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Abstract. The parameter uncertainty of a climate model rep-
resents the spectrum of the results obtained by perturbing
its empirical and unconfined parameters used to represent
subgrid-scale processes. In order to assess a model’s reliabil-
ity and to better understand its limitations and sensitivity to
different physical processes, the spread of model parameters
needs to be carefully investigated. This is particularly true
for regional climate models (RCMs), whose performance is
domain dependent.

In this study, the parameter space of the Consortium
for Small-scale Modeling CLimate Mode (COSMO-CLM)
RCM is investigated for the Central Asia Coordinated Re-
gional Climate Downscaling Experiment (CORDEX) do-
main, using a perturbed physics ensemble (PPE) obtained by
performing 1-year simulations with different parameter val-
ues. The main goal is to characterize the parameter uncer-
tainty of the model and to determine the most sensitive pa-
rameters for the region. Moreover, the presented experiments
are used to study the effect of several parameters on the sim-
ulation of selected variables for subregions characterized by
different climate conditions, assessing by which degree it is
possible to improve model performance by properly select-
ing parameter inputs in each case. Finally, the paper explores
the model parameter sensitivity over different domains, tack-
ling the question of transferability of an RCM model setup to
different regions of study.

Results show that only a subset of model parameters
present relevant changes in model performance for differ-
ent parameter values. Importantly, for almost all parameter
inputs, the model shows an opposite behaviour among dif-
ferent clusters and regions. This indicates that conducting a
calibration of the model against observations to determine
optimal parameter values for the Central Asia domain is par-
ticularly challenging: in this case, the use of objective cal-
ibration methods is highly necessary. Finally, the sensitivity
of the model to parameter perturbation for Central Asia is dif-
ferent than the one observed for Europe, suggesting that an
RCM should be retuned, and its parameter uncertainty prop-
erly investigated, when setting up model experiments for dif-
ferent domains of study.

1 Introduction

Climate models are representations of the climate system
based on well-understood physics combined with simplified
descriptions of subgrid-scale processes called parameteriza-
tions (Hourdin et al., 2017). These parameterizations usually
depend on one or several empirical and unconfined parame-
ters (Hourdin et al., 2017; Bellprat et al., 2012a; Tebaldi and
Knutti, 2007) whose different values produce a wide spec-
trum of outcomes referred to as parameter uncertainty. Pa-
rameter uncertainty is important because it allows us to bet-
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ter understand model limitations and sensitivity to different
physical processes. The common approach to sample model
parameter uncertainty is to use ensembles of model simu-
lations, called perturbed physics ensembles (PPEs; Murphy
et al., 2007; Bellprat, 2013; Tebaldi and Knutti, 2007; Paeth,
2015).

When producing climate projections for impact studies, as
much uncertainty as possible should be accounted for in or-
der to properly drive policy-makers in their decision-making
process, providing a measure of model reliability (Knutti
et al., 2002, 2003; Murphy et al., 2004; Stainforth et al.,
2005; Tebaldi and Knutti, 2007; Paeth et al., 2013; Bellprat,
2013; Paeth, 2015). Not properly investigating model uncer-
tainties weakens confidence in climate projections and lim-
its the usefulness of model outputs for adaptation strategies
(Lempert et al., 2004; Foley, 2010). PPEs are of paramount
importance for determining the range of model uncertainty
in a probabilistic sense and assessing model reliability.

However, adequately sampling a climate model param-
eter space requires the performance of an extremely large
number of simulations. This somehow conflicts with the
need for high-resolution information for impact studies and
adaptation measures at a local scale. In fact, complex high-
resolution models have enormous computational demands,
making it difficult to produce PPEs for future climate projec-
tions. Therefore, when willing to produce reliable (in a prob-
abilistic sense) climate projections using high-resolution cli-
mate models such as regional climate models (RCMs), avail-
able computer resources constitute a real challenge (Paeth,
2015). A common and solid alternative practice is to use
PPEs to constrain model uncertainty by selecting parame-
ter values in a way to minimize the differences between
present-day observations and model results. The determined
most reliable model configuration is then assumed to be the
same also in the future (Hourdin et al., 2017; Bellprat et al.,
2012b). This procedure is referred to as model tuning or cal-
ibration. It is important to acknowledge that calibration tech-
niques represent only a plausible attempt to increase model
reliability for climate projections, since constraining model
results based on present-day skills is not a guarantee of fu-
ture skill.

In recent years, the main efforts of the climate modelling
community have been channelled towards developing trans-
parent, reproducible and objective calibration methods, us-
ing well-founded mathematical and statistical frameworks
(Bellprat et al., 2012b, 2016; Hourdin et al., 2017). Among
others, methods based on oracle-based optimization, ensem-
ble Kalman filters, Markov chain Monte Carlo integrations,
Latin hypercubes and Bayesian stochastic inversion algo-
rithms have been proposed and used for climate models cali-
bration (Price et al., 2009; Beltran et al., 2006; Jackson et al.,
2004; Jones et al., 2005; Annan et al., 2005; Medvigy et al.,
2010; Järvinen et al., 2010; Gregoire et al., 2011; Tett et al.,
2013; Schirber et al., 2013; Ollinaho et al., 2013; Williamson
et al., 2013; Annan and Hargreaves, 2007). However, most

of these methods cannot be directly applied to computation-
ally costly high-resolution climate models to exhaustively
explore their parameter space, since typically hundreds of
simulations have to be performed (Bellprat et al., 2012b;
Hourdin et al., 2017). This led to the further development of
statistical surrogate models, also referred to as model emula-
tors or meta models (O’Hagan, 2006; Bellprat et al., 2012b;
Hourdin et al., 2017). These methods have the advantage of
being a computationally cheap representation of the sensitiv-
ity of the climate model to the parameter space.

