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The present study investigated the transcriptomic response of porcine dendritic cells (DC)

to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization,

suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC

activation profile during highly and low virulent classical swine fever virus (CSFV, strain

Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing

a severe immunopathology. After identification of porcine conventional DC (cDC) 1,

cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC

activation using transcriptomics, and focused on chemokines, interferons, cytokines,

as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine

pDC provide important signals for Th1 and interferon responses, with CpG triggering

the strongest responses in pDC. DC isolated early after infection of pigs with either

of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10,

CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15,

IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC.

Interestingly, the infection was associated with a prominent induction of inhibitory and cell

death receptors. When comparing low and highly virulent CSFV strains, the latter induced

a stronger inflammatory and antiviral response but a weaker cell cycle response, and

reduced antigen presentation functions of DC. Taken together, we provide high-resolution

information on DC activation in pigs, as well as information on how DC modulation could

be linked to CSFV immunopathology.
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INTRODUCTION

Dendritic cells (DC) are sentinel innate immune cells that are present in the skin and at mucosal
surfaces and are specialized in the early sensing of pathogens. Antigen uptake by DC, and their
activation-induced migration to secondary lymphoid organs is vital for the initiation of specific
T-cell responses.
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FIGURE 8 | Gene-set enrichment analysis of sorted DC and monocytic cells from lymph nodes using 86 selected gene sets that were derived from the BTM

described by Li et al. (25). The normalized enrichment scores (NES) for all modules with a FDR<0.05 are shown.
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of DC responses to immunostimulants or infection is of
importance for the development of improved vaccines and
novel immunotherapeutic strategies. To rationally and efficiently
achieve this for the pig, the identification and characterization
of porcine DC and monocytic cell subsets and their innate
response profiles is crucial. We utilized two complementary ways
of studying DC subset responses: (i) direct in vitro stimulation
of sorted porcine blood DC subsets with defined TLR ligands to
assess the stand-alone transcriptional response of each subset,
and (ii) the transcriptional response of sorted subsets isolated
from lymphoid tissue early after in vivo viral infection.

First of all, we compared the response of DC subsets and
monocytes to the TLR1/2 ligand PAM3Cys which is able to
activate both porcine DC and monocytes (3). When considering
the number of differentially expressed genes, cDC1 and cDC2
were highly responsive to this ligand, while monocytes, despite
the highest expression of TLR1 and TLR2, had the lowest
response. All DC subsets displayed an activated profile with
downregulation of CCR2, and upregulation of CCR7 and
costimulatory molecules, while only cDC1 and cDC2 subsets
upregulated the expression of a broader range of chemokine
receptors targeting both T cells and innate immune cells.
Despite low expression levels of TLR2, pDC were still responsive
to PAM3Cys, but the number of significant differentially
regulated genes was lower than following TLR3, TLR7, or TLR9
stimulation, the three most highly expressed TLRs in porcine
pDC. The present work also confirms the previous observation
(3) that porcine blood pDC are an important source of TNF
following TLR stimulation, and also upregulate a broad range
of type I IFN as well as both IL12A and IL12B following CpG
ODN stimulation. Furthermore, pDC were shown to upregulate
transcription of XCL1, encoding a chemokine that attracts cDC1.
Altogether, this supports the idea that pDC have a central role for
Th1 responses in the pig.

In a parallel approach, we compared the effects of TLR1/2,
TLR3, TLR7, TLR7/8, and TLR9 ligands on pDC with the aim to
determine ligand-specific transcriptional signatures and the most
potent ligand for porcine pDC.While all ligands induced a switch
in chemokine receptors required for migration to lymphoid
tissue, and induced co-stimulatory molecules, only CpG ODN
appeared to induce a “full-blown” IFN type I response, as well
as the transcription of IL12 genes. This indicates that CpG ODN
would be a particularly suitable ligand to target porcine pDC for
induction of potent antiviral and Th1 responses. Furthermore,
resiquimod was found to be very potent in the upregulation
of inflammatory cytokines and chemokines as well as in the
induction of T-cell recruiting chemokines.

