two Bayesian models, assuming random-effects for the coefficients, and the frequentist one-stage model.31 The

codes are available in GitHub.

3.1 Simulation design

We investigated the performance of the three models assuming that the true dose–response function is curvilinear

(setting 1), half-sigmoid or log–log (setting 2). Characteristics of the simulated settings are summarized in Table 2.
Under the assumption of a curvilinear relationship (setting 1), we used restricted cubic splines with three knots

at fixed percentiles (25th, 50th, and 75th) of the dose, with shape defined by the spline coefficients. We modelled

the logOR and the logRR. For 40 clinical trials, we simulated study-level aggregated data. For each study, we

simulated two non-zero doses from uniform distribution Xij �Unifð1, 10) and assumed each study reported one

zero dose. The study-specific coefficients bi1 and bi2 are generated independently from a univariate normal dis-

tribution with means B1 and B2, respectively, and a common heterogeneity s. Values for B1 and B2 were chosen to

represent four dose–response shapes: constant (both equal to zero), linear (B2 ¼ 0Þ, monotonic increasing and

umbrella-like shape (see supplementary Appendix Figure 1 and Figure 1). We chose non-zero coefficient values

that cover a reasonable range for ORs (0.3–5). We introduced between-study heterogeneity, s ¼ 0:001; 0:01. The

assumed mean and heterogeneity values result in eight scenarios, as shown in supplementary Appendix Tables 1 to

3.
Using b1i, b2i and Xij; we calculated the underlying treatment effect dij ¼ logORij ¼ B1f1 Xijð Þ þ B2 f2ðXijÞ

(f1 and f2 are set as explained above in Section 2.2.2). To improve computing time, we assumed that the two

shape coefficients b1i and b2i are unrelated (q ¼ 0). Per dose, the observed number of events rij are generated from

binomial distributions with probability pij and sample size nij. The event rate in the zero-dose group p0 is set to

0.1. The underlying event rate at dose j is pij ¼ expðdijÞ�p0. The sample size per dose is generated from a uniform

distribution nij �Unifð180;220Þ. In this way, the number of events and the sample size per dose for each study are

generated and used as input for the Bayesian binomial model. Using these counts, we then estimate logcORij and

their standard errors to use as inputs for the Bayesian normal and frequentist models.31

Following the same steps as in logOR above, we simulated the dataset expressing the underlying treatment

effect, instead, in terms of risk ratio dij ¼ logRRij. The additional concern, particularly for RR, is that we need to

confine probabilities within 0 and 1. Therefore, we inserted maxRR ¼ expððBk þ 2sÞ�maxðfðXijÞÞÞ and then we set

p0 ¼ 0:5=maxRR. Along with that, we restrict the values of both p0 and p1; 0:05 < p0 < 0:95 and p1 < 0:97, to

avoid numerical problems that emerge near the boundaries.
In the second setting (Table 2), we assumed the true shape is log–log (dij ¼ logORij ¼ log log Xij þ 1ð Þ þ 1

� �
and

half-sigmoid function (dij ¼ logORij ¼ Xij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

ij

q
). We used two different dose distributions: Xij �Unifð1, 10)

and Xij � v2ð2). We investigated two different knot positions; at the 10%, 50% and 90% quantiles (1, 5 and 9 for
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the uniform dose and 0.2, 1.3 and 4.3 for the v2 distribution) and then at doses 0, 1 and 3 which is where changes
in the shape are taking place. This results in eight scenarios for setting 2.

The other four settings in Table 2 result from modifying setting 1. First, we assumed smaller trials by gener-
ating the sample size per dose as nij �Unifð20; 100Þ. Second, we assumed fewer trials; ns ¼ 8 or 16. Third, we
explored the case of having partially overlapping dose levels across trials, by generating the doses in half of studies
from Unifð1; 6Þ and the other half from Unifð4; 10Þ. Finally, we consider the case where doses are discrete by
sampling from a list of integer values.

