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Abstract

A detailed understanding of the mechanisms underlying the capacity of a virus to break

the species barrier is crucial for pathogen surveillance and control. New World (NW) mam-

marenaviruses constitute a diverse group of rodent-borne pathogens that includes several

causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mam-

marenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as

a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation

of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks

provided evidence for the presence of mammarenaviruses in arthropods, which are estab-

lished vectors for numerous other viral pathogens. Here, using next generation sequencing

to search for other mammarenaviruses in ticks, we identified a novel replication-competent

strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing

hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian

immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations

leading to the amino acid changes N151K and D156N, within GP. Cell entry studies

revealed that both substitutions, N151K and D156N, increased dependence of the virus on

hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substi-

tuted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral

fusion at a lower pH, resulting in viral egress from later endosomal compartments. In sum-

mary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks

that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV iso-

lates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may

facilitate zoonotic spillover and rapid adaptation to new hosts.
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Author summary

Mammarenaviruses include emergent pathogens responsible of severe disease in humans

in zoonotic events. The ability to use the human Transferrin receptor 1 (hTfR1) strongly

correlates with their pathogenicity in humans. We isolated a new infectious Tamiami

virus strain (TAMV-FL) from host-seeking ticks, which, contrary to the previous rodent-

derived reference strain, can use hTfR1 to enter human cells. Moreover, serial passaging

of TAMV-FL in human immunocompetent cells selected for two substitutions in the viral

envelope glycoprotein: N151K and D156N. These substitutions increase the ability to

highjack hTfR1 and the binding capacity to heparan sulfate proteoglycans and cause

delayed endosomal escape. Our findings provide insight into the acquisition of novel traits

by currently circulating TAMV that increase its potential to trespass the inter-species

barrier.

Introduction

Mammarenaviruses comprise a large and diverse group that includes several emerging zoo-

notic viruses that cause severe hemorrhagic fever (HF) disease in humans [1]. Available treat-

ment options for mammarenavirus infection include administration of convalescent plasma

and the off label use of ribavirin, which has limited antiviral efficacy and is frequently associ-

ated with significant side effects [2–4]. Mammarenaviruses are enveloped viruses with a nega-

tive-strand RNA genome, which replicate in the cytoplasm of the host cell. The viral genome

comprises two RNA segments, a small (S) segment that encodes the envelope glycoprotein pre-

cursor (GPC) and the nucleoprotein (NP), and a large (L) segment that encodes the matrix

protein (Z) and the viral RNA-dependent RNA polymerase (L). The GPC precursor is cleaved

by cellular proteases to form the stable signal peptide (SSP) and the mature surface glycopro-

teins GP1 and GP2 [5]. Mature spikes, termed GP, are composed of trimers of GP1/GP2/SSP

subunits that form the functional unit for virus attachment and entry [5–8]. GP is a key deter-

minant of species and cell tropism and represents the major target for neutralizing antibodies

[9–11].

Mammarenaviruses are divided into Old World (OW) and New World (NW) groups based

on their antigenic properties, phylogeny, and geographic distribution [12]. The phylogeneti-

cally diverse NW mammarenaviruses are subdivided into the clades A, B, and C, which are

found in South America, and clade D (formerly A/B) which is restricted to North America

[13]. NW arenaviruses causing hemorrhagic fevers belong to clade B and include Junı́n

(JUNV), Machupo (MACV), Guanarito (GTOV), Sabia (SABV), and Chapare virus (CHAV).

Within clade B, pathogenic viruses do not form a defined subgroup, but cluster into sub-line-

ages along with non-pathogenic viruses. Whilst the GPs of clade D NW arenaviruses are

closely related to those in clade B, the NPs are more related to those in clade A, probably as the

result of recombination between clades A and B [14]. The principal reservoir hosts for NW

mammarenaviruses are rodents of the subfamilies Neotominae and Sigmodontinae of the Crice-
tidae family, with the exception of Tacaribe virus (TCRV), which has been isolated from fruit

bats [15]. Despite sporadic nosocomial human-to-human infections, highly pathogenic mam-

marenavirus infections occur mainly by zoonotic transmission through inhalation of aerosol-

ized contaminated material and can result in severe hemorrhagic fever disease with case-

fatality rates of 15–30% [16–19]. The identification of WWAV AV96010151 (WWAV-AV96)
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strain associated with a small number of human fatalities suggested potential for viral emer-

gence among clade D NW mammarenaviruses [20].

A detailed understanding of the mechanisms that dictate cross-species virus transmission

is crucial for surveillance and the evaluation of the potential for virus emergence. Since recep-

tor usage is known to be a key determinant of cross-species transmission and human disease

potential amongst NW mammarenaviruses, an understanding of the factors that dictate

receptor utilization and adaptation is crucial for assessing zoonotic potential [12,21–28].

Clades B and D NW mammarenaviruses use the conserved cargo-receptor transferrin recep-

tor 1 (TfR1) for cell entry, and their zoonotic potential is linked to the ability to utilize the

human orthologue (hTfR1) [21,22,25,27–29]. Given that relatively minor changes to NW

GP1s can facilitate hTfR1 recognition and that mammarenavirus are subjected to quasispe-

cies dynamics, which allow rapid adaptation to environmental change [14,30,31], clade D

mammarenaviruses represents an important reservoir with the potential for emergence as

human pathogens [21,23,27].

Heparan sulfate proteoglycans (HSPG) are abundant in airway epithelial cells [32–34] and

can act as attachment factors for several viruses whereby they increase local virion concentra-

tion at the cellular membrane. Although HSPG binding has been studied in several viruses

[35–40], its importance for NW mammarenaviruses is currently unknown. Binding to HSPG

depends on electrostatic interactions occurring between the negatively charged polysaccharide

component of the membrane and regions of positive charged on viral surface proteins. Given

the importance of HSPG as an attachment factor for many viruses, HSPG binding may be a

relevant factor during viral adaptation to new cell types and hosts.

Whilst NW arenavirus spillover events typically occur in restricted geographic foci associ-

ated with the home range of host rodents, the involvement of arthropod vectors may augment

transmission dynamics, increasing the likelihood of zoonotic transmission. Although further

investigations are still needed to clarify the biological role of arthropods as vectors in arenavi-

rus transmission, the recent isolation of TCRV from the host-seeking tick Amblyomma ameri-
canum in Florida and the genomic characterization of new lymphocytic choriominingitis virus

(LCMV) strains in several tick species in China, already provided the first evidence of the pres-

ence of mammarenaviruses in arthropods [41,42]. We screened A. americanum for other are-

naviruses and identified a novel tick-derived variant of Tamiami virus (TAMV), referred to as

TAMV-Florida (FL), which unlike previously isolated TAMV strain utilizes hTfR1 to infect

human cells, and whose nucleotide and amino acid sequences are divergent from previously

reported TAMV sequences.

The unique non-reciprocal superinfection exclusion capacity of TAMV [43] allowed us to

use serial passaging on immunocompetent susceptible human cells (A549) for isolating

TAMV-FL, which was largely outcompeted by TCRV in the original tick-derived sample. Dur-

ing serial passaging, the quasispecies of TAMV-FL acquired and rapidly enriched the muta-

tions causing the amino acid substitutions N151K and D156N in GP. Characterization of these

mutations allowed us to observe that these changes affect key factors involved in the infection

process, such as hTfR1 usage, affinity to HSPG and pH threshold for triggering membrane

fusion. In sum, this study provides the first evidence of a replication competent clade D NW

mammarenavirus, TAMV, in arthropods. Furthermore, we show that TAMV-FL can utilize

hTfR1 for cellular entry, and has the adaptive capacity to rapidly adjust to cells of new host spe-

cies. Our findings uncover the potential for zoonosis of TAMV-FL and highlight the impor-

tance of functional evaluation of viruses circulating in nature in order to assess potential risks

of spillover.
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Results

Detection of a novel TAMV variant in host-seeking Amblyomma
americanum ticks

The advent of novel powerful NGS approaches sharply increased the discovery rates of new

emerging viruses [44]. We used an unbiased NGS approach to screen samples of A. ameri-
canum ticks trapped in Florida [41], which were previously found positive for TCRV, for

the presence of additional mammarenavirus sequences. To this end, 100 ticks were pooled

to prepare cleared homogenates [45] and subjected to three blind passages on VeroE6 cells

[41]. We used tissue culture supernatants (TCS) of the third passage to prepare cDNA

libraries for Illumina-based NGS analysis. To facilitate detection of under-represented viral

sequences, we employed a step-wise strategy (Fig 1A). In our NGS run, we found 99158 and

621 out of 105780 total filtered reads corresponding to RNA of TCRV and TAMV, respec-

tively (S1 Table). For further analysis, candidate arenavirus sequence reads were assembled

in contigs longer than 500 bp and subjected to BLAST analysis against available reference

viral genomes (Fig 1A and S2 Table). Obtained reads were assembled into 4 contigs corre-

sponding to the complete L and S segments of TCRV and TAMV (S2 Table). Comparison

between the obtained TCRV genomic nucleotide sequences (TCRV-FL. Genbank accession

numbers MW150032.1 (L) and MW150033.1 (S), respectively) with the TCRV reference

strain 11573 (MT478050.1 and MT478051.1) [46], reveals overall identities of 99.87% and

99.91% in segments L and S, respectively (Fig 1B and 1E, and S2 and S3 Tables), confirming

the remarkably high similarity between tick-derived TCRV-FL and the TCRV reference

strain. Nevertheless, despite the similar origin of the TCRV-FL and the TCRV Florida iso-

late [41], the comparison with other available TCRV sequences revealed TCRV-BEI strain

[46] as the closest relative of TCRV-FL (S3 Table). Alignment of the obtained reads against

the rodent-borne TAMV reference strain W-10777 (TAMV-Ref. NC_010701.1 and

NC_010702.1) [47] reveals a high sequence variation despite uneven and limited coverage

(Fig 1C). Therefore, we next assembled a full-length tick-derived TAMV genome

(TAMV-FL. GenBank access numbers MK500936 and MK500937) from the reads obtained

in our NGS run (Fig 1D). In contrast to the tick-derived TCRV, the nucleotide and amino

acid sequences of the assembled tick-derived TAMV-FL differ significantly from the

TAMV-Ref isolated from the cotton rat Sigmodon hispidus in 1965, in Florida, and other

available TAMV sequences [48] (Table 1 and Fig 1E and S1 Fig). The complete sequences of

the S and L segments of TAMV-FL contained 3526 and 7143 nucleotides, respectively (S2