In order to study responses of porcine DC in lymphoid tissues,
our next aim was to establish a suitable antibody staining panel
for DC populations in tonsils and lymph nodes. After extensive
phenotyping, we found that both in blood and in lymphoid tissue
cDC1 can be defined as CD14−CD172a−/lowCADM1+,
cDC2 as CD14−CD172a+CADM1+ and pDC as
CD14−CD172a+CADM1−CD4+. In lymphoid tissue, cDC1
expressed the highest levels of CD205 and wCD11R1, cDC2
expressed CD1 and low levels of CSF1R, and pDC expressed
the IL-3 receptor CD123. The identification of these subsets was

confirmed by transcriptomic analyses. As in the blood, only DC
subsets expressed the cross-species pan-DC marker FLT3. DC
subset-specific markers found across species include BATF3,
XCR1, ANPEP (CD13), DPP4 (CD26) for cDC1, FCER1A for
cDC2, and TCF4 (E2-2) and RUNX2 for pDC. We also found
that the expression of IRF4 and IRF8 in porcine DC subsets
isolated from lymph nodes and tonsils matched the pattern
found in porcine blood DC and in DC of other mammalian
species (44–47), with pDC expressing the highest levels of both,
cDC1 expressing more IRF8 than cDC2, and cDC2 expressing
more IRF4 than cDC1. Another study described DC subsets in
the porcine tonsil using a different gating strategy, involving
also class II MHC expression, and found similar subset-specific
transcription patterns of FLT3, TCF4, XCR1, and CSF1R, with
the noticeable exception of IRF4 which was not found to be
expressed in porcine pDC isolated from tonsils (48). The
transcription of TLR genes in porcine DC from lymphoid tissue
was also found to be comparable to the transcription in porcine
DC subsets from blood (3), in particular the pDC-restricted
expression of TLR3. Another peculiarity of porcine pDC was
found to be shared between blood and lymphoid tissue: the high
expression of complement-related genes such asC2,C3, or CD93.
Interestingly, CD93 was shown to be involved in delivery of CpG
ODN to endosomal TLR9 (49) and could be an interesting way of
targeting and activating porcine pDC. Both porcine cDC subsets
from lymphoid tissues also showed expression of markers that
were not expressed on their blood counterparts. As observed in
mouse (32, 45), porcine cDC1 from tonsils and lymph nodes
expressed the gene for CD103 (ITGAE), a specific phenotypic
feature of migratory and tissue cDC1. Porcine lymphoid tissue
cDC2 expressed high levels of FSCN1, a gene associated with
DC migration to lymph nodes (35), and PLA2G2D, a gene
expressed by DC in lymphoid organs (36). Furthermore, similar
to what has been described in porcine lungs (50) and in human
tonsils and lymph nodes (51, 52), porcine lymphoid tissue cDC2
expressed CD207.

The present study also identified a monocytic cell subset
in porcine lymph nodes and tonsils characterized by high
levels of CD14 expression, which clustered with monocytes
and monocyte-derived macrophages in PCA, and expressed
the monocyte/macrophage-specific lineage markers CD64 (53),
CD68 (54) and SLC11A1 (55). The expression of ZFP36L1,
which is selectively upregulated during monocyte/macrophage
differentiation (56), and the macrophage-specific transcription
factors TFEC (57) and MAFB (58), together with CHIT1, a gene
involved in monocyte-to-macrophage differentiation (59), would
indicate that this CD14high population corresponds to monocyte-
derived macrophages.

This precise and unambiguous identification of the DC
subsets in lymphoid tissue allowed us to address the final aim,
which was the early DC response following CSFV infection.
Based on published work (10), we isolated DC subsets from
tonsils at 18 h p.i. However, we could not observe any
differences in gene expression when comparing uninfected
with CSFV-infected animals, suggesting that tonsils might have
been harvested too early following infection. However, we
observed many transcriptional changes in DC subsets from
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mandibular and retropharyngeal lymph nodes at 42 h p.i.
At this later time point, both cDC subsets displayed more
changes in gene transcription following infection with the highly
virulent Eystrup strain than with the low-virulent PdR strain.
Nevertheless, the observed expression profiles of immune-related
genes were overall very similar between both CSFV strains.
Interestingly, pDC isolated from PdR-infected animals displayed
more differentially regulated genes than pDC isolated from
Eystrup-infected animals. The observed differences might reflect
exhaustion of pDC during infection with the highly virulent
strain. On the other hand, it should be pointed out that the PdR
strain has a unique poly-uridine sequence of the 3′UTR, which
possibly promotes pDC activation (8, 60).