One of the first objective calibration methods using such a
surrogate or meta model to tune an RCM is the one of Bell-
prat et al. (2012a, b). Their method is mainly composed of
two parts: a first one in which the model parameter uncer-
tainty is investigated in order to determine a subsample of
model most sensitive parameters, and a second one where
a second-order polynomial meta model, firstly proposed by
Neelin et al. (2010), is applied to extrapolate the model be-
haviour for all the possible values of the selected param-
eters and their mutual interactions. Bellprat et al. (2012b)
firstly used their method for the calibration of the Consor-
tium for Small-scale Modeling CLimate Mode (COSMO-
CLM) RCM (Rockel et al., 2008) for the Coordinated Re-
gional Climate Downscaling Experiment (CORDEX; Giorgi
et al., 2009) European domain. The same method has succes-
sively been employed in the study of Bellprat et al. (2016) for
investigating the transferability of the COSMO-CLM model
configuration to other regions such as the North America
CORDEX domain and for the tuning of the same model for
high-resolution numerical weather predictions over western
Europe (Voudouri et al., 2017, 2018).

In this work, the results of a PPE conducted for the
year 2000 with COSMO-CLM v5.0 for the Central Asia
CORDEX domain are presented, with the main objective of
investigating the model parameter uncertainty for the area
and setting the basis for the application of the objective cali-
bration method of Bellprat et al. (2012b). Central Asia is par-
ticularly important from both a climate impact and modelling
perspective (Russo et al., 2019). Nonetheless, only few stud-
ies have been conducted for this area using RCMs (Ozturk
et al., 2012, 2017; Russo et al., 2019) and more efforts are in-
deed required for better characterizing models uncertainties
and limitations. Here, the results of the proposed PPE are
used in order to (1) determine the most sensitive COSMO-
CLM parameters for the area, on which to apply the cali-
bration method of Bellprat et al. (2012b) and (2) to inves-
tigate the relevance of different physical processes for dif-
ferent regions, assessing at the same time how much model
deficiencies can be ameliorated by properly setting parame-
ter values in each case. Additionally, the results are used to
(3) address the highly debated question of transferability of
RCM configuration to a different domain of interest (Takle
et al., 2007; Jacob et al., 2007; Jacob et al., 2012; Rockel and
Geyer, 2008; Bellprat et al., 2016).
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Table 1. General description of model setup of the reference simulation.

Spatial resolution ≈ 0.22◦

Time step 150 s
Convection Tiedtke
Time integration Runge–Kutta
Lateral relaxation layer 250 km
Soil model TERRA-ML SVAT
Aerosol Tegen (Tegen et al., 1997)
Albedo Vegetation albedo function of forest fraction
Rayleigh damping layer (rdheight) 18 km
Soil active layers 9
Active soil depth 5.74 m
Atmospheric vertical layers 45

The study is structured as follows. In Sect. 2, the model
and sensitivity simulations as well as the considered metrics
are introduced. Then, the model parameter sensitivity for the
entire domain is discussed in Sect. 3.1, while subregional
model deficiencies are characterized in Sect. 3.2. A discus-
sion on the role of different uncertainty sources on the con-
sidered metrics is presented in Sect. 3.3. By comparing the
Central Asia setting with results obtained for the European
CORDEX domain, the transferability of the model configu-
ration between different domains is addressed in Sect. 3.4.
Finally, the results are summarized and conclusive remarks
are presented in Sect. 4.

2 Data and methods

2.1 Model and experiments

For the simulations over Central Asia presented in this study,
the COSMO-CLM version 5.0_clm9 regional climate model
is used. COSMO-CLM is the climate version (Rockel et al.,
2008) of the non-hydrostatic model COSMO, developed for
numerical weather predictions (Baldauf et al., 2011; Doms
and Baldauf, 2013; Doms et al., 2013). It is based on the
primitive thermohydrodynamical equations describing com-
pressible flow in a moist atmosphere and takes into account
a variety of physical processes through different parameteri-
zation schemes.

The applications of COSMO-CLM range from palaeocli-
mate (Russo and Cubasch, 2016; Fallah et al., 2016; Pröm-
mel et al., 2013) to future projections (Dosio et al., 2015; Do-
sio and Panitz, 2016; Bucchignani et al., 2016, 2014; Fischer
et al., 2013; Dobler and Ahrens, 2011; Wang et al., 2013;
Keuler et al., 2016; Sørland et al., 2018) and span a large va-
riety of spatial resolutions, from mesoscales to convection-
permitting scales (Fosser et al., 2015; Knote et al., 2010;
Brisson et al., 2015; Tölle et al., 2014; Ban et al., 2015).

The model is used in this study at a spatial resolution
of 0.22◦, following the framework of the new CORDEX
Coordinated Output for Regional Evaluations (CORDEX-

CORE) initiative (Gutowski Jr. et al., 2016; see https://www.
cordex.org/experiment-guidelines/cordex-core/, last access:
1 May 2020).

The simulations used for characterizing the model param-
eters uncertainty are 1 year long and are run from an equilib-
rium state obtained from a 10-year simulation over the period
of 1991–2000. This simulation represents the reference sim-
ulation for this study. Its configuration is derived from Russo
et al. (2019) and uses a representation of vegetation albedo
taking into account forest fraction and soil heat conductiv-
ity accounting for soil ice–moisture ratio. Table 1 provides
a summary of the reference simulation setup. A more de-
tailed description of the model domain (showed in Fig. 1) and
reference configuration is presented in Russo et al. (2019).
Bellprat et al. (2012a) demonstrated that, for some prede-
fined metrics, COSMO-CLM results converge already after
1 year. Therefore, for the purpose of determining the most
sensitive model parameters, although perturbed physics ex-
periments should ideally cover 3–5 years, 1-year simulations
could be enough, especially when computational resources
are limited. Here, the year 2000 has been selected, since it
can be considered normal in terms of monthly values of the
investigated variables.

The tested parameter inputs are selected from a plausible
range derived from Bellprat et al. (2012a), with a minimum,
a maximum and different intermediate values, depending on
the parameter. A list with all the tested values is presented in
Table 2, for a total number of 92 simulations.

For the analysis, an estimate of the internal variability of
the model is needed. Thus, an ensemble of five simulations
covering the period of 1991–2005 but with different initial
conditions (starting date shifted by ±1 and ±3 months), per-
formed by Russo et al. (2019), is additionally considered.

To investigate the model transferability to a different do-
main, the same 1-year perturbed simulations are performed
for four parameters for the European CORDEX domain,
yielding an additional 15 simulations. An ensemble of five
15-year simulations with different initial conditions is also
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Table 2. List of model parameters and corresponding ranges of investigated input values. The parameter values of the default model config-
uration are reported in bold. The finally selected COSMO-CLM most-sensitive parameters for the region are underlined.