Table). The S segment shows 85.28% identity at the nucleotide level and 89.93% and

90.33% at the amino acid level of NP and GPC, respectively, compared to TAMV-Ref (Fig

1E and Table 1). The identity in the L segment at the nucleotide level is 87.18% and at the

amino acid level 95.29% and 91.77% for the Z protein and the viral polymerase L, respec-

tively (Fig 1E). The extent of sequence variation is incompatible with a laboratory contami-

nation and raised the possibility of TAMV-FL being a new mammarenavirus species. The

current species definition of mammarenaviruses is based on several criteria, including

association with a specific host species, geographic distribution, status as human disease

agent, lack of serological cross-neutralization, and the results of pairwise sequence compar-

isons (PASC) of coding-complete genomes using >12% divergence in NP amino acid

sequence as one of the criteria for species demarcation [12]. Despite significant sequence

deviation, TAMV-FL fulfills the criteria to be considered a strain of the same species as

TAMV.
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Fig 1. (A) Work-flow followed for the NGS analysis. (B) TCRV read coverage (Grey area) and relative abundance of SNV (red dots) aligned against

TCRV strain 11573 in our tick-derived isolate. (C) TAMV read coverage (Grey area) and relative abundance of SNVs (red dots) aligned against

TAMV-Ref in tick-derived isolate stock. (D) TAMV read coverage (Grey area) and relative abundance of SNVs (red dots) aligned against TAMV-FL in

our tick-derived isolate. (E) TCRV (red bars) and TAMV-Ref (blue bars) sequence homology at nucleotide and amino acid level in our tick-derived

isolate. Alignments were performed with Blastn.

https://doi.org/10.1371/journal.pntd.0009004.g001
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TAMV-FL utilizes human transferrin receptor-1 more efficiently than

TAMV-Ref

The ability of NW mammarenaviruses to use hTfR1 is a critical factor for their potential for

zoonotic spillover and ability to cause human disease [21,22,25,26,28,29,50,51]. Although sev-

eral additional factors are involved during zoonotic events, the importance of hTfR1 in this

process prompted us to examine whether TAMV-FL was able to use hTfR1 to infect human

cells. Since mammarenavirus cell attachment and entry are both mediated by the viral enve-

lope, we used a bio-contained pseudotype platform to study cell entry mediated by the GP of

selected mammarenaviruses. Recombinant vesicular stomatitis virus (rVSV)-derived pseudo-

viruses (PVs) displaying heterologous viral GPs have become major tools to study cell entry of

highly pathogenic emerging viruses [52–59]. We successfully generated PVs decorated with

the GPs of JUNV, TAMV-Ref, TAMV-FL, and several other NW mammarenaviruses men-

tioned in this study. Moreover, we quantified GP incorporation in our PV preparations by cal-

culating the ratio of TAMV GP (HA-tagged) and the VSV matrix protein (VSV-M) by

immunoblotting. We found that TAMV-FL PV contained more GP than TAMV-Ref PV (S2A

Fig). To further evaluate the impact of the amount of GP incorporated into PV preparations,

we produced TAMV-FL PVs using ranged amounts of GP (S2B Fig). We found that, although

the amount of GP in PV preparations affects PV titers (S2C Fig), infections performed with

inoculums normalized with the detected amount of GP results in comparable PV infectivity

(S2D Fig). These results indicate that the amount of GP in our PV does not affect infectivity

and further validate the use of VSV-based PVs to compare GP-mediated entry. Furthermore,

aiming to perform faithful comparisons between TAMV-Ref and TAMV-FL, minimizing any

possible bias of previous virus passage history, for our TAMV-Ref PV production, we in vitro
synthetized TAMV-Ref GP from publicly available sequence in GenBank NC_010701.1.

We first performed a siRNA knock down of 293T endogenous hTfR1 expression (S3A Fig)

and investigated the consequences for GP-mediated cell entry of JUNV, TAMV-Ref and

TAMV-FL. Entry of JUNV, which in addition to its rodent host TfR1, Calomys musculinus,
can utilize hTfR1 as an entry receptor [28], is significantly inhibited by hTfR1 silencing (Fig

2A). Intriguingly, TAMV-FL entry, but not TAMV-Ref, GP-mediated entry is significantly

reduced in cells with decreased hTfR1 expression (Fig 2A). To confirm these results, we per-

formed infection assays in airway epithelial A549 cells, which are suitable cellular systems to

address possible human infection by inhalation of virus-containing aerosols [16–19], and in

hTfR1-partially-depleted cells. To this aim, we used CRISPR/Cas9 to generate A549 cells with

Table 1. Sequence comparison of TAMV-FL, TAMV-Ref, TAMV- W10777 and AV97140103 strains. Single Nucleotide Polymorphisms (SNPs) are shown for each

TAMV strain. �: Only S segment sequence was available for TAMV AV97140103 strain.

S Segment

TAMV W10777 AV97140103 TAMV Ref TAMV FL

TAMV-FL (MK500937) 529 517 529 0

TAMV-Ref (NC_010701.1) [47] 0 640 0

AV97140103 (EU486821.1) � 640 0

TAMV-10777 (AF512828.1) [47,49] 0

L Segment

TAMV W10777 TAMV-Ref TAMV FL

TAMV-FL (MK500936) 917 917 0

TAMV-Ref (NC_010702.1) [47] 11 0

TAMV W10777 (EU627614.1) [49] 0

https://doi.org/10.1371/journal.pntd.0009004.t001
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a knockdown for hTfR1. Due to observed significant reduction of cell growth rate and survival

that could bias our results, we generated A549 cells in which hTfR1 expression was reduced to

residual levels (A549/hTfR1 KD) but not completely abrogated, which behaved as parental

A549 cells (S3B Fig). Using A549/hTfR1 KD cells, we confirmed that TAMV-FL, compared to

TAMV-Ref, is better able to utilize hTfR1 for cell entry (Fig 2B). To validate that the observed

hTfR1 dependence was a consequence of specific interactions between the viral GP and hTfR1,

we next examined the effect of a monoclonal blocking antibody against hTfR1 on JUNV and

TAMV cell entry into 293T and A549 cells, which express high levels of hTfR1 (S3C and S3D

Fig). In the presence of the anti-hTfR1 blocking antibody [23,28], the relative entry of JUNV

in 293T and A549 cells is inhibited 95% and 82.4%, validating our experimental setup. Con-

firming previous results, TAMV-FL is inhibited by the anti-hTfR1 antibody more efficiently

than TAMV-Ref (Fig 2C and 2D). We next examined the ability of TAMV-Ref and TAMV-FL

to use the TfR1 orthologue of the TAMV natural reservoir, Sigmodon hispidus (ShTfR1), using

293T cells expressing ShTfR1 (S3E Fig). Whilst JUNV GP-mediated infectivity increase in

ShTfR1 expressing cells is negligible, consistent with its inability to use this receptor ortholo-

gue [15,21], TAMV-Ref and TAMV-FL entry is increased 4.6- and 9.6-fold, respectively in

ShTfR1-transfected 293T cells compared to parental cells (Fig 2E). These data are consistent

with the ability of both TAMV-Ref and TAMV-FL to use the TfR1 of the native host species.

Isolation of replicating TAMV-FL from tick-derived samples

Despite the proven ability of the TAMV-FL GP to support viral entry, it was unclear if the

TAMV-FL sequences identified in A. americanum ticks represented a replicating virus. A

major challenge for the isolation of TAMV-FL was the vast excess of replicating TCRV present

in our samples. However, TAMV is capable of exerting an unusually broad non-reciprocal

superinfection exclusion of other NW arenaviruses in macaque Vero cells, preventing produc-

tive secondary infections of phylogenetically distant species like TCRV [43]. Therefore, we

Fig 2. Transferrin receptor-1 (human and Sigmodon hispidus orthologues) dependence of TAMV-FL. (A) Relative entry of NW arenavirus in

siRNA-reduced hTfR1 expression in 293T cells. hTfR1-targeted or non-targeted siRNA siRNAs were transfected to transiently reduce hTfR1 expression

or used as reference control of infection (S3A Fig). Error bars represent standard deviations (n = 5). (B) Relative entry of NW arenavirus in CRISPR/

Cas9-reduced hTfR1 expressing A549 cells. (A549/hTfR1 KD). hTfR1 expression in un-transduced (A549) and A549/hTfR1 KD cells was monitored by

FACS (S3B Fig). Error bars represent standard deviations (n = 4). (C) Relative infection of NW mammarenavirus in 293T cells in presence of anti-

hTfR1 blocking antibody. Reference values were obtained from infections performed in presence of identical concentrations of isotype control. Error

bars represent standard deviations (n = 12). (D) Relative infection of NW mammarenavirus in A549 cells in presence of anti-hTfR1 blocking antibody.

Reference values were obtained from infections performed in presence of identical concentrations of isotype control. Error bars represent standard

deviations (n = 3). (E) Relative entry of NW mammarenaviruses in Sigmodon hispidus (Sh)TfR1 transiently expressing 293T cells. ShTfR1 surface

expression was confirmed by FACS analysis at the moment of the infection. (S3E Fig). Error bars represent standard deviations (n = 4). Asterisks in all

panels denote statistical significance in ANOVA test. (n.s.: p>0.05; �: p<0.05; ��: p<0.01).

https://doi.org/10.1371/journal.pntd.0009004.g002
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hypothesized that, if non-reciprocal superinfection exclusion by TAMV is not a cell-type

dependent trait, TAMV-FL could outcompete excess of TCRV during serial passages. To this

end, we used A549 cells, which are known to be highly permissive for NW mammarenaviruses

and have been extensively used in experimental studies with mammarenaviruses [60–63].

