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Abstract
1.	 Climate change is known to disrupt above-ground food chains when the various 

trophic layers respond differently to warming. However, little is known about 
below-ground food chains involving microbial preys and their predators. Here, 
we study how climate warming-induced heat shocks influence resistance (change 
immediately after a disturbance) and resilience (ability to recover back to pre-
disturbance levels) in rhizosphere microbial communities.

2.	 We used three species of rhizosphere protists as microbial predators and six dif-
ferent rhizosphere bacterial communities as their prey. Protist species and bacte-
rial communities were extracted from Centaurea stoebe—a range-expanding plant 
species in the Northern Europe. We then examined the temporal dynamics of 
protists and bacterial communities after an extreme heat event for several gen-
erations with sufficient recovery periods. We hypothesized that bacterial com-
munity resistance and resilience after the extreme heat event would be higher 
particularly when extreme heat effects would negatively affect their predators.

3.	 Our results show that prey community biomass was strongly reduced after the 
extreme heat event and persisted with lower biomass throughout the recovery 
period. Opposite to what was expected, predators showed negligible changes 
in their active density after the same heat event. However, abundances of the 
three predators varied markedly in their temporal dynamics independent of the 
extreme heat event. Extreme heat event further increased the inactive density of 
predators, whereas one of the predators showed a decline in its body size owing 
to extreme heat event. Bacterial community resistance and resilience after the 
extreme heat event were independent of predator presence, although species-
specific effects of predators on bacterial community resilience were different in 
the last week of recovery. Predator resilience (based on active predator density) 
also varied among the three predators but converged over time.

4.	 Our results highlight that extreme heat events can be more detrimental to mi-
crobial prey communities than microbial predators when microbial predators 
can exhibit thermal acclimation (e.g. change in body size or become inactive) to 
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1  | INTRODUC TION

Soil micro-organisms are the most abundant and diverse living organ-
isms of terrestrial ecosystems (Bahram et al., 2018; Bardgett & Van 
Der Putten, 2014; Geisen et al., 2019). They contribute to numerous 
ecosystem functions mainly via their contribution to biogeochemi-
cal cycling, plant productivity and disease regulation in both plants 
and animals (Delgado-Baquerizo et al., 2016; van Elsas et al., 2012; 
Wagg et al., 2019). The functionality of soil micro-organisms is often 
tightly linked with biotic interactions within microbial groups (Ho 
et al., 2016; Wagg et al., 2019). For instance, predator–prey interac-
tions in microbial communities are crucial for their population reg-
ulations, diversity maintenance, which have subsequent effects for 
ecosystem functioning (Thakur & Geisen, 2019; Tveit et al., 2015). 
Climate warming is likely to alter biotic interactions within soil micro-
bial communities (Classen et al., 2015; Romero-Olivares et al., 2017). 
Several studies have shown that climate warming differentially af-
fects predators than their prey given that predators are usually 
more vulnerable to thermal stress than their prey (Estes et al., 2011; 
Fussmann et al., 2014; Petchey et al., 1999; Zarnetske et al., 2012). 
However, most of our general understanding of differential effects 
of climate warming on predator and prey come from macroscopic 
organisms (Blois et al., 2013; Estes et al., 2011; Harley, 2011), and 
we in particular know little about the responses of microbial pred-
ators and prey under climate extremes, which are becoming more 
common across the biosphere as a result of anthropogenic climate 
change (IPCC, 2018).

Climate extremes are pulse events, such as heat waves or pro-
longed droughts that can impose severe stress on ecological com-
munities even in a small time frame, and thus have the potential to 
dramatically reduce ecosystem functioning (Harris et  al.,  2018). A 
recent synthesis, however, suggested that populations and com-
munities usually return to their pre-extreme event conditions (e.g. 
population density or community biomass) after extreme events 
have stopped for some period of time (Hillebrand & Kunze, 2020). 
The faster recovery of community biomass after climate extremes 
is indicative of resilient communities (Griffiths & Philippot,  2013). 
Moreover, the extent to which a community biomass decreases im-
mediately after an extreme event (often known as resistance) plays 
an important role in determining their recovery periods (Hillebrand 
& Kunze, 2020). Recent research has shown that resistance and re-
silience of communities against climate extremes depend on several 
factors, such as resource availability (Gessler et al., 2017), community 

diversity (Isbell et al., 2015) and species traits (Gladstone-Gallagher 
et al., 2019). Studies have rarely considered the roles of predators 
in determining the resistance and resilience of their prey. Given the 
intricate interactions between predators and prey, the response and 
recovery of one is most likely to affect the other. Our aim in this 
study is to examine the importance of microbial predator–prey in-
teractions in determining microbial resistance and resilience when 
exposed to an extreme heat event.