An interesting observation was that co-stimulatory molecules
targeting resting T cells, including CD80 and CD86, were
not markedly induced, while inhibitory/regulatory receptors
including LGALS9 (Galectin-9),CD200 andCD274 (PD-L1) were
strongly induced in all DC subsets. Although this upregulation
was also observed following TLR ligand stimulation in vitro,
future studies are required to address if this DC activation profile
could be responsible for the early defects in adaptive immune
responses that are typical for CSFV (9). As previously observed in
the blood of CSFV-infected pigs (61), we observed a prominent
increase in the gene expression of the apoptosis-inducing
death receptor TRAIL by all DC subsets, which, together
with the strong expression of T-cell attracting chemokines,
could contribute to the lymphopenia observed following CSFV
infection. For both the inhibitory and the death receptors,
we often observed higher levels with the virulent strain of
CSFV, which would support a possible pathogenic role of
these responses.

Very high serum levels of type I IFNs are characteristic
for the acute phase of CSF. Our study indeed supports a
central role of pDC in this response, as demonstrated by
the upregulation of many type I IFN genes in pDC from
both, Eystrup and PdR-infected animals. Previous work has
shown that less virulent strains of CSFV resulted in less
IFN-α in the serum of infected animals compared to highly
virulent strains (12, 61, 62). Although we did not observe
significant differences in type I IFN expression at the level
of individual IFN type I genes, GSEA analyses with modules
composed of these genes demonstrated higher IFN responses in
pDC from Eystrup-infected animals. These gene-set enrichment
analyses also demonstrated that modules related to antigen
presentation and cell cycle were more strongly upregulated
following infection with the PdR strain when compared to the
Eystrup strain. For future investigations, we therefore propose
to address the general role of a proliferative DC response
during an acute virus infection, as well as the question if
the observed differences in DC activation could be partly
responsible for the differences in pathogenicity between the two
CSFV strains.

The in vivo data is also relevant to understand the functional
specialization of DC subsets in the pig. In addition to the unique
ability to express IFN type I genes, IL12B transcription was
upregulated by pDC from all infected animals and by cDC1

from Eystrup-infected animals, confirming our in vitro data
and identifying porcine pDC as an important source of this
Th1-promoting cytokine. Another indication for subset-specific
functions is the observation that CXCR5 expression was induced
in cDC2 but not in cDC1, which could reflect the increased
ability of cDC2 to migrate to the parafollicular regions of the
lymph node.

From a methodological point of view, it should be
mentioned that in vitro stimulation of sorted subsets can give
valuable information on how defined subsets can be directly
activated in an isolated context, and is suitable to screen for
immunostimulants. Nevertheless, the data obtained cannot fully
reflect the more complex in vivo situation in which DC activation
is influenced by cell interactions and soluble factors in tissues and
in the local immunological environment. However, during an in
vivo infection, the timing for the interaction of the stimulus or
pathogen with the immune cell is difficult to control. Indeed, we
observed some differences in innate responses of DC subsets in
vivo. For example, CCR7 upregulation was restricted to cDC in
the lymph nodes after in vivo infection, but was observed in vitro
in blood pDC irrespective of the TLR ligand used for stimulation.
The lack of in vivo activated CCR7+ pDC suggests that—at this
stage of infection—only cDC migrate from infection sites to the
lymph nodes. Type and cellular origin of expressed chemokines
also differed when in vivo and in vitro data was compared, again
highlighting the multitude of factors influencing DC activation
in vivo.

Taken together, the data presented here will help
to understand the response of antigen-presenting cells
during infection and will help to target DC for the
development of efficient immunotherapeutic interventions
and vaccine strategies.
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