Parameter Description Values

Turbulence

tkhmin minimal diffusion coefficients for heat (0, 0.4, 1, 2)
tkmmin minimal diffusion coefficients for momentum (0, 0.4, 1, 2)
tur_len maximal turbulent length scale (100, 500, 1000)
d_heat factor for turbulent heat dissipation (12, 10.1, 15)
d_mom factor for turbulent momentum dissipation (12, 15, 16.6)
c_diff factor for turbulent diffusion of TKE (0.01, 0.2, 10)
q_crit critical value for normalized oversaturation (1, 4, 7, 10)
clc_diag cloud cover at saturation in statistical cloud diagnostic (0.2, 0.5, 0.8)

Land surface

rlam_heat scaling factor of the laminar boundary layer for heat (0.1, 1, 3, 5, 10)
rat_sea ratio of laminar scaling factors for heat over sea and land (1, 10, 20, 50, 100)
rat_can ratio of canopy height over z0m (0, 1, 10)
rat_lam ratio of laminar scaling factors for vapour and heat (0.1, 1, 10)
c_sea surface area density of the waves over sea [1/m] (1, 1.5, 5, 10)
c_lnd surface area density of the roughness elements over land (1, 2, 10)
z0m_dia roughness length of a typical synoptic station (0.001, 0.2, 10)
pat_len length scale of subscale surface patterns over land (10, 100, 500, 1000)
e_surf exponent to get the effective surface area (0.1, 1, 10)

Convection

entr_sc mean entrainment rate for shallow convection (5e-5, 1e-4, 3e-4, 1e-3, 2e-3)

Microphysics

cloud_num cloud droplet number concentration (5e+7, 5e+8, 1e+9)
qi0 cloud ice threshold for autoconversion (0, 0.00001, 0.0001, 0.001, 0.01)
v0snow factor for fall velocity of snow (10, 15, 25)

Radiation

uc1 parameter for computing amount of cloud cover in saturated conditions (0.2, 0.5, 0.625, 0.8)
hincrad increment for running the radiation in hours (0.5, 0.75, 1)
radfac fraction of cloud water/ice used in radiation scheme (0.3, 0.5, 0.9)

Soil

soilhyd multiplication factor for hydraulic conductivity and diffusivity (1, 1.62, 6)
fac_rootdp2 uniform factor for the root depth field (0.5, 1, 1.5)

performed for Europe in order to estimate the model internal
variability for the region.

All the presented simulations are driven by National
Centers for Environmental Prediction (NCEP) version 2
(NCEP2) reanalysis data (Kanamitsu et al., 2002). NCEP2
data have a temporal resolution of 6 h and a spectral reso-
lution of T62 (∼ 1.9◦). Within CORDEX, ERA-Interim re-
analysis data are usually used to drive RCMs evaluation and
calibration experiments. NCEP2 data are employed in this
study, with the specific purpose of reproducing the spatial
resolution jump present when using the global circulation
models (GCMs) normally employed in CORDEX simula-
tions (∼ 200 km, Russo et al., 2019).

2.2 Observations

The presented analyses focus on three variables: near-surface
temperature (T2M), daily precipitation (PRE) and total cloud
cover (CLCT). While T2M and PRE are highly relevant for
climate impact studies, the third one is used to evaluate mod-
els’ ability in simulating radiative processes (Bellprat et al.,
2012a, b, 2016).

The range of three different observational data sets is con-
sidered for each of the variables to represent observational
uncertainties (Collins et al., 2013; Gómez-Navarro et al.,
2012; Bellprat et al., 2012a, b; Flaounas et al., 2012; Lange

Geosci. Model Dev., 13, 5779–5797, 2020 https://doi.org/10.5194/gmd-13-5779-2020
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Figure 1. Location and orography map of the Central Asia domain,
at a spatial resolution of 0.22◦. Orographic data are derived from
the Global Land One kilometre Base Elevation (GLOBE; Hastings
et al., 1999) data set.

et al., 2015; Zhou et al., 2016; Solman et al., 2013; Russo
et al., 2019):

– For temperature, information is retrieved from the Cli-
mate Research Unit time series (CRU TS4.1) observa-
tional data set (Harris and Jones, 2017), from the Uni-
versity of Delaware (UDEL) gridded data set (Will-
mott, 2000), provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, from their web site at https:
//www.esrl.noaa.gov/psd/ (last access: 1 February 2020)
and from the Modern-Era Retrospective analysis for Re-
search and Applications version 2 (MERRA2) (Gelaro
et al., 2017).

– Information on precipitation is retrieved from the CRU
and the UDEL data sets, as well as from the Global Pre-
cipitation Climatology Centre (GPCC) data set (Becker
et al., 2011).

– For total cloud cover, again the CRU data set is
used. Additionally, the cloud data sets extracted from
the National Oceanic and Atmospheric Administration
(NOAA) High Resolution Infrared Radiation Sounder
(HIRS) (Wylie et al., 2005) and the International Satel-
lite Cloud Climatology Project (ISCCP) gridded data set
(Zhang et al., 2004) are used, similarly to Bellprat et al.
(2012a, b).

All data sets present a spatial resolution of 0.5◦, except the
HIRS and the ISCCP, having both a spatial resolution of 1◦.
In the latter case, the data are interpolated on the CRU grid
by means of a conservative remapping method prior to the
analyses. The considered observational data sets and the cor-
responding variables for which they are used are reported in
Table 3.

2.3 Analysis methods and evaluation metrics

The analyses are conducted on the regional means of
monthly values of the considered variables for different re-

Figure 2. Map of the 11 subregions obtained through k-means clus-
tering of q-normalized monthly climatologies of the three consid-
ered variables over the period of 1996–2005.

gions characterized by differing climate conditions. By aver-
aging, the model residuals with respect to observations be-
come quasi-Gaussian, allowing the use of normal estimators
of model disagreement (Von Storch and Zwiers, 2001; Bell-
prat et al., 2012a). Before spatially averaging, model results
are first upscaled to the same 0.5◦ grid of the CRU observa-
tional data set by means of a bilinear remapping method in
the case of temperature and through conservative remapping
for the other two variables.