While TCRV is known to be sensitive to type I interferon (IFN-I) [63,64], sensitivity of

TAMV-FL to IFN-I is unknown. Therefore, we reasoned that an IFN-induced antiviral state

could favor TAMV to outcompete TCRV during serial passages. Briefly, A549 monolayers

were left untreated or IFN-pretreated and were initially infected with the TCS from the tick-

derived sample passaged three times in VeroE6 cells. This inoculum contained predominantly

TCRV and 0.58% of TAMV-FL (S1 Table). To allow for multiple rounds of virus infection dur-

ing each passage, cells were infected at low TCRV multiplicity of infection (MOI; 0.05 PFU/

cell) and TCS were collected either after 2 (short passages) or 5 days (long passages). Infectious

TCRV titers from collected TCS were determined by immunofocus assay (IFA) using mono-

clonal antibody MA03, which recognizes TCRV NP but not TAMV NP [65]. Due to lack of

highly specific TAMV antibodies, it was impossible to monitor TAMV infectious viral titers

along the passages. During serial passaging, we observe a progressive drop in infectious TCRV

titers, resulting in undetectable levels between passages 2 and 6 (Short passages format) or 2

and 4 (Long passages format), corresponding to a total of 96–288 hpi and to 240–480 hpi,

respectively (Fig 3A). To examine if the loss of infectivity of TCRV in TCS correlates with the

presence of TAMV-FL, we infected fresh VeroE6 cells with undiluted TCS from passage 6

(IFN-pretreated cells, short format passage) and 48 hpi, fixed the cells and examined them by

IFA. In order to distinguish between TCRV and TAMV infected cells, we used the aforemen-

tioned MA03 antibody and the broadly cross-reactive IC06 antibody, which recognizes both

TCRV and TAMV NP [65]. Consistent with undetectable TCRV titers in TCS, cells infected

with TCS of passage 6 show no detectable staining for TCRV NP above background (Fig 3B).

In contrast, probing with the cross-reactive IC06 antibody reveals a cytosolic staining pattern

characteristic of mammarenavirus NP expression, demonstrating the presence of a replicating

NW arenavirus other than TCRV (Fig 3B). To verify the genetic identity of the selected virus,

we examined TCS from passage 5 in IFN-pretreated cells (short and long passage format;

TAMV-FLp5s and TAMV-FLp5l respectively) by NGS as depicted in Fig 1A. The obtained

sequence data confirms the extinction of TCRV and selection of TAMV-FL that represents

100% of all arenavirus reads in both samples, TAMV-FLp5s and TAMV-FLp5l (Fig 3C), dem-

onstrating the presence of replicating TAMV-FL in our tick-derived samples. The NGS analy-

sis allowed us to assemble the entire TAMV-FL genome in both samples. Consistent with

mammarenaviruses quasispecies dynamics [14,30,31], the alignment of TAMV-FLp5s and

TAMV-FLp5l (Fig 3D) against TAMV-FL genome reveals 43 single nucleotide variants

(SNVs) in both segments of TAMV-FL genome (Table 2).

Acquisition of non-synonymous mutations upon short-term TAMV-FL

passage

At the amino acid level, the 43 SNVs found in TAMV-FL5s and TAMV-FLp5l upon serial pas-

sage result in 18 amino acid substitutions (Table 2).

In TAMV-FLp5s quasispecies, the frequency of the GP1 variants N151K and D156N

increase from 0.11% and 0% to 18.75% and 20.03%, respectively (p<10−12 in both cases), with

respect to TAMV-FL. In TAMV-FLp5l, the substitution N151K enriches to 32.39% (p<10−12),

while D156N only accumulates to 0.33% (p>10−6) (Table 2). While 569 and 623 reads, out of a

total of 2997, harbor T540A (N151K) and G553A (D156N) substitutions, respectively, only 2

reads contain both mutations (p<0.01, χ2 value = 6.3x10-12), suggestive of a strong
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Fig 3. TAMV isolation from tick-derived sample. (A) TCRV viral titers along short (2 days per passage) and long (5 days per passage) passages in

A549 cells pretreated or not with 100 IU/ml of IFN. Grey dotted line represent the detection limit of the experiment. Error bars represent standard

deviations (n = 4). Biological replicas (A, B and C) are shown independently. (B) Identification of TAMV by IFA in VeroE6 infected cells (48h after

infection) with TCS from passage 6 (short format) in presence of IFN (replica A). MA06 antibody recognizes TCRV NP and IC06 antibody

recognizes TCRV and TAMV NPs. Scale bars represent 125 μm. (C) Relative abundance of TCRV and TAMV-FL reads obtained by NGS analysis

of tick-derived original sample (passage 0, TCRV/TAMV-FL) and of TCS from passage 5 in presence of IFN of short (TAMV-FLp5s) or long

(TAMV-FLp5l) passages. (D) TAMV-FL, TAMV-FLp5s and TAMV-FLp5l read coverage (Grey area) and relative abundance of SNV (red dots) of

aligned against TAMV-FL sequence.

https://doi.org/10.1371/journal.pntd.0009004.g003

PLOS NEGLECTED TROPICAL DISEASES Clade D mammarenavirus and zoonotic spillover

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009004 December 28, 2020 9 / 33

https://doi.org/10.1371/journal.pntd.0009004.g003
https://doi.org/10.1371/journal.pntd.0009004


Table 2. Quasispecies composition of TAMV-FLp0, TAMV-FLp5FLp5s and TAMV-FLp5FLp5l. α indicates SNV identifier, consisting of the viral gene, the observed

substitution, and position of the substitution. β indicates relative abundance for each particular SNV. δ indicates the amino acid change resulting from the SNV (empty

fields denote synonymous or insertion/deletion mutations). � stands for p<10−6 and �� for p<10−12. SNVs GP540A and GP553A are highlighted in bold.

Relative Frequencyβ Coverage

Identifierα TAMV-FL TAMV-FLp5s TAMV-FLp5l TAMV-FL TAMV-FLp5s TAMV-FLp5l Amino acid Changeδ

L / T634C 0% 1.34% 0% 296 1339 115

L / T790C 3.58% 2.47% (�) 0% 363 1335 110

L / T1012C 0% 0.15% 6.83% 360 2724 249 I2034M

L / A1645G 1.17% 1.32% (�) 0.78% 341 3328 386

L / C1961+A 5.25% 2.52% (��) 2.06% 324 2900 291

L / G2184T 0% 0.38% 2.17% 233 2861 600 L1644I

L / G2471A 0% 0% 1.99% 219 2504 653 T1548M

L / C2561T 0.5% 0.12% 1.49% 199 2437 737 S1518N

L / T3858-A 3.01% 1.17% (�) 1.02% 166 2398 295

L / G3941A 0% 0.06% 2.64% 170 3212 416 T1048I

L / A4141G 0% 0% 1.48% 181 2758 1013

L / A4186G 0% 0% 1.17% 184 2668 768

L / A4315G 0% 1.04% (�) 0% 194 2891 752

L / C4396T 0.95% 9.11% (��) 0% 211 2305 539

L / A5311G 0% 0.2% 1.56% 118 2514 513

L / G5325T 0% 0.17% 1.33% 123 2933 526 L597M

L / T5371+A 0.9% 1.05% (�) 0% 111 2946 446

L / C5404T 0% 0.06% 1.6% 95 3286 438

L / C5515T 0% 10.35% (��) 0% 101 2444 167

L / T5987C 0% 0.06% 4.76% 91 1644 273 Y376C

L / T6431C 0% 1.09% (�) 4.35% (�) 60 3033 506 H228P

L / T6445C 0% 0.07% 3.09% 59 2872 517

L / G6497A 0% 0.03% 5.97% (��) 65 3274 737 A206V

L / T6556C 0% 1.77% (��) 0.12% 76 3382 848

L / C6628T 0% 0.03% 1.15% 94 3208 609 M162I

GP / A397G 1.27% 0.03% 0.4% 628 3339 248 I104V

GP / T540A 0.11% 18.75% (��) 32.39% (��) 874 3094 284 N151K

GP / G553A 0% 20.03% (��) 0.31% 903 3265 319 D156N

GP / G659A 0.75% 0.33% 1.42% 937 5099 564 R191K

GP / T714+A 1.21% 1.7% (��) 0.33% 991 5530 306

GP / A717G 2.34% (�) 1.09% (��) 3.5% 983 5580 314

GP / G839+T 0.52% 1.1% (�) 2.07% 954 3983 193

IGR (S) / T1658A 3.45% 2.05% (��) 4.78% 116 4780 251

IGR (S) / T1661A 3.67% 2.19% (��) 5.11% 109 4620 235

NP / C1893T 0% 0.1% 1.08% 140 3024 647

NP / T1950C 1.48% 2.35% (��) 2.34% 135 2899 768

NP / T1997C 0% 0.46% 1.05% 128 3926 1047 I473V

NP / A2013G 0% 0.03% 2.64% (�) 130 3893 983

NP / A2065G 0% 0.52% 2.05% 127 3645 684 V450A

NP / T2393C 0% 0% 5.74% (�) 168 4378 470 K341E

NP / T2572C 0.76% 0.4% 1.21% 132 4539 829 E281G

NP / A3189G 0% 0.37% 2.22% 146 3784 496

NP / T3357C 0% 9.73% (��) 0% 43 3742 460

https://doi.org/10.1371/journal.pntd.0009004.t002
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evolutionary disadvantage against the TAMV-FL double mutant T540A/G553A (N151K/

D156N). The remaining non-synonymous SNVs show only limited changes in relative abun-

dance during our serial passage experiment and were not further analyzed.

Mutations acquired in TAMV-FLp5s/l GP lie outside the predicted

transferrin receptor 1 -binding interface

Recent structures of the attachment-mediating GP1 glycoprotein from the clade D WWAV

have revealed structural diversity within the GP1 of TfR1-tropic viruses [25,66], principally

within GP1 loop regions that are likely involved in TfR1 recognition [26]. Such structural vari-

ation across NW mammarenaviruses with shared receptor-tropism may indicate diverse

modes of TfR1 recognition [67]. WWAV-AV96, which was associated with fatal human illness

[20], utilizes hTfR1 for viral entry [25,51]. Interestingly, sequence alignment of WWAV and

TAMV strains reveals common D to N substitutions at positions 156 and 154 of the GPs in

TAMV-FL and WWAV-AV96, respectively (Fig 4A). We therefore thought to assess the

potential functional effects of the TAMV-FL GP1 N151K and D156N substitutions, enriched

during serial passaging of TAMV-FL in human cells. To that end, we performed structure-

based mapping, utilizing the crystal structure of the closely related WWAV GP1 (Protein Data

Bank [PDB] code 6HJ5) as a proxy. Our model localizes the N151K and D156N substitutions

to the helical face of the molecule, distal to the putative TfR1-binding interface [26] (Fig 4B).