Extreme heat augments metabolism in both predators and 
prey with a direct effect on their consumption patterns (Brown 
et  al.,  2004; Clarke,  2017). A number of theoretical and empirical 
studies have shown that higher temperatures induce greater star-
vation risks in predators owing to their higher metabolic demands 
than their prey (Fussmann et  al.,  2014; Gilbert et  al.,  2014). If so, 
prey recovery after such an extreme event is likely to be driven 
by a weakened enemy pressure owing to warming-induced preda-
tor extinctions (Petchey et  al.,  1999). Alternatively, when extreme 
heat starves predators but does not eliminate their population, they 
are likely to forage more vigorously on their prey during and after 
extreme heat event, which could constrain prey recovery (Thakur 
et al., 2017). Soil micro-organisms can also acclimatize to higher tem-
peratures via physiological adjustments to optimize their metabolic 
rates (Bradford, 2013). Thermal acclimation in micro-organisms are 
manifested via various responses, such as reduction in microbial res-
piration rates (Bradford, 2013; Crowther & Bradford, 2013) or via 
reduction in their size (Gardner et  al.,  2011; Hessen et  al.,  2013), 
which may also reduce their respiration rates. If thermal acclimation 
further varies between microbial predator and prey, it may decou-
ple their recoveries after extreme heat events. Taken together, the 
resistance and resilience of microbial predator and prey community 
during and after extreme heat events can be better understood 
when considering them together.

Soil bacterial communities were used as the prey and soil pro-
tists were used as the predator of bacterial communities in this 
study. Protists are well-known predators of bacteria in soils (Gao 
et al., 2018; Thakur & Geisen, 2019). By exposing bacterial communi-
ties and protists to an extreme heat event, we expected that extreme 
heat would negatively affect both bacteria and protists. We tested 
microbial prey resistance and resilience in terms of bacterial commu-
nity biomass, whereas microbial predator resistance and resilience 
were examined using the population of the predators at species level. 
We hypothesized that bacterial community resistance and resilience 
after extreme heat event will be determined by protist presence and 

overcome heat stress. Such thermal acclimation may promote predator resilience 
after extreme heat events.

K E Y W O R D S
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negatively so if protists are not excluded by extreme heat event. 
Finally, for a better understanding of microbial predation effects on 
bacterial communities, we also measured body size shifts in protist 
species as a result of extreme heat event to infer to whether there 
was any thermal acclimation in these microbial predators.

2  | MATERIAL S AND METHODS

To examine microbial predator and prey resistance and resilience, 
we set-up a microcosm experiment with the rhizosphere microbial 
communities obtained from Centaurea stoebe rhizosphere. Centaurea 
stoebe is a range-expanding plant species that has recently estab-
lished in northern regions of Europe (Ramirez et al., 2019; Wilschut 
et  al.,  2019). Recent research has shown that the rhizosphere of  
C. stoebe has a wide variety of micro-organisms including bacteria 
and protists (Ramirez et  al.,  2019). We selected three populations 
of C. stoebe in their native range in southern Europe (Slovenia) and 
three populations of C. stoebe in northern Europe (the Netherlands) 
to extract rhizosphere microbial communities for our experiment.

2.1 | Bacterial and protist strains

In July 2018, soil samples were taken from the rhizosphere of six dis-
tinct populations of Centaurea stoebe plants, three in the Netherlands 
and the other three in Slovenia (Table S1). Monoclonal protist cul-
tures were established by manually isolating (Geisen et al., 2014) and 
growing them in Neff's modified amoebae saline (NMAS) enriched 
with 0.08% nutrient broth (NB-NMAS) to stimulate slow bacterial 
growth (Page, 1976).