A k-means clustering technique (Steinhaus, 1956; Ball and
Hall Dj, 1965; MacQueen, 1967; Lloyd, 1982; Jain, 2010)
applied onto quantile-normalized (q-normalized) monthly
climatologies of the investigated variables is used to decom-
pose the domain into a set of subregions with different cli-
mate conditions. K-means clustering allows the separation
of similar data into groups, using the concept of Euclidean
distance from the centroids of a predetermined group of clus-
ters. Following several tests and the results of other studies
(Mannig et al., 2013; Russo et al., 2019), a total number of
11 clusters have been selected for the Central Asia domain.
As input for the clustering procedure, q-normalized values
of monthly climatologies of T2M and CLCT derived from
the CRU data set and PRE values derived from the GPCC
are used. The results of the k-means clustering are shown in
Fig. 2.

The metrics used for investigating the COSMO-CLM pa-
rameters’ uncertainty is the performance index (PI) presented
in Bellprat et al. (2012a) and derived from the Climate Per-
formance Index (CPI) of Murphy et al. (2004). PI represents
a normalized multivariate root-mean-square error (RMSE),
weighted over different sources of uncertainties and aver-
aged over the model variables, the considered regions and
the months of a selected year:

PI=
1

VRT

V∑
v

R∑
r

T∑
t

√
(mv,r,t − ov,r,t )2

σov,r,t + σivv,r,t + σεv,r,t
, (1)
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where V = 3 represents the number of variables considered,
R = 11 is the number of the domain subregions, and T = 12
is the number of months of the given year. The terms m
and o represent the model and the observational monthly
means calculated for each variable, month and region. σo is
the monthly SD of the interannual variations calculated from
the observations over the period of 1996–2005; σiv is the
monthly SD of the internal variability of the regional model
for the same period; σε is the monthly SD of the observa-
tional error derived from different reference data sets, for the
selected year.

PI represents an objective measure of model reliability,
where higher (lower) values indicate bad (good) perfor-
mance. In order to make inferences about the sensitivity of
model parameters, Bellprat et al. (2012a, b) used the PI to de-
fine a positive performance score (PS) that can be interpreted
as an approximation of the likelihood that the residuals come
from a distribution with zero mean and variance given by σo,
σiv and σε :

PS= e(−0.5PI2). (2)

Basically, PI allows us to quantify model parameter uncer-
tainty, while PS is used as an estimate of the model sensitivity
to each single tested parameter.

In this study, first PI and PS are calculated for the three
considered variables together. Then, given the assumption
that changes in PS are expected to be smooth (Bellprat et al.,
2012a; Neelin et al., 2010), a quadratic regression is fitted to
the obtained values of PS for each parameter, representing
an estimate of model sensitivity for that specific parameter.
Successively, the same analyses are repeated for each vari-
able separately, taking into account the fact that the obtained
PS values might be due to a compensation effect of the re-
sults for single variables. This will contribute to discriminate
the model most sensitive parameters for the region.

In a successive step, model parameter uncertainties for dif-
ferent areas of the domain are investigated. For this purpose,
PI is calculated separately for each variable and subregion.
Then, the variable and region dependent PI is expressed with
respect to the one of the reference simulation using a skill
score (SS) defined as

SS=
(

1−
PIexp

PIref

)
. (3)

Positive (negative) SS values indicate an improvement
(worsening) of the considered experiment over the reference
simulation, in terms of the proposed metrics PI.

The range of different errors and their effects on the con-
sidered metrics will be additionally investigated to support
the presented analyses.

Finally, for the comparison of the model results obtained
for Central Asia with the ones for Europe, the same PS met-
rics, calculated for a subset of selected parameters over the
entire domain, will be considered.

3 Results

3.1 Sensitivity of the model to parameter perturbation
for the entire domain

First, the PS for each parameter, when considering T2M,
PRE and CLCT together, is investigated (Fig. 3). It is clearly
seen that model performance is sensitive to only a restricted
set of parameters, which is in agreement with the findings of
Bellprat et al. (2012a). The parameters that have the largest
impact on PS are e_surf, representing the exponent to get
the effective surface area used in the land-surface scheme,
and qi0, which is the parameter for the cloud ice thresh-
old for autoconversion used in the microphysics parametriza-
tion scheme. Other parameters, which have some consid-
erable impact on PS, are d_mom, the factor for turbulent
momentum dissipation, v0snow, controlling the fall veloc-
ity of snow, radfac, which represents the fraction of cloud
water/ice used in the radiation scheme, tkhmin, the mini-
mum value for the turbulence heat diffusion coefficient, and
rlam_heat, the scaling factor of the laminar boundary layer
for heat. Thus, for each parametrization scheme, excluding
convection, there is at least one or two parameters that show
the potential to sensibly improve model performance when
an optimal value is set. For some of the parameters such as
c_diff, the factor for turbulent diffusion in the turbulent ki-
netic energy (TKE) scheme, and z0m_ dia, representing the
roughness length of a typical synoptic station used for the
interpolation of values of the 10 m wind, strong changes in
PS are evident in Fig. 3. However, in these cases, the model
performs similarly for all tested inputs, suggesting that the
evinced sensitivity is an artificial result of the quadratic in-
terpolation. Changes in PS are also evident for soilhyd, a
multiplying factor for soil hydraulic conductivity and dif-
fusivity, fac_rootdp2, an uniform factor for the root depth
field, tur_len, defining the maximal turbulent length scale,
uc1, used for computing the amount of cloud cover in sat-
urated conditions, q_crit, representing the critical value for
normalized oversaturation, and rat_lam, which is the ratio
of laminar scaling factors for vapour and heat. For all other
parameters, variations of PS are considerably small or zero.