To further assess the spatial relationships of these substitutions in the context of mature GP, a

model of the trimeric clade D NW mammarenaviral GP was constructed based upon superpo-

sition of WWAV GP1 onto the structure of the LASV GP ectodomain (PDB: 5VK2), as has

been proposed previously for MACV GP [7]. Our model places both amino acid positions,

N151K and D156N, near the trimeric axis of the spike, in a sterically constrained environment

that would likely be inaccessible to large protein ligands, such as TfR1 (Fig 4C and 4D). Fur-

thermore, superposition of the C-terminal region of LASV GP1 (E228–S255LASV), which is

truncated in all available isolated NW arenavirus GP1 structures, suggests that both N151K

and D156N substitutions may be wholly or partially buried in the context of full-length GP1

within mature GP. Given the spatial distinction from the putative TfR1-binding site and their

likely position near the sterically constrained trimeric axis of GP, the N151K and D156N sub-

stitutions are unlikely to modulate TfR1 utilization by directly affecting the GP1-TfR1 inter-

face. We thus decided to conduct functional analyses in order to clarify the functional effects

of these mutations.

Single N151K and D156N substitutions increase hTfR1 entry dependence

of TAMV-FL

To assess the possible impact of N151K and D156N changes on hTfR1 usage, we introduced

the aforementioned substitutions into TAMV-FL GP1 and produced the corresponding PVs

(TAMV-FL N151K, TAMV-FL D156N and TAMV-FL DM, respectively) as well as WWAV-

Ref and WWAV-AV96 PVs. Quantification of GP incorporated into the PVs indicates that

TAMV-FL N151K, TAMV-FL D156N and TAMV-FL DM PVs contained less GP than the

TAMV-FL (S4 Fig). Next, we infected A549 and A549/hTfR1 KD cells and found that the

introduction of either substitutions, N151K or D156N, increases hTfR1 usage compared to the

parental TAMV-FL, whilst the double mutant exhibits decreased hTfR1 usage, comparable to

TAMV-FL. This suggests that these mutations cancel out their individual functional advantage

when combined (Fig 5A). To confirm these results, we infected 293T and A549 cells in pres-

ence of an anti-hTfR1 blocking antibody (Fig 5B and 5C, respectively), and observed that

either mutation, N151K or D156N, increases hTfR1 usage of TAMV-FL GP, whereas this effect
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Fig 4. Structure-based mapping of acquired TAMV mutations. (A) Amino acid sequence alignment of NW clade D GP1s, numbered according

to WWAV-Ref. Polymorphisms common to TAMV and WWAV are highlighted in yellow and numbered in accordance with TAMV-FL

numbering. Secondary structural elements of WWAV GP1 are illustrated above the sequences. Alpha (α) and 310 (η) helices are shown as coils, and

β-sheets (β) as arrows. Conserved residues are shown in red boxes and semi-conserved residues are shown in red font within a blue box.

Alignments were displayed using ESpript (http://espript.ibcp.frhttp://espript.ibcp.fr) [109]. (B) Amino acid substitutions (yellow) acquired by

TAMV_FL map to the putatively trimeric axis-facing helical region of GP1, distal to the expected TfR1 receptor binding site (red). Features are

mapped onto the structure of WWAV GP1. (C) Localization of TAMV mutants in the context of a composite model of trimeric GP, excluding SSP

and transmembrane domains. The GP2 subunit from the trimeric LASV GP structure is shown in light grey, with GP1 from WWAV (colored as in

panel B) in place of LASV GP1. The C-terminal region of LASV GP1, which is not present in the structure of WWAV GP1, is shown overlaid in

blue. (D) View of the trimeric axis-facing side of a composite GP1-GP2 protomer, colored as in panel B.

https://doi.org/10.1371/journal.pntd.0009004.g004
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Fig 5. Transferrin receptor-1 (human and Sigmondon hispidus orthologues) use of TAMV-FL mutants. (A) Relative entry of NW

mammarenavirus in CRISPR/Cas9-reduced hTfR1 expressing A549 cells (A549/hTfR1 KD). hTfR1 expression in non-transduced (A549) and

hTfR1hA549/TfR1 KD cells was monitored by FACS (S3B Fig). Error bars represent standard deviations (n = 4). Antibody perturbation against

endogenous hTfR1 with specific blocking antibody in (B) 293T cells and (C) A549 in infections of TAMV-FL and TAMV-FL mutants. Reference

values were obtained from infections performed in presence of identical concentrations of isotype control. Error bars represent standard deviations

(panel B, n = 12; panel C, n = 3) (D) Antibody perturbation experiments, with anti-hTfR1 specific antibody or isotype control, in infections with

TAMV-Ref and TAMV-Ref mutants in A549 cells. Error bars represent standard deviations (n = 3). (E) Relative entry of NW mammarenavirus on

Sigmodon hispidus (Sh)TfR1 transiently expressing 293T cells. ShTfR1 surface expression was monitored by FACS analysis at the moment of the

infection (S3E Fig). Error bars represent standard deviations (n = 4). Asterisks in all panels denote statistical significance in ANOVA test (ns: p>0.05;
�: p<0.05; ��: p<0.01).

https://doi.org/10.1371/journal.pntd.0009004.g005
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was abrogated if both mutations are simultaneously present in the same genome. These results

also confirmed that WWAV-AV96 utilizes hTfR1 more efficiently than WWAV-Ref (Fig 5B

and 5C) [25,51].

We then investigated whether the GPC genetic backbone is important in determining the

effect of the N151K and D156N substitutions upon hTfR1 binding. To this end, we introduced

either N151K, D156N, or both mutations, in TAMV-Ref GPC backbone, produced the corre-

sponding PVs (TAMV-Ref N151K, TAMV-Ref D156N and TAMV-Ref DM, respectively) and

infected A549 cells in presence of the anti-hTfR1 blocking antibody. We found that the muta-

tions, either alone or in combination, had a negligible impact on hTfR1 dependence in the

TAMV-Ref genetic backbone (Fig 5D).

Furthermore, we investigated the ability of TAMV-FL variants to bind ShTfR1. We infected

293T cells transiently expressing ShTfR1 (S3E Fig) with parental TAMV-FL, and TAMV-FL

mutant PVs. Either individual substitutions, N151K or D156N, reduces the ability of GP1 to

bind ShTfR1, but the changes antagonize each other when present together (TAMV-FL DM),

leading to a ShTfR1 usage comparable to that of the parental TAMV-FL (Fig 5E).

Substitutions N151K and D156N increase affinity for heparan sulfate

proteoglycans

Efficient heparan sulfate binding has been reported in several viruses [35,36,40,68,69]. Amino

acid changes N151K and D156N lead to charge alterations in the viral GP, and therefore may

modulate the HSPG binding and promote viral entry. Therefore, we examined the infectivity

of TAMV-Ref, TAMV-FL, TAMV-FL N151K, TAMV-FL D156N and TAMV-FL DM PVs,

along with WWAV-Ref and WWAV-AV96 PVs, in presence of increasing concentrations of

competing heparin (Fig 6A and S5A Fig). As reference, we used Ebola virus (EBOV) PV,

which is known to bind HSPG with high affinity [40]. Entry of both TAMV-FL mutant PVs,

N151K and D156N, is more strongly inhibited by heparin than entry of the parental

TAMV-FL, indicating increased ability to bind HSPG. Although virtually absent in any natural

TAMV-FLp5 population analyzed, the double mutant N151K/D156N TAMV-FL PV shows

the highest binding capacity to HSPG among the viruses tested. Interestingly, WWAV-AV96

is also more inhibited in the presence of heparin than WWAV-Ref (Fig 6A). To validate these

results, we also performed PV infections in A549 cells treated with heparinase III, which

cleaves and removes the polysaccharide chains from the HSPG protein component (Fig 6B

and S5B Fig). The results confirm an increased HSPG binding capacity of TAMV-FL N151K,

D156N and DM variants as well as WWAV-AV96 compared to TAMV-FL and WWAV-Ref,

respectively.

In order to evaluate the effect of the genetic backbone on the HSPG binding, we used

TAMV-Ref and TAMV-Ref mutants to infect A549 cells in the presence of different concen-

trations of heparin, and monitored relative entry (Fig 6C). The results show that TAMV-Ref

N151K, TAMV-Ref D156N and TAMV-Ref DM exhibit increased HSPG dependence, compa-

rable to the analogous TAMV-FL variants.

N151K and D156N substitutions delay GP-mediated endosomal escape

After receptor-mediated endocytosis, NW mammarenaviruses are delivered to late endosomes

[70]. The transition from early to late endosomal compartments is accompanied by progressive

acidification of the endosomal lumen, resulting in a pH gradient that serves as guidance cue

for membrane fusion triggering (Fig 7A). The transmembrane GP2 undergoes low pH-

induced conformational changes that include transition from a metastable pre-fusion state to

an energetically favorable post-fusion state with a six-helix bundle architecture reminiscent to
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other class I viral fusion protein [71,72]. Given that N151K and D156N map to the sterically

constrained axis of GP (Fig 4C), we hypothesized that the substitutions may affect the overall

conformational stability of GP and hence modulate pH-dependent GP2-mediated fusion (Fig

4C and 4D). To interrogate this hypothesis, we investigated the effects of N151K and D156N

on the pH-triggered GP-mediated fusion activity of TAMV-FL in the context of productive

PV entry into A549 cells. Ammonium chloride rapidly depletes the endosomal pH gradient in

a concentration-dependent manner, without causing overall cytotoxicity and preventing pH-

mediated viral exit from endosomal compartments [73,74]. Thus, sensitivity to ammonium

chloride is inversely proportional to the viral fusion pH, with late fusing viruses showing

higher sensitivity. To evaluate pH-dependent fusogenic activity of TAMV-FL mutants, we

raised the endosomal pH by adding increasing concentrations of ammonium chloride to cells

and monitored productive PV entry. To validate our system, we established dose-response

curves of ammonium chloride for VSV, which is known to escape from early endosomes at pH

>6 [75] and JUNV, which escapes from late endosomes at pH<5.5 [76]. As expected, based

on the lower fusion pH, JUNV PV shows higher sensitivity to ammonium chloride than VSV

PV (IC50 values 1.07 mM and 2.4 mM, respectively) (Fig 7B and Table 3).

Ammonium chloride dose-response curves for TAMV-Ref and TAMV-FL PV reveal simi-

lar IC50 values of 1.34 mM and 1.54 mM, respectively (Fig 7B and Table 3). Interestingly, intro-

duction of either the substitution N151K or D156N into TAMV-FL GP1 significantly

increases ammonium chloride sensitivity, resulting in IC50 values of 1.14 mM and 0.99 mM,

respectively (Fig 7B and Table 3). The presence of both changes (TAMV-FL DM) yields the

lowest IC50 (0.62 mM) of all tested PVs. WWAV-AV96 PV also shows reduced ammonium

chloride sensitivity and lower IC50 than WWAV-Ref PV (1.04 mM and 1.65 mM, respectively).