A diverse bacterial community was isolated from each of the 
six soils as described in Rosenberg et al.  (2009). In short, soils were 
sieved (1 mm mesh size) and 2.5 g of sieved soils were suspended in 
20 ml NMAS and serially filtered up to a mesh size of 1.5 μm to en-
sure absence of fungal spores, yeasts and protists. A 10 μl fraction 
of the filtered bacterial suspension was inoculated into Petri dishes 
containing NB-NMAS for growth. The resulting bacterial communi-
ties were routinely inspected for contamination under an inverted 
microscope (Leica LEITZ DMIRB) at 200× magnification. In the exper-
iment, we used three different protists from the class Heterolobosea 
isolated from the southern populations of C. stoebe rhizosphere soils. 
These predators were then separately added to six bacterial com-
munities (three southern and three northern C. stoebe rhizospheres). 
Heteroloboseans protists can predate on a wide range of micro-or-
ganisms but they primarily feed on bacteria, and can rapidly move to-
wards their prey compared to other protist groups (Pánek et al., 2017).

One week before initiating the experiment, protist cultures were 
established by transferring 100 μl of the original protist suspensions 
to each of six new 6-cm Petri dishes filled with sterile NB-NMAS 
to obtain high amounts of actively growing protists. Immediately 
before starting the experiment, the protist suspension from all the 
six replicated Petri dishes per protist culture were transferred to 

50-ml centrifuge tubes. These suspensions were washed three times 
by centrifugation (Sigma, 3-16Kl) at 800  rpm for 10  min followed 
by replacing the supernatant with sterile NMAS. In the last round, 
washed protists were concentrated in 2.5 ml of NMAS, counted and 
numbers adjusted to the same number per volume by diluting more 
abundant cultures with NMAS.

Overnight cultures were prepared by adding 200 µl of bacterial 
suspension into 50-ml tubes filled with 25 ml of 50% NB-NMAS and 
50% Tryptic Soy Broth (TSB) to replicate the bacterial communities. 
The falcon tubes were incubated at constant shaking (Innova 43 in-
cubator shaker) at 37°C before they were washed with NMAS as de-
scribed above, but at 4,000 rpm for 8 min. Density of all six bacterial 
cultures was calibrated at a Spectrophotometer (VWR, V-300PC) at 
an optical density (OD) of 600.

2.2 | Experimental set-up

Protist species and bacterial communities were incubated with a day–
night cycle of 20°C (16 hr) and 17°C (8 hr) for 1 week and were then 
exposed to an extreme heat event of +10°C for 1 week for both day 
and night temperatures. The control temperature was in the range of 
monthly mean temperature (July) of the respective countries in 2018 
(21°C in the Netherlands and 22°C in Slovenia, source: https://www.
timea​nddate.com/). We then let the bacterial communities and protist 
species recover for 4 weeks after the extreme heat week. A tempera-
ture of +10°C for a week represents an extreme heat event according 
to the IPCC prediction for several regions (IPCC, 2018). The experi-
ment was run in 96-well plates. Each well was filled with 180 μl low 
nutrient 10% NB-NMAS and 10 μl bacterial suspension (one of the six 
communities) and 10 μl protist suspension. In non-predator controls, 
10 μl NMAS was added instead of the protist suspension. Each preda-
tor–prey combination for two temperature regimes were replicated 
eight times for each time point totalling into 288 experimental units 
(3 protist × 6 bacterial communities × 2 temperature regimes × 8 rep-
licates). Treatments without predators were replicated four times per 
time point (48 experimental units: 6 bacterial communities × 2 tem-
perature regimes × 4 replicates). Plates were then kept in a separate 
incubator (Micro Clima-Series, economic lux chamber, Snijders labs) 
either at ambient temperature or with the ones with extreme heat 
event. For each temperature regime (ambient and heat shock), we 
used two incubators each consisting of two plates. Every 2 weeks, 
10% of the initial mixture was transferred to wells of new plates filled 
with sterile 180 μl 10% NB-NMAS to ensure stable nutrient supply. 
The entire experiment ran for 6  weeks, and measurements of bac-
terial community biomass and protist density were done once every 
week throughout the course of the experiment.