When investigating how PS depends on each variable
(Fig. 4), similar results are obtained for all the parameters.
The largest variations in PS are evident, for each of the vari-
ables, for e_surf and qi0. Remarkable changes in PS for
T2M are also identified for tkhmin. In this case, also c_diff
shows significant changes but, as already stated above, the PS
seems to be at its maximum for the parameter values’ lower
and higher limits, suggesting that any parameter input in this
range will not produce an improvement in temperatures. For
PRE, more pronounced variations of PS are also found for
d_mom, v0snow and rlam_heat. Finally, for CLCT, con-
siderable changes in PS are also evident for tkhmin, show-
ing an opposite behaviour with respect to the one of tem-
peratures. Other parameters are characterized by particularly

Geosci. Model Dev., 13, 5779–5797, 2020 https://doi.org/10.5194/gmd-13-5779-2020
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Figure 3. PS calculated for near-surface temperature (T2M), daily precipitation (PRE) and total cloud cover (CLCT) together, for all the
different tested parameter values, over the entire Central Asia domain. The red marks represent the PS values obtained for the default
configuration.

small variations in the PS calculated for single variables, but
these changes are coherent among all the different variables
and translate into slightly larger changes in the PS calculated
over the three variables together. This is the case of radfac,
soilhyd, tur_len, rat_lam, uc1 (Fig. 3). In all other cases,
variations of the PS calculated for different variables com-
pensate each other, leading to really small or zero changes in
the total PS. In general, it is important to notice that the val-
ues of PS are lower for PRE than for the other two variables.
Further considerations for these differences and for their pos-
sible drivers will be discussed in the next sections.

Based on these results, the nine most sensitive model pa-
rameters for the region, highlighted in blue in Table 2, are
identified. A maximum of two parameters is selected for
each of the model physical schemes (turbulence, surface,
soil, radiation and grid-scale cloud precipitation), excluding
convection, for which the only tested parameter (entr_sc),
representing the mean entrainment rate for shallow convec-

tion, leads to really similar results for all the considered in-
puts. Despite acknowledging the importance for the region
of additional parameters such as tur_len and rat_lam, a
constraint to the number of selected parameters is neces-
sary, considering the high costs in terms of computational
resources needed for a calibration procedure.

Thus, to properly set an optimal model configuration for
the Central Asia domain, the selected nine parameters are
recommended to conduct the objective calibration procedure
of Bellprat et al. (2012b).

3.2 Model behaviour for different subregions

Once the most sensitive model parameters for the area are
identified, a more detailed analysis of simulation results for
each variable and subregion is performed. The aim is to in-
vestigate the model parameter uncertainties for regions char-
acterized by different climate conditions, determining the
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Figure 4. PS calculated separately for near-surface temperature (T2M, solid line), daily precipitation (PRE, dashed line) and total cloud
cover (CLCT, dotted line), for all the different tested parameter values, over the entire domain.

most relevant processes in the model formulation in each
case and assessing to which degree it is possible to improve
model performance for the considered variables by properly
setting parameter values.

Figures 5a, 6a and 7a show the PI calculated for the refer-
ence simulation (simulation with default values, highlighted
in red in Table 2) for each of the subregions for T2M, PRE
and CLCT, respectively, and the changes in the SS, for each
cluster and performed experiment (Figs. 5b, 6b and 7b). The
figures illustrate the magnitude of model deficiencies for the
reference simulation, allowing us to evaluate at the same time
parameter sensitivity for each subregion and variable. The
high PI values are evident for PRE, confirming that the model
performance is particularly poor with respect to this variable.

Figure 5a shows that the largest mismatches between the
reference simulation and observations, in terms of T2M,
are found over the Tibetan Plateau (TIB; Fig. 2). This par-
ticularly strong cold bias in temperature over the Tibetan
Plateau, found for all seasons, is a common feature of sev-

eral RCMs, as discussed in Russo et al. (2019). Some stud-
ies highlighted the importance of a better representation of
surface features and processes for the Tibetan Plateau, char-
acterized by particularly complex topography (Meng et al.,
2018; Zhuo et al., 2016). Here, the results indicate that, for
COSMO-CLM, parameters characteristic of surface param-
eterizations play only a secondary role for the simulation of
T2M over the region, with pronounced changes in model per-
formance evident only for few parameters such as e_surf and
pat_len, with the latter expressing the length scale of sub-
scale surface patterns over land. The largest improvements
in the COSMO-CLM simulation of T2M over the Tibetan
region are obtained for the parameter qi0, characteristic of
the cloud grid-scale condensation (microphysics) physical
scheme. Additionally, large variations in SS are also ob-
tained for the same region for the parameter tkhmin. An-
other region where microphysics parameterizations and the
characterization of cloud grid-scale condensation lead to an
improvement in the simulated T2M is the northern Indian
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Figure 5. (a) PI calculated for near-surface temperature (T2M) for the reference experiment with default parameter values, over each of
the 11 Central Asia subregions. (b) Changes in the SS of each performed experiment, calculated with respect to the default simulation,
for near-surface temperature (T2M): green (violet) values indicate a better (worse) agreement with observations with respect to the default
simulation. The experiments for each parameter are enumerated in an increasing order, according to its tested values, from the lowest to the
highest. The different simulations are additionally grouped depending on the main physical scheme the tested parameter is characteristic of,
in the same way as they are in Table 2.

Table 3. List of observational and reanalysis data sets employed for
the evaluation of model results.

Observational data set Variables

CRU TS4.1 T2M, PRE, CLCT
UDEL T2M, PRE
GPCC PRE
MERRA2 T2M
HIRS CLCT
ISCCP CLCT

monsoon (IMO; Fig. 2) area. Particularly high values of PI
for T2M are also evident in Fig. 5a, for the Arabian Penin-
sula and the southern Iran region (DHS; Fig. 2): no clear
improvements in model results relative to this variable can
be obtained for this region by perturbing parameter values
(Fig. 5b). This suggests that possible model deficiencies in
this case are likely related to the model formulation itself.
This seems to also be the case for the northern part of the
domain, corresponding to Western Siberia (SAR, CSA and
DSS; Fig. 2). Russo et al. (2019) showed that COSMO-CLM
presents particularly poor performance in the simulation of
temperatures over Western Siberia, specifically for winter,
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Figure 6. (a) PI calculated for precipitation (PRE) for the reference experiment with default parameter values, over each of the 11 Central Asia
subregions. (b) Changes in the SS of each performed experiment, calculated with respect to the default simulation, for PRE: green (violet)
values indicate a better (worse) agreement with observations with respect to the default simulation. The experiments for each parameter are
enumerated in an increasing order, according to its tested values, from the lowest to the highest. The different simulations are additionally
grouped depending on the main physical scheme the tested parameter is characteristic of, in the same way as they are in Table 2.