The Bayesian models were estimated using 1�105 iterations with three chains, with a burn-in of 1�104 and a
thinning of one. Given that the simulated data was produced assuming q ¼ 0, we did not use bivariate distribu-
tions but two independent distributions for b1i and b2i . Each scenario was studied in 1000 simulations. We used
the dosresmeta command to fit the frequentist model.32

For each method, we estimated the mean bias in the regression coefficients B1 and B2 and s as the difference
between the true coefficient and the corresponding mean estimated value. We computed the mean squared error
(MSE) as the sum of the squared bias and the variance of the estimates to quantify the variation in sample
estimates. As graphical output is difficult to monitor in a simulation study, the convergence of the MCMC was
quantified here only by computing the Gelman statistics

ffiffiffiffibRp
; when

ffiffiffiffiffiffibRp
�1 the MCMC converges. Additionally,

we report the coverage for each estimate as the proportion of credible intervals that captured the true value. We
computed the power to detect Bk 6¼ 0 when the estimated credible interval does not include zero and the mean of
the coefficients’ standard error (SE2mean). Finally, we report the Monte Carlo standard error (MCse) to quantify
the uncertainty of all the quantities presented above. We present the results from OR for bias and MSE in the
main text, whereas the remaining results are presented in the supplementary Appendix.

3.2 Simulation results

3.2.1 Setting 1.

Supplementary Appendix Tables 1 to 3 present the results from the eight scenarios of the first setting for logORs
using splines. Supplementary Appendix Figure 2 shows the average estimated curves for scenarios 2 to 4 (results
from scenarios 6 to 8 provide similar conclusions to those in supplementary Appendix Figure 2; scenarios 1 and 5
refer to no dose–response association and are not presented in the figure). The three estimated dose–response lines
are indistinguishable and all three models perform very well (supplementary Appendix Tables 1 to 3). The bino-
mial Bayesian model has a slightly lower bias in the coefficients than the normal Bayesian and the frequentist
approach in all scenarios. The spline coefficients B2 exhibit more bias and are less accurate than those of B1.
For both binomial and normal Bayesian models, larger heterogeneity s ¼ 0:01 resulted in less bias than when
s ¼ 0:001. The coverage of all estimates exceeds 90%. The power to detect a nonzero linear coefficient B1 ranges
between 85% and 93% when B1 ¼ 0:04 and 100% for B1 ¼ 0:2. The power to detect a non-linear association
ranges between 20% and 28% when B2 ¼ 0:03 and is 100% when B2 ¼�0.2. The MCMC converged in all
simulations as

ffiffiffiffibRp
< 1:015. Finally, the largest MCse of bias is 9�10�4. The results for logRR agree with the

ones based on logOR and are presented in supplementary Appendix Figure 15 and supplementary Appendix
Tables 7 to 9.

3.2.2 Setting 2.

Simulating under different shapes, we found that estimations from the three models improves when knots are
placed in dose ranges where the risk changes a lot compared to when we set knots at 10%, 50% and 90%
percentiles as suggested by Harrell24 (see Figure 1 and supplementary Appendix Figure 6).

3.2.3 Setting 3.

Modifications of setting 1 resulted in similar very good performance of all three models, with one exception. We
found that the binomial Bayesian model gives less biased dose–response curve estimates compared with the
normal Bayesian and frequentist models (see Table 3, Figure 1, and supplementary Appendix Tables 4 to 6).

Overall, the spline coefficients B2 are more biased and less accurate than those of B1. For both binomial and
normal Bayesian models, heterogeneity was estimated with considerably more bias than in setting 1 where larger
studies have been synthesized (see Table 3 and supplementary Appendix Tables 4 to 6).

Additional results from setting 3 are presented in supplementary Appendix Tables 4 to 6. The coverage of all
estimates exceeds 87%; coverage with the binomial Bayesian model is slightly larger than with the normal like-
lihood models. The power to detect a nonzero linear coefficient B1 ranges from 21% to 40% when B1 ¼ 0:04 and
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is 100% for B1 ¼ 0:2. The power to detect a non-linear association ranges from 4.5% to 7.6% when B2 ¼ 0:03 and

from 85% to 88% when B2 ¼ �0:2. The convergence of MCMC is achieved in all simulations as
ffiffiffiffibRp

< 1:02.
Finally, the largest MCse of bias is 2:6�10�3.

3.2.4 Settings 4–6.

In settings 4, 5 and 6, the three estimated dose–response curves are indistinguishable and unbiased, see supple-

mentary Appendix Figures 3 to 5.