Bacterial community biomass was estimated by measuring the 
OD600 using a microplate reader (BioTek synergy HT) as pre-tests 
showed that protist OD was negligible. Moreover, microscopic ex-
amination confirmed the absence of any notable debris throughout 
the experiment to confirm that our OD measurements were repre-
sentative of bacterial densities (Novak et al., 2009). Both active and 

https://www.timeanddate.com/
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encysted (inactive) protists were determined weekly in each well by 
counting five spots (visual fields under the microscope at a given lo-
cation) per well at 200× magnification using an inverted microscope. 
To maintain the population dynamics of bacteria (and protist) over ex-
perimental period, we made transfers every 2 weeks during the ex-
perimental period. Both bacterial OD and protist counts were then 
adjusted for the new transfers based on their values from the previous 
week. For instance, we adjusted bacterial OD in weeks 3 and 4 (after 
the first transfer) by multiplying these OD values by the ratio of bac-
terial OD in week 2 to bacterial OD in week 3 (the week of transfer). 
In a similar way, after the second transfer (at the end of week 4), week 
5 and week 6 bacterial OD were adjusted by multiplying the respec-
tive OD by the bacterial OD ratio from week 4 and week 5 and also 
by the ratio of bacterial OD in week 2 to bacterial OD in week 3 (the 
first transfer). We adjusted protist densities in the same way as done 
for the bacterial OD. We determined protist lengths and widths under 
a microscope (Leica DM IRB, Leica, Germany) in week 1 (before the 
extreme heat event applied in week 2), week 3 (immediately after the 
extreme heat event applied in week 2) and in week 6 (the last week of 
the experiment) measuring cell sizes of 20 individuals at 400 x mag-
nification. The measure of protist body length and width provides us 
with a general idea of their physiological responses, and how they may 
change with extreme heat to indicate thermal acclimation in predators.

2.3 | Resistance and resilience of bacterial OD and 
predator densities

Bacterial resistance and resilience were calculated using the 
commonly used approach of comparing changes in bacterial 
OD in extreme heat treatments relative to control treatments 
(ambient temperature) after the period of extreme heat event 
(week 2 onwards in our experiment; Griffiths & Philippot,  2013; 
Kaufman, 1982).

In this way, we were able to track bacterial resilience at weeks 4, 5 and 
6 of the experiment. We calculated predator resistance and resilience 
using the same formula above by replacing bacterial OD with protist 
densities resulting into predator resilience for three predatory species. 
The resilience in week 4 can be considered as a measure of short-term 
recovery, whereas week 6 resilience represents a relatively long-term 
recovery of bacteria and protists given their shorter generation times. 
The bacterial OD and predator densities used in resistance and resil-
ience calculations were averaged for each time points per predator 
treatment (i.e. six replicates for each predator level).

2.4 | Statistical analysis

The variations in bacterial community biomass were analysed using 
linear mixed-effects models with predator treatments (no predator, 
predators 1, 2 and 3) and the extreme heat event (ambient or control 
temperature vs. heat wave or heat shock) as two fixed effects. We 
used time points and bacterial community identity (three northern 
population  +  three southern population) as random intercepts in 
mixed-effects models. The linearity assumptions of mixed-effects 
models were visually inspected by looking at the homogeneity of 
variance and normality of residuals. We log-transformed bacterial 
community biomass (bacterial OD) for meeting the linearity model 
assumptions of mixed-effects models. Variations in protist density 
were also analysed using mixed-effects models but with negative bi-
nomial error structure given that protist populations were obtained 
as count data. We tested the effects of extreme heat event and 
predator identity (predators 1, 2 and 3) on both active protist den-
sity and inactive protist density also with time points and bacterial 
community identity as random intercepts. Predator identity effects 
on prey biomass and predator densities were further examined using 
post hoc Tukey tests. Protist body length and width were analysed 
with the linear mixed-effects model structure (bacterial community 
identity as random intercepts) with Gaussian error terms.

Predator treatment effects on variations in bacterial community 
resistance and resilience were examined using a linear model fol-
lowed by a Tukey's HSD test for multi-group comparisons. Predator 
resistance and resilience were also analysed using predator iden-
tity as the fixed effect in a linear model followed by a Tukey's HSD 
test. Both bacterial and predator resilience analyses were carried 
out separately for resilience in weeks 4, 5 and 6. All statistical 
models were run in the R statistical software (R Core Team, 2018). 
Linear mixed-effects models were run in the lme4 package (Bates 
et al., 2015). The F-values and degrees of freedom of mixed-effects 
models were obtained using the Kenwood–Roger method from the 
pbkrtest package (Halekoh & Hojsgaard, 2014). Linearity assumptions 
were tested with the DHARMa package (Hartig, 2017), and also visu-
alized using the performance package (Ludecke et al., 2020). Tukey's 
HSD test was run with the multcomp package (Hothorn et al., 2008).