with warm biases deriving from the comparison against ob-
servations exceeding 15 ◦C over some points. The presented
analyses show that changes in PI for T2M are quite consis-
tent among the considered Western Siberian subdomains. In
this case, improvements in model performance for the simu-
lation of T2M in terms of PI are limited to a few parameters.
When the Western Siberian subregions are considered to-
gether, the main improvements are obtained for rlam_heat,
radfac, hincrad, c_lnd and e_surf, indicating the impor-
tance of surface and soil features and processes related to
heat fluxes for the simulation of temperature over the area.
Nevertheless, these changes do not seem to be large enough
to significantly reduce the T2M model bias over Western

Siberia, pointing at a possible structural problem in the model
formulation. For all other regions, there seems to be some
potential to improve model performance in simulating T2M,
by properly choosing parameter values. The largest positive
values of SS are obtained for the northern Black Sea (WSC)
region and the transition zone between the northern Indian
monsoon and the Tibetan region (MTT). For T2M, no pa-
rameter value seems to lead to an univocal positive model
response over all the different clusters together. For most of
the regions, properly calibrating the parameters qi0, tkhmin
and e_surf is particularly important in order to avoid signifi-
cantly poor model performance in the simulation of T2M.
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Figure 7. (a) PI calculated for total cloud cover (CLCT) for the reference experiment with default parameter values, over each of the 11
Central Asia subregions. (b) Changes in the SS of each performed experiment, calculated with respect to the default simulation, for CLCT:
green (violet) values indicate a better (worse) agreement with observations with respect to the default simulation. The experiments for each
parameter are enumerated in an increasing order, according to its tested values, from the lowest to the highest. The different simulations are
additionally grouped depending on the main physical scheme the tested parameter is characteristic of, in the same way as they are in Table 2.

For PRE (Fig. 6), the amplitude of changes in the cal-
culated SS is smaller than for T2M and CLCT. The region
for which an important improvement in model performance
is possible, for almost all considered parameters, is the re-
gion covering the desert areas of Mongolia and northwestern
China (DCW; Fig. 2). Large improvements in the simulation
of PRE are also possible for the region covering the north-
ern part of Iran and Turkey (SDT; Fig. 2) where moisture is
mainly advected by westerlies from the Mediterranean Sea
(Fernández et al., 2003; Fallah et al., 2015). In this case, the
model seems particularly sensitive to changes in the param-
eter c_sea, describing the surface area density of the waves
over sea, used for the calculation of roughness length. The

roughness of the sea surface steers the exchange of mo-
mentum, moisture and heat between ocean and atmosphere
(Carlsson et al., 2010; Vickers and Mahrt, 2010). Thévenot
et al. (2016) demonstrated that an increase in sea surface
roughness may generate higher momentum fluxes, impacting
low-level atmospheric dynamics, particularly affecting wind
speeds, and that a proper representation of the sea surface
roughness may lead to a better localization of heavy precip-
itation. For the northern part of Iran and Turkey, the other
parameter for which the model is most sensitive to the sim-
ulation of PRE is rat_sea, the ratio of laminar scaling fac-
tors for heat over sea and land, confirming again the impor-
tance of the representation of ocean–atmosphere interactions
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for the simulation of precipitation over the region. Finally,
significant improvements in simulated PRE are obtained for
the TIB (Fig. 2), for the parameter qi0, affecting cloud mi-
crophysics, as previously described. For all other regions,
changes in model performance for the simulation of PRE
are not particularly remarkable, making any assumption on
parameter selection almost equivalent. Only the parameter
d_mom seems to be able to produce small, but positive, im-
provements with respect to the reference simulation, for all
the clusters.

For CLCT, changes in the SS are significant only for a
specific subset of parameters (Fig. 7). In particular, for qi0,
mainly negative values are obtained for all the regions. Con-
sidering the opposite positive effect of this parameter inputs
on T2M for some regions, properly selecting a value for
the parameter qi0 becomes of fundamental importance for
COSMO-CLM simulations over the Central Asia CORDEX
domain, with even tiny changes in the parameter input that
could have dramatic effects on model performance for differ-
ent variables. The same holds true for the parameter e_surf.
Important SS variations for CLCT are evident, in Fig. 7b,
for the northwestern areas of the domain (SAR, CSA, WSC
and STE; Fig. 2), for the parameter tkhmin, characteriz-
ing heat turbulent diffusion. These regions are characterized
by particularly stable stratified atmospheric conditions. For
these, the model has already proved to be highly sensitive to
tkhmin (Cerenzia et al., 2014; Buzzi et al., 2011), producing
excessive mixing during periods with highly stable stratifica-
tion and a consequent overestimation of temperatures. Basi-
cally, higher values of tkhmin produce exaggerated mixing,
leading to more cloud formation, more similarly to obser-
vations, that otherwise the model is not able to reproduce.
However, these improvements are only inherent to the simu-
lated CLCT, and the same processes lead to higher T2M with
a consequent worsening of the model results over the same
region. This represents a case where the model generates bet-
ter results for the wrong reason. In this case, parameter inputs
must be carefully selected, and the application of an objective
calibration method becomes indispensable. Another parame-
ter that presents the potential to sensibly improve model per-
formance for CLCT, for several domain subregions, is uc1.
This parameter shows an opposite behaviour between south-
ern (DHS, SDT, MTT and IMO; Fig. 2) and northern regions.

In general, the results from Figs. 5–7 indicate that the com-
puted SS does not exhibit a similar and coherent behaviour
over all subdomains for the different parameters tested. This
suggests that even if properly setting COSMO-CLM param-
eter values for Central Asia could lead to a general improve-
ment of model performance for the entire domain, this im-
provement would not be absolute: it will likely be the result
of relatively poorer performance over specific areas compen-
sated by larger improvements over other regions.

3.3 Considerations on different uncertainty sources

For better understanding the role of different uncertainty
sources on the calculation of PI, here a more detailed analy-
sis of the considered errors is presented. Figure 8 shows the
values of the different uncertainty terms considered in the
calculation of PI, derived for each month and domain sub-
region. For T2M and PRE, the highest uncertainties are ob-
tained from the observational interannual variability (σo), for
almost all months and clusters. In the first case, the high-
est uncertainties characterize winter months, especially over
Western Siberia (SAR, CSA and DSS; Fig. 2) and the steppe
region east of the Caspian Sea (STE; Fig. 2). In the second,
highest uncertainties are evident for summer months over
the monsoon areas (MTT and IMO; Fig. 2). Conversely, for
CLCT, the largest contribution to the sum of the uncertainties
is given by the mean differences in the considered observa-
tional data sets (σε) for all months and regions.