Although our ammonium chloride titration assay is semi-quantitative in nature, it nonetheless

evidences the ability of the N151K and D156N substitutions to modulate fusion pH in vitro.

The timed gradual decrease in pH delimits the endosomal conditions available for viral

escape and release into the cytoplasm (Fig 7A). Hence, under the assumption of identical par-

ticipating host factors, the timing of sensitivity to ammonium chloride is a proxy for the timing

Fig 6. HSPG binding modulation by N151K and D156N substitutions. (A) Relative entry of TAMV-FL mutants in infections performed in presence

of increasing concentrations of heparin. Error bars represent standard deviations (n = 4). (B) Relative entry of PV infections performed in heparinase

III-A549-treated cells. Error bars represent standard deviations (n = 4). (C) Relative entry of TAMV-Ref mutants in infections performed in presence of

increasing concentrations of heparin. Error bars represent standard deviations (n = 4). Asterisks in all panels denote statistical significance in ANOVA

test (ns: p>0.05; �: p<0.05; ��: p<0.01).

https://doi.org/10.1371/journal.pntd.0009004.g006
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Fig 7. Endosomal escape of clade D NW mammarenavirus. (A) Schematic virus internalization, compartment acidification, and pH-dependent

endosomal escape. (B) Ammonium chloride sensitivity of TAMV-FL mutants and WWAV strains. PV infections were performed in presence titrated

ammonium chloride concentrations (0–5 mM). Error bars represent standard deviations (n = 6). (C) Endosomal escape of TAMV-FL mutants and

WWAV strains. At indicated time points, endosomal exit was prevented with 20 mM of ammonium chloride. Error bars represent standard deviations

(n = 3). (D) Endosomal escape of TAMV-Ref mutants. Error bars represent standard deviations (n = 7).

https://doi.org/10.1371/journal.pntd.0009004.g007

Table 3. Ammonium chloride sensitivity (IC50) of PV of VSV, JUNV and clade D NW arenaviruses. Standard

deviations are indicated between parentheses (n = 6). Asterisks (��) indicate statistical significance (p<0.01) in

ANOVA test when compared to TAMV-Ref (For TAMV-FL), TAMV-FL (For TAMV-FL mutants) or WWAV-Ref

(For WWAV-AV96).

Virus IC50 (±S.D.) (mM)

VSV 2.4 (±0.69)

JUNV 1.07 (±0.26)

TAMV-Ref 1.34 (±0.09)

TAMV-FL 1.54 (±0.09)��

TAMV-FL N151K 1.14 (±0.07)��

TAMV-FL D156N 0.99 (±0.17)��

TAMV-FL DM 0.62 (±0.16)��

WWAV-Ref 1.65 (±0.28)

WWAV-AV96 1.04 (±0.09)��

https://doi.org/10.1371/journal.pntd.0009004.t003
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of endosomal escape. In order to determine the half-escape time of selected clade D NW mam-

marenaviruses, we added ammonium chloride to TCS at different time points after PV infec-

tion, preventing any pH-dependent exit from endosomal compartments. VSV and JUNV PV

exit from endosomal compartments approximately 15.5 and 20.5 minutes after infection,

respectively (Fig 7C and Table 4). TAMV-FL N151K and TAMV-FL D156N exhibit delayed

endosomal escape kinetics and higher half-escape times (23.6 and 25.4 minutes) compared to

the parental TAMV-FL, which has a half-escape time of 20.3 minutes. (Fig 7C and Table 4)

Endosomal escape of TAMV-FL DM is delayed to a half-escape time of approximately 27 min-

utes after infection. Intriguingly, despite the absence of significant differences in ammonium

chloride sensitivity, TAMV-Ref escapes earlier than TAMV-FL (Fig 7B and 7C, and Tables 3

and 4). WWAV-AV96 shows no delay in half-escape time when compared to WWAV-Ref,

whereas the differences in ammonium chloride sensitivity are substantial (Fig 7B and 7C, and

Tables 3 and 4). These apparent discrepancies suggest the possible participation of additional

host factors during viral entry such as intracellular receptors that have been described for

other emerging viruses, including the OW mammarenaviruses LASV and Lujo virus

[52,53,55,77]. In summary, these results indicate that N151K and D156N substitutions delay

viral release, lead to release from later, and more acidified endosomal compartments.

Next, we examined the impact of N151K and D156N on endosomal escape in the TAMV-

Ref GPC genetic backbone. When introduced in TAMV-Ref GPC, N151K and D156N substi-

tutions delay the endosomal escape by 1.7 and 0.8 minutes, respectively, while when intro-

duced in TAMV-FL GP1, N151K and D156N substitutions delay the endosomal escape by 3.3

and 5.1 minutes, respectively (Fig 7C and 7D, and Tables 4 and 5). Incorporation of both

mutations results in comparable endosomal escape delay in both TAMV-FL and TAMV-Ref

Table 4. Half-escape time of PV of VSV, JUNV and clade D NW arenaviruses. Standard deviations are indicated

between parentheses (n = 3). Asterisks (��) indicate statistical significance (p<0.01) in ANOVA test when compared to

TAMV-FL.

Virus Half-escape time (±S.D.) (min)

VSV 15.55 (±0.21)

JUNV 20.52 (±1.46)

TAMV-Ref 17.57 (±0.8)

TAMV-FL 20.28 (±0.6)

TAMV-FL N151K 23.61 (±0.32)��

TAMV-FL D156N 25.4 (±0.89)��

TAMV-FL DM 26.95 (±0.38)��

WWAV-Ref 21.09 (±1.08)

WWAV-AV96 20.91 (±0.56)

https://doi.org/10.1371/journal.pntd.0009004.t004

Table 5. Half-escape time of PV of TAMV-Ref and TAMV-Ref mutants. Standard deviations are indicated between

parentheses (n = 7). Asterisks (��) indicate statistical significance (p<0.01) in ANOVA test when compared to TAMV-

Ref (��: p<0.01).

Virus Half-escape time (±S.D.) (min)

VSV 15.03 (±0.79)

JUNV 19.47 (±2.17)

TAMV-Ref 17.55 (±0.51)

TAMV-Ref N151K 19.28 (±1.11)��

TAMV-Ref D156N 18.36 (±0.87)

TAMV-Ref DM 23.85 (±1.12)��

https://doi.org/10.1371/journal.pntd.0009004.t005
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backbones (6.6 and 6.3 minutes, respectively). Taken together, the TAMV-FL GP1 substitu-

tions, N151K and D156N, not only impact attachment factor usage, but also fusion kinetics

and subcellular fusion compartments of the virus, suggesting that these mutations may be

adaptive.

Discussion

The known geographic distribution of mammarenaviruses is limited to that of their rodent res-

ervoir species [12]. The identification of TCRV in host-seeking Amblyomma americanum ticks

in Florida [41], together with the recent genomic characterization of new LCMV strains in sev-

eral tick species in northeastern China [42], suggests that ticks might contribute to mammare-

navirus circulation in nature, which could have a significant impact on mammarenavirus

epidemiology. Although the precise role ticks play in mammarenavirus biology and epidemiol-

ogy is yet to be determined, the presence of the LCMV and TCRV in host-seeking ticks repre-

sented an important finding that motivated us to search for additional mammarenaviruses in

these potential vectors. Using NGS, which has demonstrable power in unbiased pathogen dis-

covery [78–80], we examined A. americanum-derived samples collected in Florida [41]. In

addition to the already identified clade B NW mammarenavirus TCRV, we detected a replica-

tion-competent novel variant of the clade D TAMV, denominated TAMV-FL (Fig 1D). Both

nucleotide and amino acid sequences of TAMV-FL differ significantly from TAMV-Ref and

other known TAMV isolates [41,48]. However, despite the presence of replication-competent

TAMV in host-seeking ticks, the virological and epidemiological role of arthropods in mam-

marenavirus biology is yet to be fully established and deserves further investigation. Moreover,

even though being isolated in 1960s, TCRV-FL shows very few differences with the TCRV

11573 reference strain [81], while TAMV-FL significantly diverged at nucleotide and amino

acid level, from previously isolated TAMV-Ref (W-10777) strain, indicating notable quasispe-

cies plasticity.

Evaluation of potential zoonotic pathogens within natural reservoirs is of paramount

importance for improving our ability to understand and control spillover events, as depicted

by the current SARS-CoV-2 global pandemic [82]. Like other RNA viruses, mammarena-

viruses are subjected to quasispecies dynamics, which facilitate the evolution of exceptional

adaptive traits that may potentiate viral emergence [14,30,31]. Among clade B NW mammare-

naviruses, the coincidental use of hTfR1 to mediate viral cell entry has been linked to the

potential to cause severe human disease, thus hTfR1 usage could be viewed as an early indica-

tor for potential emergence in NW mammarenavirus [21,27,28]. While clade D WWAV-Ref is

not considered a human pathogen, the natural strain WWAV-AV96 is implicated in a small

number of fatal human infections [20]. Importantly, similar to pathogenic clade B mammare-

naviruses, WWAV-AV96 utilizes hTfR1 to enter human cells more efficiently than WWAV-

Ref does, providing further evidence that hTfR1 usage may influence human disease potential

also within clade D [25,51]. Nevertheless, in apparent contradiction to this trend, JUNV Can-

did#1 GP was found to bind hTfR1 more efficiently than its pathogenic XJ parental strain [83].

However, additional amino acid changes have been reported to contribute to attenuation of

JUNV Candid#1 [84–86], suggestive that hTfR1 usage is not the sole parameter that dictates

host tropism or virulence.

Our functional analyses revealed that reduced hTfR1 expression and treatment with an

anti-hTfR1 blocking antibody reduce TAMV-FL infectivity, indicating the capacity of

TAMV-FL to utilize hTfR1 for cell entry (Fig 2). Subsequent passaging of the tick-derived iso-

late in IFN-treated, human immunocompetent A549 cells allowed us to isolate TAMV-FL

from co-existing TCRV (Fig 3) but also led to the generation and enrichment of two amino
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acid substitutions, N151K and D156N, in GP1 of TAMV-FL in the viral quasispecies (Table 1).