4 Dose–response for antidepressants in major depression

We illustrate the methods by synthesizing the dose–response association reported in 60 randomized controlled

trials (145 arms, 15,174 participants) examining the efficacy and tolerability of various doses of serotonin-specific

reuptake inhibitor (SSRI) antidepressant drugs.33 Using a previously validated formula, we first transformed the

dosages of the different antidepressants into fluoxetine-equivalents.33 The response to antidepressant is defined as

50% reduction in symptoms. We estimated the dose–response relationship using restricted cubic spline with three

knots placed at fixed percentiles of the dose: 10, 20, and 50mg/day.
The results are displayed in Table 4 and the dose–response curves based on the three approaches are shown in

supplementary Appendix Figure 17. The estimated correlation indicates a substantial uncertainty. The two

Bayesian models agree to a large extent with the frequentist approach in the estimated linear and spline coef-

ficients and in the precision of the estimations, as shown in results in Table 4. There are immaterial differences

between the frequentist and the Bayesian models in the estimation of heterogeneity and correlation q; the latter is
estimated with large uncertainty in Bayesian models.

In Figure 3 we present the absolute response using the binomial Bayesian model. The response in the placebo

arm was estimated at 37.6% (blue line in Figure 3). We conducted a meta-analysis to synthesize evidence from

studies of each drug separately, and we also present the absolute response for all drugs together. The precision in

the dose–response curve is high for lower doses and increases for higher doses, as less data are available.
We also fit the clustered dose–response model where studies have first been synthesized within drugs and then

across drugs using the binomial likelihood. The coefficients B1; B2 were very similar to those estimated from the

model that ignores clusters (see Table 4). The within-drug variance swithin was estimated 0.0076, a bit smaller than

the total heterogeneity from the binomial model (s ¼ 0:0087Þ. There were some differences between the eight

drugs as indicated from the sbetween ¼ 0:0050. However, the dose–response shape is practically identical to that of

Figure 1. Simulation results from studies with arm sample size generated from Unif(20; 100) (setting 3 in Table 2). True dose–
response curves generated from restricted cubic splines (black) along with the three estimated dose–response curves. The panels
correspond to scenarios S5–S8 in Table 3.
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the model that ignores the drug clustering. Finally, the within and between cluster correlations are estimated with
large uncertainty like in all models.

We examined the convergence of MCMC for all Bayesian models. Overall, convergence is achieved for all the
estimated parameters of the three models, see supplementary Appendix Tables 11 to 16 and supplementary
Appendix Figures 18 to 30.

5 Discussion

In this paper, we present a hierarchical dose–response meta-analysis model in a Bayesian framework. At the first
level, the dose–response relationship is fitted within each study. Then the curves are combined to get the average
dose–response. An additional pooling level can be added, if there are different clusters of exposure or drugs. The
exact likelihood of the outcome (binomial or normal) can be employed if arm-level data is available.

We performed extensive simulations under different scenarios, in the majority of which the three tested models
(binomial Bayesian, normal Bayesian and one-stage frequentist model) perform equally well and provide unbiased
results. When the study sample size is small, we showed that the binomial Bayesian model performs better than
the Bayesian or frequentist models that use normal likelihood. This is to be expected because with small sample
size the observed logORs are poorly approximated by the normal distribution. One could use a logistic regression

Table 3. Simulations scenarios in setting 3 in Table 2 for a spline dose–response association assuming random effects for B1; B2.

(a) Estimated B1
True values Binomial Bayesian Normal Bayesian One-stage (frequentist)

Scenario s B1 B2 Bias MSE Bias MSE Bias MSE

S1 0.001 0 0 2.1 0 23.7 0 22.0 0

S2 0.001 0.04 0 1.7 0 21.4 0 20.1 0

S3 0.001 0.1 0.03 2.1 0 20.3 0 18.9 0

S4 0.001 0.2 �0.2 3.9 0 13.4 0.01 17.2 0.01

S5 0.01 0 0 2.2 0 24.7 0 23.1 0

S6 0.01 0.04 0 4.3 0.01 24.6 0.01 23.3 0.01

S7 0.01 0.1 0.03 4.5 0.01 21.7 0.01 20.2 0.01

S8 0.01 0.2 �0.2 4.2 0 14.5 0.01 17.6 0.01

(b) Estimated B2
True values Binomial Bayesian Normal Bayesian One-stage (frequentist)