Figure 9 shows the effect of the sum of the different un-
certainty terms on the calculation of PI for each month and
cluster, relatively to the corresponding model bias against ob-
servations. The presented values are obtained by standardiz-
ing the value of the uncertainty / bias ratios, for all variables,
with respect to their absolute minimum and maximum val-
ues. From this figure, it is possible to see that for the cal-
culation of PI, uncertainties have a greater weight for T2M
and CLCT than for PRE. This suggests that the lower PS
values obtained for PRE are mainly due to large model bi-
ases, which in this case are completely out of the range of
the corresponding uncertainties. Additionally, the same fig-
ure shows that even though the effects of the uncertainties
on PI are sometimes remarkable, this is true only for given
clusters and at specific months. Mostly, even if large uncer-
tainties are present (Fig. 8), these are relatively small when
compared to the corresponding model biases (one example is
the case of T2M for Western Siberia during winter months in
Fig. 9). In these cases, small changes in PI obtained by per-
turbing parameter values are indicative of small reductions of
the model bias against observations and of a possible prob-
lem in the model structural formulation.

3.4 Transferability of the model configuration

In order to test whether COSMO-CLM responds similarly
to parameters perturbation for different domains, the same
PS analyses are conducted on a subset of model parameters
for the European CORDEX domain. The same 1-year sim-
ulations for the year 2000 are conducted for the parameters
e_surf, rlam_heat, rat_sea and entr_sc, using the same de-
fault configuration of the Central Asia simulations. The first
two parameters are selected since they present a high sensi-
tivity for the Central Asia domain, while the others produce
almost the same results over a large part of the region for
different input values. As before, a k-means clustering tech-
nique is used for dividing the European domain into subre-
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Figure 8. Values of different uncertainty terms for each cluster and month used in the PI calculations. From top to bottom, the different
variables are considered, in the following order: near-surface temperature (T2M), daily precipitation (PRE) and total cloud cover (CLCT).
Panels (a–c) represent the uncertainties of the observation interannual variability (σo) calculated over the period of 1996–2005. In panels (d–
f), the values of the model internal variability (σiv), calculated over the same period, are shown. In panels (g–i), the errors calculated over the
different observational data sets, for the selected year (2000), are illustrated (σε ).

gions characterized by different climatic conditions. For hav-
ing an approximately equal ratio between the total number
of points and clusters as for Central Asia, six clusters are
selected. Results of the clustering for Europe are shown in
Fig. 10.

The PS calculated for the given parameter values for Eu-
rope and Central Asia, considering T2M, PRE and CLCT
together, is presented in Fig. 11, respectively, in the left and
right columns. The results show that the model has the same
sensitivity over Europe and Central Asia for e_ surf, with
worse performance for higher parameter values. Conversely,
a different behaviour is obtained in the two cases for the
other parameters. In particular, the model shows for Europe
a decreasing response to an increase in parameter values for
rlam_heat, differently to the Central Asia case. At the same
time, for Europe, rat_sea and entr_sc present appreciable
changes, in particular the first one, conversely to the Central
Asia example. One important aspect to be mentioned is the
fact that the values of PS calculated for Europe are higher

than the ones for Central Asia. An additional analysis of the
uncertainty for Europe indicates that this difference is dic-
tated by larger model biases against observations for Central
Asia, since the ranges of the uncertainties are comparable in
the two cases (see the Supplement). Even though the pre-
sented analyses are conducted on a subsample of parameters,
the results allow us to affirm that the model responds dif-
ferently to different parameter values over Europe and Cen-
tral Asia, two regions characterized by various climate con-
ditions. This is in contrast with the recent findings of Bell-
prat et al. (2016), asserting that uncertainties in the model
physics are common among different regions. Even though
additional research on other regions is required, the presented
results suggest that model calibration remains a necessary
condition prior to the application of COSMO-CLM to dif-
ferent domains of study.
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Figure 9. Effects of the sum of the different uncertainty sources in
the calculation of PI for each cluster and considered month, with
respect to the reference model bias against observations. The error
terms are firstly divided by the bias of the reference simulation for
each subregion and month. Then, the values obtained for all vari-
ables are standardized between a minimum and a maximum.

4 Conclusions

In this paper, the parameter space of the COSMO-CLM
RCM is investigated for the Central Asia CORDEX domain,
using a PPE obtained by performing 1-year simulations with
different parameter values. The results of these simulations
are compared against observations, using the performance
metrics introduced in Bellprat et al. (2012a). The main goal
of the paper is to characterize model parameter uncertainty,
determining the most sensitive parameters for the region, on
which to apply the objective calibration method of Bellprat
et al. (2012b). Moreover, the presented experiments are used
to investigate the effect of several parameters on the simula-
tion of the considered variables for subregions with different
climate conditions, assessing to which degree it is possible to
improve model performance by properly selecting parameter
values in each case. Finally, the paper explores the possibility
of transferring an RCM model setup used for one region to a
different domain of study.

The model is particularly sensitive to a subset of all the
tested parameters. The parameters with the largest effect on
model performance are qi0, the cloud ice threshold for auto-
conversion, and e_surf, the exponent to get the effective sur-
face area. Another particularly important parameter for the
area and all considered variables is rlam_heat, the scaling

Figure 10. Map of the six subregions obtained for Europe through
k-means clustering of the q-normalized monthly climatologies of
the considered variables, calculated over the period of 1996–2005.

factor of the laminar boundary layer for heat. In addition to
these three, six other most sensitive parameters are individ-
uated: d_mom, the factor for turbulent momentum dissipa-
tion, v0snow, controlling the fall velocity of snow, radfac,
which represents the fraction of cloud water/ice used in the
radiation scheme, tkhmin, the minimum value for the turbu-
lence heat diffusion coefficient, soilhyd, a multiplying factor
for soil hydraulic conductivity and diffusivity, and uc1, the
parameter for computing the amount of cloud cover in satu-
rated conditions.