Notably, the presence of these two mutations was essentially mutually exclusive, with the dou-

ble mutant being virtually absent in the observed viral populations. Although TAMV-Ref and

TAMV-FL bind HSPG comparably (S5A and S5B Fig and S1 Text), the introduction of either

the N151K or D156N substitution in the TAMV-FL backbone increased hTfR1 and heparan

sulfate binding whilst reducing binding to ShTfR1 (Figs 5 and 6). Noteworthy, the double

mutant harboring N151K/D156N substitutions displayed hTfR1 dependence comparable to

the parental TAMV-FL but showed the highest binding capacity to heparan sulfate among all

TAMV-FL variants. Our structure-based mapping reveals both N151K and D156 are likely to

be structurally constrained in a location near the putative trimeric axis of mature GP, and dis-

tal to the predicted hTfR1-GP interaction interface (Fig 4). Furthermore, either of the single

substitution also led to a delayed endosomal escape, from more acidified compartments (Fig

7). In the TAMV-Ref genetic backbone, however, either single substitution has similar effect

regarding binding capacity to heparan sulfate, but does not cause delay in the endosomal

escape (Fig 7).

Despite apparent host-specificity of clade A, B, and C NW mammarenaviruses, clade D

NW mammarenaviruses can persist in different rodent species and diverse viruses can be

isolated from the same species [15,75–80]. Such host species promiscuity suggests complemen-

tarity between the various GPs and TfR1 orthologues, which may facilitate cross-species trans-

mission. Given the previously documented evolutionary receptor switch events [87,88], it is

conceivable viral adaptation to new rodent hosts as well as to humans. The concurrence of

increased binding capacity of TAMV-FL to both hTfR1 and ShTfR1 demands further investi-

gation in order to elucidate the drivers for such adaptive ambivalence. Co-diversification of a

mammarenavirus with its individual host (ticks, rodents or both) has resulted in GP architec-

tures that are likely to be finely tuned for host-cell infection of the native reservoir and the

usage of hTfR1 may be coincidental. It is of note that 3.8% of 131 Seminole Native American

individuals sampled in Southern Florida were seropositive for TAMV [81]. This suggests at

least sporadic zoonotic events involving TAMV in regions coincident with the geographic dis-

tribution of the TAMV reservoir, S. hispidus [81]. However, TAMV has yet to be isolated from

human tissues or directly associated with human disease, suggesting that additional factors

may determine efficient TAMV pathogenesis upon zoonotic spillover. Nevertheless, 1% of

1185 central nervous system-affected hospitalized cases were seropositive for WWAV, suggest-

ing that clade D NW mammarenaviruses cause either severe undiagnosed disease or subclini-

cal infections [20,81].

The hTfR1-tropic clade D NW mammarenavirus WWAV-AV96 GP1, harbors the substitu-

tion D154N (equivalent to D156N in TAMV-FL GP1) and exhibits high variability at GP1

position 149 (equivalent to position 151 in TAMV-FL GP1) when compared to other WWAV

strains (Fig 4) [25,89]. Although previous genetic analysis of WWAV strains did not address

the potential for quasispecies complexity within viral populations, the WWAV-AV96 consen-

sus sequence indicates a major abundance of the D154N substitution [25]. The functionality of

the WWAV-AV96 GP1 substitution S149G remains unknown. The presence of equivalent

substitutions D156N and D154N in GP1 of TAMV-FLp5s and WWAV-AV96, respectively,

further suggests the possibility for parallel evolution of both viruses and the existence of similar

selective pressures, converging on similar abilities to use hTfR1 (Fig 5) or increased binding

capacity for heparan sulfate [90] (Fig 6). Interestingly, the loss of hTfR1 dependence of

TAMV-FL DM may explain the almost complete absence of the double mutant N151K/

D156N in the TAMV-FLp5s and TAMV-FLp5l samples and the existence of D154N substitu-

tion in WWAV-AV96 but not in position 149. However, the multiple phenotypic changes

associated with the TAMV-FL GP1 D156N substitution currently hampers discrimination of
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the specific selectable trait. Despite a lack of phenotypic characterization of these mutations in

TAMV’s natural host, it is likely that the N151K and D156N variants only occur or increase

their relative abundance during infection of human cells, as they would be likely subjected to

negative selective pressure during infection in S. hispidus. Indeed, the low relative abundance

of N151K (0.11%) and complete absence of D156N substitutions in the parental TAMV-FL

population support this hypothesis. Future investigations into TAMV will focus on whether

such substitutions are also observed during natural human infection.

Although there is no current evidence of the location of the initial replication sites upon

endosomal escape, mammarenaviruses are known to induce perinuclear structures for viral

replication and transcription [83]. Therefore delayed endosomal escape may facilitate genome

delivery to this area and prevent innate immune defense by hiding viral RNA in endosomal

compartments during transport. Interestingly, compared to other mammarenaviruses, the

OW mammarenavirus LASV escapes from unusual acidic endosomal compartments [91–93],

and this event occurs from less acidic compartments in absence of the intracellular receptor

LAMP1 [91], suggesting a strong dependence on LAMP1 for efficient endosomal escape and a

benefit from delayed endosomal escape. Nevertheless, although additional studies are encour-

aged, the available data suggest that delayed endosomal escape may constitute a selective

advantage for mammarenaviruses. The location of N151K and D156N, close to the trimeric

axis of GP (Fig 4), may provide a plausible explanation for the observed delayed endosomal

escape (Fig 7), by affecting the overall GP stability and the pH-dependent membrane fusion.

Moreover, our mapping analyses (Fig 4) suggest an unknown role for non-receptor-binding

site GP1 residues in the modulation of TAMV receptor tropism, such as changes in the pre-

fusion structural dynamics relevant to receptor binding, long-distance allosteric effects, or GP

stability. Low GP1 sequence conservation among even closely related NW mammarenaviruses

renders any correlation of GP1 sequence motifs with receptor specificity challenging. Indeed,

in some instances are no obvious structural incompatibilities that would prevent hTfR1 bind-

ing of non-pathogenic NW mammarenaviruses [25]. Therefore, our discovery that residues

151 and 156 can modulate hTfR1 usage broadens our understanding of GP1 residues that con-

tribute to receptor usage and tropism. We also reported first evidence of GP-induced syncytia

formation at neutral pH, which is an exclusive trait of TAMV-Ref among mammarenaviruses,

and it is increased by D156N substitution (S6 Fig and S2 Text). Nevertheless, the possible cor-

relation of syncytia formation with the different architectures of TAMV-Ref and TAMV-FL

GPs as well as its biological consequences remains unclear.

Adaptation towards increased HSPG affinity has been previously documented for other

viruses because of tissue culture adaptation or natural evolution [35–40,68]. With limited

exceptions, HSPG serve as attachment factors that increase local virus concentration at the cell

surface, where the switch to a bona fide receptor may take place [39]. Interestingly, despite

preferential HSPG binding conferred by the double substitution N151K/D156N (Fig 6), the

detrimental effect on hTfR1 usage seems to favor the selection of single mutants (Fig 5). The

pathogenic WWAV-AV96 exhibits increased HSPG binding compared to its closer relative

WWAV-Ref, demonstrating that adaptation of clade D NW mammarenaviruses towards

increased HSPG binding occurs both within the laboratory and in nature.

Although hTfR1 use is an important trait to evaluate the potential for breaking the species

barrier, zoonotic events are complex multi-factorial processes. Despite the extensive character-

ization of TAMV GP-mediated entry performed in the present study, further investigation is

required to elucidate the epidemiological consequences of the phenotypic changes described

in TAMV-FL and the variants that occurred during in vitro passaging in human cells.

In sum, we have identified a novel circulating TAMV strain in ticks, TAMV-FL, which con-

trary to TAMV-Ref is capable of utilizing hTfR1 for cell entry. Furthermore, our findings
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indicate that TAMV-FL quasispecies can rapidly acquire new adaptive traits, including

increased hTfR1 usage, enhanced HSPG binding, and delayed endosomal escape. Although

further investigation is required to address the epidemiological consequences of these findings,

the observed phenotypic changes in TAMV-FL and its quasispecies variants, suggest potential

for zoonotic spillover. The potential for hTfR1-mediated transmission into human popula-

tions, combined with the observed genetic plasticity and phenotypic changes in vitro, warrants

increased efforts to monitor TAMV-FL persistence in animal and arthropod hosts.

Materials and methods

Antibodies, plasmids and reagents

Mouse monoclonal antibodies (mAb) MA03-BE06 and IC06-BE10 [65] were obtained from

BEI Resources (Manassas, VA). Alexa Fluor 488 F(ab0)2 fragment of goat anti-mouse IgG and

Alexa Fluor 594 goat anti-mouse IgG were purchased from Life Technologies (Carlsbad, CA).

Anti hTfR1 (CD71, Ref#555534) was obtained from BD Biosciences and isotype control

(Ref#11711) were purchased from R&D systems. Anti HA (High Affinity) rat monoclonal

IgG1 antibody (Cat. No. 11 867 423 001) and recombinant human IFN (Interferon-αA/D

human, Cat# I4401) were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Plasmid

lentiCRISPR v2 was a gift from Feng Zhang (Addgene plasmid # 52961; http://n2t.net/

addgene:52961). Lentiviral packaging plasmid pCMV-VSV-G was a gift from Bob Weinberg

(Addgene plasmid # 8454; http://n2t.net/addgene:8454) and pLJM1-EGFP was a gift from

David Sabatini (Addgene plasmid # 19319; http://n2t.net/addgene:19319). HA-tagged GPCs of

TAMV-Ref (NC_010701.1), TAMV-FL (MK500937.1), and WWAV-AV96 (EU 123330.1)

were synthetized in vitro (Genscript, Piscataway, NJ, USA). All TAMV GPs were cloned into

pCAGGS plasmid, between BglII and XhoI restriction sites and HA-tagged. HA-tagged

ShTfR1 was in vitro synthetized by Genscript (Piscataway, NJ, USA) and subcloned into

pcDNA3.1(+) vector.

Viruses and cells

Human lung adenocarcinoma epithelial cells (A549), human embryonic kidney cells (293T)

and African green monkey kidney epithelial cells (VeroE6) were maintained in Dulbecco’s

modified Eagle medium containing high glucose (4.5 mg/l) and GlutaMAX (DMEM, Gibco

BRL) supplemented with 10% (vol/vol) fetal calf serum (FCS) at 37˚C and 5% (vol/vol) CO2.