3  | RESULTS

Our results from mixed-effects models show that bacterial OD 
reduced in the presence of protist predators (Table 1). Moreover, 
bacterial OD was strongly reduced by the extreme heat event 
(Figure  1; Table  1). We found, however, no interactions between 
the two treatments on bacterial OD over the experimental period 
(Table 1). Among the predators, we found that predators 1 and 2 
particularly suppressed the bacterial biomass over the experi-
mental period (Figure  S1). The density of active protists differed 
among three species over the experimental duration, whereas the 
effects of extreme heat event on them were negligible (Figure 2; 
Table  1). Among the three predators, predator 1 had the highest 

Bacterial resistance

=

Bacterial OD in extreme heat treatments in week 3

Bacterial OD in control treatments in week 3
,

Bacterial resilience

=

Bacterial OD in extreme heat treatments in week 4 or 5 or 6

Bacterial OD in control treatments in week 3
.
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TA B L E  1   Results from mixed-effects model for the bacterial and protist responses. The denominator degrees of freedom reported are 
based on the Kenwood–Roger method, which were only obtained for linear mixed-effects models with Gaussian error terms. The bold 
values are statistically significant (p-value < 0.05). Please note that for predator responses, we used predator identity treatments only with 
three levels (predators 1, 2 and 3) without using predator-free controls

Response  
variable

Fixed effects Random effects

Predator identity (P) Extreme heat (E) P × E Time points Bacterial identity

F-valuedf p-value F-valuedf p-value F-valuedf p-value Variance (SD) Variance (SD)

Bacterial OD 3.313,1997 0.01 329.41,1997 <0.001 0.883,1997 0.44 0.01 (0.12) <0.01 (0.02)

Protist density  
(active)

73.70 <0.001 2.48 0.10 0.26 0.77 1.33 (1.15) <0.01 (<0.01)

Protist density  
(inactive)

154.83 <0.001 118.57 <0.001 7.71 <0.001 0.44 (0.66) <0.01 (0.04)

Protist length  
(active)

7.212,707.32 <0.001 1.561,709.08 0.21 8.132,707.32 <0.001 0.04 (0.21) 0.04 (0.21)

Protist width  
(active)

12.802,706.18 <0.001 0.501,707.38 0.47 18.812,706.16 <0.001 0.14 (0.37) 0.02 (0.16)

F I G U R E  1   Effects of extreme heat 
event (heat shock) and predation by 
protists on the dynamics of bacterial 
optical density (OD, log-transformed) over 
the experimental period. In the figure, 
darker points are mean (± standard error 
vertical lines) of the raw data shown in 
light colour. The extreme heat event took 
place in week 2 of the experiment

No predator Predator 1

Predator 2 Predator 3

)
D

O lairetcab( ssa
moib yerP

Ambient 
temperature

Heat shock

Time (weeks)

F I G U R E  2   Effects of extreme heat 
event (heat shock) on (active) protist 
density over the experimental period. In 
the figure, darker points are mean  
(± standard error vertical lines) of the raw 
data shown in light colour. The extreme 
heat event took place in week 2 of the 
experiment

Predator 1 Predator 2 Predator 3

)stsitorp evitca( ytisned rotaderP

Ambient 
temperature

Heat shock

Time (weeks)
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active density over the experimental duration independent of ex-
treme heat (Figure S2). We also did not detect any significant inter-
action between predator identity and extreme heat event affecting 
the variations in active protist densities (Table  1). The density of 
inactive protists significantly increased with extreme heat events 
(Table 1), and overall inactive density was also higher for predator 
1 (Table 1; Figure S3).