Scenario s B1 B2 Bias MSE Bias MSE Bias MSE

S1 0.001 0 0 �7.5 6.0 �35.8 7.0 �30.1 7.5

S2 0.001 0.04 0 �2.5 5.2 �31.0 6.3 �27.0 7.2

S3 0.001 0.1 0.03 2.2 4.4 �28.3 5.8 �22.6 6.2

S4 0.001 0.2 �0.2 �3.2 3.6 �12.2 4.5 �19.6 5.2

S5 0.01 0 0 �5.7 6.0 �35.7 6.9 �30.7 7.8

S6 0.01 0.04 0 �5.9 6.3 �34.5 7.8 �29.8 9.0

S7 0.01 0.1 0.03 �4.7 4.8 �32.6 6.6 �26.9 6.7

S8 0.01 0.2 �0.2 �2.3 4.3 �14.4 5.5 �20.4 6.3

(c) Estimated s
True values Binomial Bayesian Normal Bayesian

Scenario s B1 B2 Bias MSE Bias MSE

S1 0.001 0 0 32.7 1.2 37.3 1.7

S2 0.001 0.04 0 32.0 1.2 38.0 1.8

S3 0.001 0.1 0.03 28.7 1.0 36.7 1.7

S4 0.001 0.2 �0.2 28.4 0.9 37.0 1.8

S5 0.01 0 0 25.5 0.9 30.5 1.3

S6 0.01 0.04 0 22.7 0.7 30.1 1.3

S7 0.01 0.1 0.03 20.1 0.5 28.8 1.2

S8 0.01 0.2 �0.2 21.2 0.6 29.9 1.4

Note: We assume 20 trials reporting aggregated-level data with three dose-levels each where the sample size is generated from Unifð20; 100Þ. The
bias and MSE are reported for linear coefficient, spline coefficient and their common heterogeneity (a) B1 (b) B2 (c) s, respectively. Bias and MSE are

divided by 103.
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to model dose–response within a study; that would provide results equivalent to the binomial Bayesian approach.

However, to the best of our knowledge, this approach has not been implemented in any frequentist software.

When restricted cubic splines are used to model the association, we showed that prior knowledge about the

underlying dose–response shape can direct the choice of the knot location and improve estimation.
Some articles have previously described methods for dose–response meta-analyses.7,8,11,34,35 Langford et al.

proposed four methods to conduct dose–response meta-analysis in a frequentist setting.34 The first two methods

focus on the synthesis of arm-level responses which is undesirable in a meta-analysis context, in particular when

randomized trials are synthesized. Method 3 is a one-stage approach; the contrasts between the arms are treated as

observations to fit the dose–response curve using weighted least squares. Method 4 is a two-stage approach. In the

first stage, all possible dose contrasts and their variances are estimated using network meta-analysis (where doses

are placed in the network nodes). In the second stage, the obtained dose-specific estimates are used to fit the dose–

response curve. Although Methods 3 and 4 are proposed to conduct the analysis based on contrasts, they ignore

the correlations between them.
Wu et al. proposed a Bayesian hierarchical dose–response meta-analysis approach.35 The approach aimed to

examine the effects of various drugs extracted from living organism (biologics). The analysis was conducted

assuming Emax and linear dose–response shapes. Such shapes are common in dose-findings trials. Our approach

(a) (b)

(c) (d)

Figure 2. Simulation results for the half-sigmoid model (panels a, c) and the log-log dose model (panels b, d) estimated using
restricted cubic splines (setting 2 in Table 2). Knots are placed in 10%, 50% and 90% quantiles in panels a and b and at doses 0, 1, 3 in
panels c and d. The doses are generated from Unif(0, 10).

Table 4. Dose–response between antidepressants and response to drug.

Binomial Bayesian Normal Bayesian One-stage (frequentist) Binomial Bayesian with drug clusters

Mean SD Mean SD Mean SE Mean SD

B1 0.0214 0.0024 0.0210 0.0037 0.0209 0.0025 0.0213 0.0036

B2 �0.0397 0.0070 �0.0396 0.0085 �0.0376 0.0060 �0.0387 0.0079

s 0.0087 0.0028 0.0072 0.0031 s1 ¼ 0:0103 s2 ¼ 0:0115 – swithin ¼0.0076 sbetween ¼ 0:0050 0.0028 0.0040

q �0.4782 0.4952 �0.2488 0.5652 �1 – qwithin ¼ �0:3611 qbetween ¼ �0:1064 0.5153 0:5508

Note: Dose is measured as fluoxetine-equivalent in mg/day. The model is fitted with restricted cubic splines and assuming random dose–response

coefficients.
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is, however, more general, in the sense that it can accommodate any dose–response shape. Our approach, addi-
tionally, considers both random- and common-effect models, whereas only the latter is considered by Wu et al.
Allowing for heterogeneity between studies can be crucial as illustrated by Shi et al. who showed that the
associations between breast cancer and alcohol consumption gets substantially weaker when the heterogeneity
is incorporated in the model.36