Baby hamster kidney cells (BHK)-21 were maintained in DMEM supplemented with 5% (vol/

vol) FCS and non-essential amino acids (Gibco BRL) at 37˚C and 5% (vol/vol) CO2. All cells

were regularly tested for mycoplasma with MycoAlert Mycoplasma detection kit (Lonza). The

tick-derived isolate was kindly provided by Dr. Katherine Sayler, and was the very same sam-

ple previously reported to contain TCRV [41]. Tick homogenates were used to infect VeroE6

cells, and passaged 3 times. Supernatants were cleared by brief centrifugation (1500 rpm, 4˚C,

5 min) [41]. Viral stocks were produced by infecting BHK-21 cells with passage 3 (on VeroE6

cells) of tick-derived isolate, collecting the conditioned TCS after 4 days after infection and

cleared by centrifugation at 1500 rpm for 5 minutes at 4˚C. Virus stocks were mixed 1:1 with a

sterile solution of 140 g/l polyethylene glycol (PEG)-8000 in PBS and incubated overnight in

rocking station at 4˚C. Samples were centrifuged at 8000 x g for 1h at 4˚C, TCS were discarded

and precipitated material was resuspended in supplemented DMEM. PEG-precipitated sam-

ples were then layered on 30% (wt/vol) sucrose cushion and centrifuged at 37900 x g for 2 h at

4˚C in an Optima XPN-80 ultracentrifuge (Beckman Coulter) equipped with a SW-55 Ti

rotor. After ultracentrifugation, pellets were resuspended in complete DMEM and stored at

-80˚C.
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RNA extraction and library preparation

For RNA extraction, samples were layered on 30% (wt/vol) sucrose cushion and centrifuged at

100000 x g for 2 h at 4˚C in an Optima XPN-80 ultracentrifuge (Beckman Coulter) with a SW-

55 Ti rotor. After ultracentrifugation, pellets were resuspended in nucleases buffer (Tris-HCl,

pH 7.5 40mM, MgCl2 6mM, NaCl 10mM, CaCl2 1mM) and treated for 30 minutes at room

temperature with nucleases cocktail to remove non-encapsidated nucleic acids. Nucleases

cocktail included DNase I (Catalog number EN0521) and RNAse A (Catalog number

EN0531A) from Thermo Fisher Scientific (Waltham, Massachusetts, USA) and Nuclease S7

from Sigma-Aldrich (St. Louis, Missouri, USA) (Catalog number N5386). Reaction was

stopped by addition of EDTA (28 mM) and EGTA (2 mM). RNA was then extracted with TRI-

zol reagent (Ambion) followed by ethanol precipitation and resuspended in 20 μl of nuclease-

free water. cDNA libraries were prepared with TruSeq Stranded mRNA LT Sample Prep Kit or

Kit and following manufacturer’s instructions. Briefly, RNA was fragmented and first and sec-

ond cDNA strands were synthetized. Then, 3’ ends of cDNA were adenylated and adaptors

were incorporated. Samples were then run in a MiSeq instrument (2x250 reads) (Illumina).

NGS analysis

Raw reads were first quality filtered using PRINSEQ v0.20.4 [94]. A minimum average quality

of 25 and a minimum length of 120 nt were required. Only paired reads were considered for

further analysis. The taxonomy binning of the reads was carried out using Kraken v1.0 [95]

using the pre-built DustMasked MiniKraken DB 8GB (built on 18/10/17). Spades v3.12.0 [96]

was used for contig assembly (using—careful option). For contig classification, contigs were

aligned using Blastn against the reference viral genomes NCBI database (downloaded on 07/

01/19), and only those hits of at least 500 bp with and e-value< 1x10-5 were considered. Qual-

ity filtered reads were aligned against reference viral genomes (TCRV and TAMV) o against

new sequence genomes/contigs using Bowtie2 v2.3.4.3 [97] using “local” mode. Alignment

pileups were built using Samtools v 0.1.19 [98] (minimum required quality 20). Then, pileups

were used for SNVs detected using VarScan v2.4.0 [99] (minimum average quality 20, mini-

mum coverage 20 and strand-filtering 80). Sequence conservation between TAMV strains was

calculated using mVista program (http://genome.lbl.gov/vista/mvista). Raw reads where sub-

mitted to European Nucleotide Archive (ENA) under project accession PRJEB31100.

Pseudotyped virus production

The pseudotype viral system was based on the recombinant VSVΔG-EGFP/Luc (Indiana

strain) vector in which the glycoprotein gene (G) had been deleted and replaced with genes

encoding green fluorescent protein (EGFP) and luciferase (Luc) [100]. To produce VSV-based

pseudoviruses (PV) decorated with viral GP of interest, we performed as described in [101].

Briefly, 293T cells were plated in 10cm dishes and transfected with plasmids encoding for

selected viral glycoproteins using JetPrime transfection kit (PolyPlus) and followed manufac-

turer’s instructions. After 36 hours post transfection, cells were infected with VSVΔG-EGFP/

Luc at MOI of 3 PFU/cell and incubated at 37˚C and 5% (vol/vol) CO2 for 90 minutes. After

incubation, fresh supplemented DMEM was added with neutralizing anti-VSV monoclonal

antibody I-1 (conditioned hybridoma supernatant diluted 1:100). After 16h post infection,

conditioned TCS were collected, cleared by centrifugation at 1500 rpm for 5 minutes at 4˚C,

mixed 1:1 with a sterile solution of 140 g/l PEG-8000 in PBS, and incubated overnight in rock-

ing station. Samples were centrifuged at 8000 x g for 1h at 4˚C. TCS were discarded and pellets

were resuspended in supplemented DMEM.
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Immunoblotting

For GP and VSV-M quantitation, PV preparations were cleared by brief centrifugation (1500

rpm, 5 min, 4˚C) and purified by ultracentrifugation in 30% sucrose cushion (in PBS). Pellets

were re-suspended in DMEM, and a fraction was lysed with Laemli buffer. Then, proteins

were separated by SDS-PAGE and transferred to nitrocellulose membrane. After blocking

in 5% (wt/vol) skim milk in PBS, 0.1% (vol/vol) Tween-20 (PBST), membranes were incu-

bated with primary antibody (Anti VSV-M monoclonal antibody from Merck, reference

MABF2347, and anti HA high affinity antibody from Merck, reference 11867423001) in 5%

(wt/vol) skim milk, PBST, for 2h at room temperature. Then, membranes were washed 3

times with PBST, and HRP-coupled secondary antibodies were applied 1:5000 in PBST (1 h,

room temperature). Membranes were then washed with PBST, blots were developed by

enhanced chemiluminescence (ECL) using LiteABlot kit (EuroClone). Signals were acquired

by ImageQuant LAS 4000Mini (GE Healthcare Lifesciences). Signals were acquired with an

ImageQuant LAS 4000Mini (GE Healthcare Lifesciences, Glattbrugg, Switzerland) instru-

ment and quantified with ImageJ Software.

Virus and pseudovirus infections and titrations

Virus infections were performed as described in [64]. Briefly, viral infections were performed

by removing cell TCS, adding viral inoculum and incubation during 90 minutes at 37˚C and

5% (vol/vol) CO2. Inoculums were then removed and fresh supplemented DMEM was added.

For viral titrations, samples were 10-fold serially diluted in supplemented DMEM and used to

infect VeroE6 cells (96 well-format plates). After 16-20h, cells were washed once with PBS,

fixed with 2% formaldehyde/PBS and stained for viral NP with MA03 or IC06 antibodies. Posi-

tive infectious foci were scored using an EVOS Floid Cell Imaging Station 20X Plan fluorite

lens (Thermo Fisher Scientific, Waltham, Massachusetts, USA). PV infections were performed

adding 150–300 PFU/well (96 well-format plate) diluted in supplemented DMEM and used as

inoculum. Cells and inoculum were incubated for 90 minutes in 37˚C and 5% (vol/vol) CO2.

Then, TCS were removed and fresh supplemented DMEM was added to each well. After 16–

20 hours, cells were washed once with PBS and fixed with 2% formaldehyde/PBS for EGFP-

positive scoring or assayed for luciferase activity. Positive infectious foci were scored using an

EVOS Floid Cell Imaging Station 20X Plan fluorite lens (Thermo Fisher Scientific, Waltham,

Massachusetts, USA) or luciferase activity measured by ONE-Glo Luciferase Assay System,

from Promega (Madison, Wisconsin, USA), as described by the manufacturer.

Antibody perturbation assays

A549 or 293T cells were plated in 96 well-plate format 24h before infection. Cells were prein-

cubated with 200 nM of anti-hTfR1 or isotype control antibodies for 1h at RT. Cells were then

infected with 150–300 PV PFU in presence of indicated antibodies. After adsorption, TCS

were removed and 20mM NH4Cl in supplemented DMEM was added to each well. After 16–

20 hours, cells were washed once with PBS and fixed with 2% formaldehyde/PBS for EGFP-

positive scoring or assayed for luciferase activity as described above.

Fluorescence-activated cell sorting (FACS)

Cells were detached, resuspended, and washed once with supplemented DMEM, washed once

with PBS, and fixed with 2% (wt/vol) formaldehyde in PBS for 30 minutes at room tempera-

ture. After washing with PBS, cells were permeabilized (for MA03 and IC06 antibodies) or left

un-permeabilized (for anti-hTfR1 or anti HA antibodies) for 30 minutes at room temperature
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with 1% (vol/vol) FCS in PBS with 0.1% (wt/vol) saponin (permeabilization solution) or with-

out (surface staining solution). Primary and secondary antibodies were diluted in permeabili-

zation or surface staining solution and incubated for 1h and 45 minutes, respectively, at room

temperature. Cells were washed three times with PBS and analyzed with a FACS Calibur flow

cytometer (Becton Dickinson, San Jose, CA).