Our linear models revealed that bacterial community resis-
tance was not affected by protist predators (Table  2). Bacterial 

community resilience in week 4 (2 weeks after the extreme heat 
event) and week 5 (3 weeks after the extreme heat event) were 
also not affected by predator treatments. But we found a signifi-
cant predator effect on bacterial community resilience in week 6 
(4 weeks after the extreme heat event; Table 2). This effect of pred-
ator treatments on bacterial resilience was mainly owing to pred-
ator-specific differences as revealed by post hoc tests (Figure 3). 
Predator resistance (active predators) also did not vary among 
three predators after the extreme heat event (Table 2). We found 
that predator resilience in weeks 4 and 5 varied among predators, 
whereas this difference disappeared in week 6 (Figure 4). Predator 
3 had the lowest resilience in weeks 4 and 5, whereas by week 
6, we did not detect any difference in resilience among the three 
predators (Figure 4).

Both protist length and width were reduced in only one of the 
protist species (predator 3) due to extreme heat event (Figure 5), 
resulting into a significant interaction between predator identity 
and extreme heat treatment (Table 1). Predator 3 had the bigger 
size (mainly in the plates that were exposed to extreme heat be-
fore the extreme heat week indicating a large variation among 
individuals) than other two predators before the extreme heat 
week, which reduced after the extreme heat week (week 3) and 
remained similar in the last week of the experiment (week 6;  
Figure 5).

TA B L E  2   Protist (Predator) identity effects on the resistance 
and resilience of bacterial community and protists after extreme 
heat event. Results are based on linear models. The bold values are 
statistically significant (p-value < 0.05)

Bacteria (prey) Protists (predators)

F-valuedf p-value F-valuedf p-value

Resistance 0.653,20 0.58 0.432,15 0.65

Resilience 
(week 4)

0.853,20 0.48 10.102,15 <0.01

Resilience 
(week 5)

0.813,20 0.50 16.692,15 <0.001

Resilience 
(week 6)

4.323,20 0.01 0.272,15 0.76

F I G U R E  3   Prey (Bacteria) community 
resilience after the extreme heat event 
across predator treatments. The letters 
above boxplots are based on post 
hoc Tukey's HSD test. ns stands for 
statistically not significant (p > 0.05)
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F I G U R E  4   Resilience of three 
predators (protists) after the extreme 
heat event. ns stands for statistically not 
significant (p > 0.05). The letters above 
boxplots are based on post hoc Tukey's 
HSD test. ns stands for statistically not 
significant (p-value > 0.05)

2 weeks after heat shock 3 weeks after heat shock 4 weeks after heat shock

Pr
ed

at
or

 1

Pr
ed

at
or

 2

Pr
ed

at
or

 3

Pr
ed

at
or

 1

Pr
ed

at
or

 2

Pr
ed

at
or

 3

Pr
ed

at
or

 1

Pr
ed

at
or

 2

Pr
ed

at
or

 3

B

A

A

B

A

A

ns

Predators

ecneiliser rotaderP



222  |    Functional Ecology THAKUR et al.

4  | DISCUSSION

Understanding the recovery of ecological communities after cli-
mate extremes is crucial for advancing climate change ecology 
(Harris et  al.,  2018). Our experimental results suggest that micro-
bial predatory species and their prey communities when exposed 
to an extreme heat event may show divergent recovery patterns. 
The negligible negative effect of extreme heat event on the active 
population of three protist species in contrast to strong negative ef-
fects of heat event on their prey communities (bacteria) led to this 
divergent pattern. The persistent lower biomass of bacterial commu-
nities post extreme heat event indicates a potential shift of bacte-
rial communities and biotic interactions therein. Moreover, bacterial 
resilience only varied among predators in the last week of recovery 
also when predator-specific resilience differences disappeared. This 
temporal mismatch in bacterial and protist resilience highlights the 
importance of time-dependent differential responses in predator–
prey interactions (Karakoç et  al.,  2020; Thakur,  2020). Finally, our 
results indicate thermal acclimation in one (predator 3) among three 
predator species in terms of their size reduction. The greater number 
of inactive predators in response to thermal stress further suggests a 
thermally adaptive response in such microbial predators.