Among the limitations common to all Bayesian approaches, two are particularly challenging for our model.12,17

First, for some scenarios, the estimation can be sensitive to the prior choice.37 In these cases, sensitivity analysis is
recommended with either different prior distributions or by varying the characteristics (hyperparameters) of the
specific prior distribution. This is particularly important for the heterogeneity parameter when we have few
studies or dose levels.37 Second, time-consuming, intensive computation may be required until MCMC conver-
gence is achieved. In this context, we emphasize the importance of investigating the convergence of MCMC using
CODA approaches (e.g. as those presented in our supplementary Appendix). Furthermore, the usual challenges of
dose–response meta-analysis apply, including ambiguity in the categorization of the exposure, and the reporting
of different categories by different studies or of open-ended categories.38 These issues are discussed in detail
elsewhere.18 Finally, important considerations are to be made, that are specific to the data and context, when
the (often continuous) dose has been categorized.39

Simulations under a half-sigmoid and log–log dose–response shape revealed that an agnostic placement of the
knots (e.g. in quantiles) might lead to biased and very imprecise estimation. Govindarajulu et al. also showed that
restricted cubic splines can’t always capture the true shape.40 Restricted cubic splines can perform poorly when
most of the change in response is occurring in a narrow exposure interval and knots are located far away from it.
In such scenario, subject-matter knowledge can inform the generation of restricted cubic splines by placing the
knots where the investigator can anticipate most of the effect to occur, while keeping constant the number of
parameters to be estimated. In meta-analysis of dose–response, investigators often know or suspect the underlying
dose–response shape or at least the range of doses where the outcome is changing a lot. This should be incorpo-
rated in the assumed shape of the modelled dose–response association (e.g. by choosing a piecewise constant) or
by locating the knots where changes are expected. In our example of antidepressants, psychiatrists would be
interested about the shape in doses lower than 50mg fluoxetine-equivalent and changes in response are expected

Figure 3. Dose–response meta-analysis of each SSRI and meta-analysis of all drugs with transformed doses (to fluoxetine-equiva-
lent). The blue line represents the response to placebo as obtained by a meta-analysis of all placebo-arms and its 95% credible region.
The red line depicts the absolute response to each antidepressant by dose estimated using the binomial Bayesian model. The shaded
area represents the 95% credible region around the absolute dose–response curve.
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to occur between 20 and 40mg (the minimum therapeutic dose). Therefore, knots have to be placed at these

dosages.
A strength of our Bayesian approach is its flexibility. We were able to evaluate whether studies that examine the

same drug are more similar than studies examining different drugs by using an extension of our model that adds a

layer in the hierarchy according to the specific kind of antidepressant that was studied. We were also able to

estimate the absolute response to each dose. Such estimates can also be obtained in a frequentist setting by using

best linear unbiased prediction (BULPs) in mixed models.41,42 However, the process is easier in a Bayesian

framework, which also allows the use of external data to estimate the outcome at zero dose. The approach will

be particularly valuable in the context of policy- and decision-making where the absolute event rates play a more

important role than the relative treatment effects.
The hierarchical structure of the model allows the borrowing of strength across studies.14 Studies that report

only one dose-specific effect can thus be included and a nonlinear dose–response model fitted. This is also possible

in a frequentist setting using the one-stage approach; however, our model can be extended to separate between the

heterogeneity due to variability in dose–response shape and residual between-study heterogeneity. The latter can

be explored by including covariates that may explain this residual variability, which could lead to a dose–response

meta-regression. Our model could also be extended to multiple treatments, thus offering an alternative to pub-

lished network meta-analysis models,43 or it could be used to model simultaneously several outcomes with similar

dose–response shapes. Another potential extension, which we have implemented in our paper, is accounting for

cluster of the exposure in estimating the dose–response shape. Finally, external knowledge can be incorporated,

for example, evidence from observational studies. The use of observational data will be particularly relevant when

assessing long-term outcomes, as the majority of RCTs, in psychiatry and elsewhere, are of relatively short

duration.17

In conclusion, we suggest that the Bayesian model with the binomial likelihood could be the default approach

as it outperforms the alternative models when the synthesized studies are small. Prior knowledge about the

underlying association should be incorporated in the model by defining an appropriate dose–response shape or

by locating knots at doses where the outcome is expected to change a lot.
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