Immunofocus assay (IFA)

Infected samples were washed once with PBS and fixed with 2% (wt/vol) formaldehyde in PBS

for 30 minutes at room temperature. Cells were washed with PBS and permeabilized for 30 min-

utes at room temperature with 0.1% (wt/vol) saponin and 1% (vol/vol) FCS in PBS (permeabili-

zation solution). Primary and secondary antibodies were diluted in permeabilization solution

and incubated for 60 and 45 minutes, respectively, at room temperature. Cells were washed

three times with PBS. Positive infectious foci were scored using an EVOS Floid Cell Imaging

Station 20X Plan fluorite lens (Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Endosomal escape and ammonium chloride titration

To monitor endosomal escape kinetics, we performed as described in [102]. Briefly, to ensure

synchronized infections, A549 cells were cooled down to 4˚C and infected with pre-cooled

PVs as described above. To allow attachment but not internalization, cells were incubated on

ice for 90 minutes and then quickly shifted to 37˚C. Upon infection, equal volume of ammo-

nium chloride 40 mM in supplemented DMEM was added to each well (20mM final concen-

tration) at indicated time points. After 16–20 hours, cells were washed once with PBS and

fixed with 2% formaldehyde/PBS for EGFP-positive scoring. Relative entry was referenced to

values obtained 30 minutes after infection. To determine ammonium chloride sensitivity, PV

infections were made in A549 cells. Cells were pre-treated with indicated concentrations of

ammonium chloride for 30 minutes before infection. Cells were PV infected as described

above, in presence of indicated concentrations of ammonium chloride. After inoculum

removal, fresh supplemented DMEM with indicated concentrations of ammonium chloride

were added. After 16–20 hours, cells were washed once with PBS and fixed with 2% formalde-

hyde/PBS for EGFP-positive scoring. Relative entry was referenced to infectivity in absence of

ammonium chloride.

Structure-based mapping analysis

Amino acid substitutions identified within the TAMV quasispecies were mapped onto the

crystal structure of the GP1 glycoprotein from WWAV (PDB: 6HJ5) using PyMOL (The

PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC), based upon positions

inferred from amino acid sequence alignment calculated using MultAlin [103]. A model for

the putative trimeric arrangement of NW GP1s, representative of a mature mammarenavirus

GP ectodomain, was generated by superposition of WWAV GP1 onto the structure of the

LASV GP ectodomain (PDB: 5VK2), using secondary-structure matching superposition [104]

implemented in COOT [105]. The putative TfR1 binding interface on the clade D GP1 surface

was predicted using PDBePISA [106], from a model constructed by superimposing WWAV

GP1 onto the structure of MACV GP1 in complex with hTfR1 (PDB: 3KAS).

CRISPR/Cas9

A549 cells express hTfR1, which mediates entry of hTfR1-trofic mammarenaviruses [28]. To

address the changes in viral entry, we aimed to deplete hTfR1 from A549 cells using CRSIPR/
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Cas9 editing. To reduce hTfR1 expression, A549 cells were subjected to CRISPR/Cas9 engi-

neering as described in [107,108]. Briefly, single guide RNA (sgRNA) sequences targeting the

exon regions of hTfR1 (50- ATCACTATAGATCCATTCAC-30). Annealed oligonucleotides

were cloned into pLenti CRISPRv2 ccdB by digesting oligonucleotides and vector with BsmBI.

In order to transduce A549 cells with the respective gRNA sequence, lentiviral VSV-G pseudo-

typed particles were produced in the cells. 293T cells were then transfected with plasmid DNA

encoding the human immune deficiency virus (HIV) Gag and Pol proteins, VSV-G protein,

and the respective pLenti CRISPR construct. Lentiviruses were harvested 48 h after transfec-

tion, and A549 cells were transduced with the lentiviruses for 8 h. 37˚C and 5% (vol/vol) CO2.

After 48 h after transduction, cells were subjected to puromycin selection (2 μg/ml) for 14

days. Upon puromycin selection, cells were sorted with a Beckman Coulter MoFlo Astrios EQ

instrument, discarding those cells that showed higher fluorescence than the isotype control-

stained population. Samples were routinely characterized for hTfR1 expression by FACS for

every experiment performed.

siRNA transient gene knockdown

To address the impact of transient reduced expression of hTfR1, we used 293T cells, which

express hTfR1 and are susceptible to high-efficiency transfection. siRNA TFRC (7037) RNA

probe was obtained from Dharmacon/Horizon Discovery (Cambridge, UK). 293T cells were

transfected with siRNA probe with RNAiMAX transfection reagent (Thermo scientific, Wal-

tham, Massachusetts, USA), following manufacturer’s instructions. 24 hours upon transfec-

tion, cells were plated in poly-lysine-treated 96 plates. 24 hours after plating, cells were

infected with PV and tested for hTfR1 expression. After 16–20 hours, cells were washed once

with PBS and fixed with 2% formaldehyde/PBS for EGFP-positive scoring or assayed for lucif-

erase activity.

Heparin inhibition and heparinase III treatment

In order to evaluate the binding capacity of selected viral GP, PV infections were performed in

presence of heparin or in heparinase III-treated A549 cells. For infections in presence of hepa-

rin, PV were diluted in supplemented DMEM with indicated heparin concentrations (Catalog

number H9267. Sigma-Aldrich, St. Louis, Missouri, USA) for 1 hour at 4˚C. Upon incubation,

TCS was removed and PV infections were performed as described above. To remove heparan

sulfate proteoglycans from A549 cell surface we performed as described in [69]. Briefly, we

plated A549 cells in 96 well-plate format 24 hours before infection. TCS were removed and

heparinase III buffer (NaCl 100 mM, Tris-HCl 20mM and CaCl2 1.5mM) with 10 IU hepari-

nase III (Catalog number P0737S. New England Biolabs, Ipswich, Massachusetts, USA) was

added and incubated for 2 hours at 30˚C and 5% (vol/vol) CO2. After heparinase III treatment,

cells were washed there times with PBS and PV infections were performed as described above.

Statistical analysis

Data analyses were performed with Excel software using ANOVA test (Significance 0.05 if not

otherwise stated). The half-escape time and IC50 were calculated using Prism software version

8.2.1 (GraphPad Software, San Diego, CA, USA, Version 8.2.1).

Supporting information

S1 Text. TAMV-Ref and TAMV-FL similarly bind heparan sulfate proteoglycans.

(DOCX)
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S2 Text. TAMV-Ref GP but not TAMV-FL GP induce syncytia formation at neutral pH,

and it is increased by D156N mutation.

(DOCX)

S1 Fig. Alignment of TAMV available sequences. For S segment, TAMV-Ref sequence [47],

TAMV W10777 [49], TAMV-FL (MK500936) and TAMV AV97140103 (Abbreviated as

TAMV-AV97; EU486821.1) were used. For L segment TAMV-Ref sequence [47], TAMV

W10777 [49], and TAMV-FL (MK500937). SNVs are highlighted with yellow boxes, and bold

letters are used for the most frequent base at each position.

(TIF)

S2 Fig. GP incorporation into PV. (A) TAMV-Ref and TAMV-FL PV were purified by ultra-

centrifugation in 30% sucrose cushion (3h, 100,000 x g, 4˚C), lysed, separated by SDS-PAGE

and assayed for TAMV-FL GP2 detection (anti-HA monoclonal antibody) and VSVM (specific

VSV-M antibody) in immunoblotting. (B) TAMV-FL PV were produced by transfecting indi-

cated amounts of TAMV-FLGP DNA. Obtained PV preparations were purified by ultracentri-

fugation in 30% sucrose cushion (3h, 100000 x g, 4˚C), lysed, separated by SDS-PAGE and

assayed for TAMV-FL GP2 detection (anti-HA monoclonal antibody) by immunoblotting.

(C) A549 cells were infected with equal volumes of TAMV-FL preparations produced in (B).

(D) A549 cells were infected with amounts of TAMV-FL normalized with obtained GP-signal

in (B). Error bars in panels (C) and (D) represent standard deviations (n = 3). Asterisks in pan-

els (C) and (D) denote statistical significance in ANOVA test (ns: p>0.05; �: p<0.05).

(TIF)

S3 Fig. Transferrin receptor 1 expression. (A) Endogenous hTfR1 expression in siRNA

hTfR1-transfected 293T cells. Non-targeted probe (scrambled siRNA) was used as control.

Receptor expression was assessed by specific hTfR1 (CD71) monoclonal antibody or respective

isotype control. (B) Endogenous hTfR1 expression in A549/hTfR1 KD cells obtained by

CRISPR/Cas9. Non-transduced parental A549 cells were used as control. Receptor expression

was assessed by specific hTfR1 (CD71) monoclonal antibody or respective isotype control.

Endogenous hTfR1 expression in (C) 293T and (D) A549 cells. Respective isotype control was

used as negative control. (E) Ectopic expression of Sigmodon hispidus (Sh)TfR1 expression in

293T cells. 293T cells were transfected with HA-tagged plasmid for transient ShTfR1 expres-

sion. Receptor expression was monitored with specific anti HA monoclonal antibody at the

same time than infections were carried out.

(TIF)

S4 Fig. GP incorporation into TAMV-FL and TAMV-FL mutants PVs. TAMV-FL and

TAMV-FL mutant PVs were purified by ultracentrifugation in 30% sucrose cushion (3h,

100000 x g, 4˚C), lysed, separated by SDS-PAGE and assayed for TAMV-FL GP2 detection

(anti-HA monoclonal antibody) and VSVM (specific VSV-M antibody) in immunoblotting.

(TIF)

S5 Fig. Heparan sulfate proteoglycans dependence of TAMV-Ref and TAMV-FL. (A) Rela-

tive entry in infections performed in A549 cells in presence of increased concentrations of hep-

arin. Error bars represent standard deviations (n = 4). (B) Infections performed in heparinase

III-A549-treated cells. Error bars represent standard deviations (n = 4). Asterisks in all panels

denote statistical significance in ANOVA test (ns: p>0.05; �: p<0.05; ��: p<0.01).

(TIF)

S6 Fig. Syncytia formation of TAMV-FL and TAMV-FL mutants and WWAV strains.

(A) Scheme of syncytia formation monitoring by co-culture of co-transfected 293T cells. LgBit
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LUC and HiBit LUC protein fragments are only functional when co-expressed in the same

cell. Syncytia formation upon clade D NW arenavirus GP transfection in 293T cells monitored

by (B) luciferase activity (error bars represent standard deviations of n = 4) or (C) under fluo-

rescence microscope (Scale bars represent 100 μm).

(TIF)

S1 Table. Taxonomical reads classification obtained from tick-derived sample (done with

Kraken) in the NGS run.

(DOCX)

S2 Table. Taxonomical contig classification obtained from tick-derived sample (done with

Blastn) in the NGS run.

(DOCX)

S3 Table. Sequence comparison of TCRV-FL, TCRV-11573, TCRV-Florida and

TCRV-BEI.

(DOCX)
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