A strong decline of bacterial OD after the extreme heat event 
in our experiment could relate to a number of factors (Figure 1). 
Usually, bacterial populations in experimental microcosms rapidly 
increase at higher temperatures when heat stress eliminate their 
protist predators (Fussmann et al., 2014). Since extreme heat did 
not eliminate active predators, we suspect that protists might have 
increased their foraging on bacterial prey given the greater likeli-
hood of their increased starvation during the extreme heat week. 
Further, a lack of bacterial community recovery over the exper-
imental period could potentially relate to an increased mortality 
of bacterial species and likely stronger competitive interactions 

under limited nutrient availability (culture medium in our micro-
cosms were nutrient limited in general) after the week of extreme 
heat event. Limited nutrient availability in our microcosms could 
further have lowered the thermal tolerance in bacterial popula-
tions (Bestion et al., 2018). These explanations encourage future 
studies to examine whether nutrient availability and predators can 
interactively regulate bacterial community resilience.

Our results revealed weaker effects of extreme heat on protists, 
particularly on their active density response (Figure  2). Moreover, 
there were differences in temporal population dynamics among the 
predators independent of heat treatments (Figure 2; Table 1). While 
these three predators were from the same class (Heterolobosea), it 
seems from their temporal dynamics that predators 1 and 2 showed 
a similar growth pattern (Figure  2), whereas predator 3 showed a 
slightly different growth trajectory (i.e. their densities did not peak 
in recovery weeks as much as predators 1 and 2 although again 
irrespective of warming). Such differences in their growth could 
also relate to their ability to differentially suppress bacterial prey 
(Figure S1).

While the effects of extreme heat on active density of protists 
were marginal, we did find a consistent increase in inactive density 
of protist in response to extreme heat (Figure S3). We speculate that 
the ability of these microbial predators to remain inactive during 
stressed conditions may have contributed to their lesser vulnerabil-
ity to extreme heat (Buckley & Huey, 2016). Moreover, among the 
three predators, predator 3 showed a higher plasticity to heat stress 
by reducing its length and width (Figure 5), which indicates their mor-
phological plasticity to overcome thermally adverse conditions. Such 
morphological plasticity in predator 3 could relate to their slower 
growth than other two predators specifically in terms of their active 
density. Indeed, a study with invertebrate predators and prey had 
shown that thermally acclimated predators had lower foraging rates 
of their prey in low resource environments than non-acclimated 

F I G U R E  5   Effects of extreme heat 
event (heat shock) on body length and 
body width of three protist species used 
as predator in the experiment at multiple 
time points of the experiment (weeks 1, 
3 and 6). In the figure, darker points are 
mean (± standard error vertical lines) of 
the raw data shown in light colour
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predators (Sentis et al., 2015). The moderate increase in the density 
of predator 3 relative to predators 1 and 2 accordingly indicates their 
lower foraging of bacteria at least in weeks 4 and 5 (Figure 2). The 
distinct temporal dynamics of three predators, however, had a lesser 
conspicuous effect on bacterial recovery mainly in weeks 4 and 5 
(Figure 3).

Abrupt decline in populations owing to extreme heat stress has 
often been observed in experiments (Bestion et al., 2020; Thakur 
et al., 2017). Our results show that such a pattern was more evident 
for bacterial communities than their protist predators during and 
after the extreme heat event. These results indicate that lower tro-
phic groups could also become more vulnerable to climate change 
than their predators, and it is likely that thermal mismatch across 
trophic levels depends on both biotic and abiotic contexts (Franken 
et al., 2018; Thakur et al., 2018). Predator's strategies to minimize 
thermal stress, such as by remaining inactive or decrease their size in 
our study may have contributed them with an advantage over prey 
communities. However, if the prey community collapses, their pred-
ators are bound to collapse. It is interesting that even lower prey 
availability allowed predators to exhibit with strategies to overcome 
thermal stress. The persistence of lower prey community biomass 
after extreme event merits further investigations, such as how bi-
otic interactions within prey communities unfold after extreme heat 
events on top of predation pressure.

We conclude that rhizosphere bacterial community may become 
more vulnerable to extreme heat than their protist predators possi-
bly owing to competitive interactions among bacterial species. The 
weaker response of predators (active density) to extreme heat could 
relate to their potential thermal acclimation (e.g. increase in inactive 
density and reduction in body size). Moreover, microbial predator and 
prey resilience might show divergent patterns, which further indicate 
that biotic interactions within trophic groups could weaken the inter-
dependence of ecological resilience between trophic groups.
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