In general, the presented results show that an overall im-
provement of model performance relatively to the selected
variables seems possible, by properly selecting parameter
values. Nevertheless, this improvement would not be coher-
ent among all the Central Asia domain subregions but the
result of some compensating effect. The model response to
parameter value perturbation is characterized by contrasting
results in the different cases. The most important example
in this sense is the one of qi0, producing large contrasting
changes in model performance over different regions and
variables. It is of crucial importance to determine a proper
input for qi0 for the region, since even a small perturbation
of its value could have a tremendous effect on model results,
with an improvement in the performance over one region and
variable, and an opposite response for others. The same is
particularly true also for the parameter e_surf.

Parameters related to soil–atmosphere and land surface–
atmosphere interaction representations, such as rlam_heat
and soilhyd, are notably relevant for the simulation of near-
surface temperature over a large part of the domain subre-
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Figure 11. PS values calculated for Central Asia (left) and Europe (right), for different values of the parameters e_surf, rlam_heat, rat_sea
and entr_sc. The values of the parameters are the same in the two cases. Red dots correspond to the PS values obtained for the default
simulation.

gions, in particular over Western Siberia and the area north of
the Black Sea. Nevertheless, the same parameters do not have
the same influence on the simulation of precipitation and to-
tal cloud cover for the majority of the subdomains. Parame-
ters used in the turbulence parameterization scheme, such as
tkhmin, have an important impact on many regions, in par-
ticular for near-surface temperature and cloud cover, for ar-
eas characterized by complex topography and the ones with
stable vertical stratification. In the latter case, tkhmin pro-
duces opposite results for the considered variables, confirm-
ing an already known model structural problem related to the
production of excessive mixing over these regions. Among
the parameters employed in the radiation process represen-
tations, uc1 shows a strong sensitivity, in particular for total
cloud cover, over all the domain subregions. Over some sub-
regions (e.g. Turkey and the northern part of Iran), parame-
ters related to ocean-surface processes, such as rat_sea and
c_sea, have a relevant effect on the simulation of precipita-
tion. For some regions, such as Western Siberia, even though
changes in model results are possible by perturbing param-
eter values, they do not seem to be large enough in order to
sensibly improve model biases. In this case, the reason for
the biases is most likely related to some structural error in
the model formulation. However, it is worth mentioning that
additional factors that were not acknowledged in this study,
such as changes in the default model setup (e.g. model spa-
tial resolution and number of vertical levels) could also affect
model performance over different parts of the domain.

For the calculation of the considered metrics, a larger role
is played by the uncertainties in near-surface temperature and
cloud cover than the ones in precipitation. For cloud cover,

the contribution of the observational uncertainties is larger
than the one arising from the observational interannual and
model internal variability, more important for the other two
variables. The bias between model and observational data
sets is particularly large for precipitation, well out of the
range of considered uncertainty sources, leading to lower val-
ues of the PS with respect to the other two cases.

Finally, the model parameters’ sensitivity for the Central
Asia CORDEX domain does not coincide, for a selected sub-
sample of parameters, with the one evinced for the corre-
sponding European domain, characterized by different cli-
matic conditions. Even though additional research on other
regions is required, the presented results suggest that model
calibration remains a necessary condition prior to the appli-
cation of COSMO-CLM to different domains of study, con-
trary to evidence from recent studies using the same model.
Our results suggest that a regional climate model should be
retuned when setting up model experiments to a non-native
domain.

Code and data availability. Simulation configuration files can be
downloaded from https://doi.org/10.5281/zenodo.3523177 (Russo,
2019a).

All the data on which the presented analyses are conducted, to-
gether with the restart files of the reference simulations used to drive
the sensitivity experiments for the two domains, are available at
the following link: https://doi.org/10.5281/zenodo.3523243 (Russo,
2019b).

A complete documentation of the COSMO model is perma-
nently available at the following link: https://www.dwd.de/EN/
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ourservices/cosmo_documentation/cosmo_documentation.html
(last access: 1 October 2020).

The COSMO-CLM model is completely free of charge for all
research applications. The version of the COSMO-CLM model used
in this study can be downloaded from the following website: https://
redc.clm-community.eu/projects/cclm-sp/wiki/Downloads (Rockel
et al., 2008).

Access is license-restricted (http://www.cosmo-model.org/
content/consortium/licencing.htm, last access: 1 December 2019)
and for the download the user needs to become a member of
the CLM community, or the respective institute needs to hold an
institutional license.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-5779-2020-supplement.
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Ozturk, T., Turp, M., Türkeş, M., and Kurnaz, M.: Projected
changes in temperature and precipitation climatology of Central
Asia CORDEX Region 8 by using RegCM4. 3.5, Atmos. Res.,
183, 296–307, 2017.

Paeth, H.: Insights from large ensembles with perturbed physics,
Erdkunde, 69, 201–216, 2015.

Paeth, H., Steger, C., and Merkenschlager, C.: Climate Change – it’s
All About Probability, Erdkunde, 67, 203–222, 2013.

Price, A., Myerscough, R., Voutchkov, I., Marsh, R., and Cox, S.:
Multi-objective optimization of GENIE Earth system models,
Philos. T. R. Soc. A, 367, 2623–2633, 2009.

Prömmel, K., Cubasch, U., and Kaspar, F.: A regional climate
model study of the impact of tectonic and orbital forcing on
African precipitation and vegetation, Palaeogeogr. Palaeocl.,
369, 154–162, 2013.

Rockel, B. and Geyer, B.: The performance of the regional climate
model CLM in different climate regions, based on the example
of precipitation, Meteorol. Z., 17, 487–498, 2008.

Rockel, B., Will, A., and Hense, A.: Regional climate modelling
with COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, 2008.

Russo, E.: COSMO-CLM Namelists for the simulations exploring
the model parameter space over the CORDEX Central Asia do-
main, Zenodo, https://doi.org/10.5281/zenodo.3523177, 2019a.

Russo, E.: CCLM outputs Parameters Sensitivity Inves-
tigation Central Asia and Europe [Data set], Zenodo,
https://doi.org/10.5281/zenodo.3523243, 2019b.

Russo, E. and Cubasch, U.: Mid-to-late Holocene tempera-
ture evolution and atmospheric dynamics over Europe in
regional model simulations, Clim. Past, 12, 1645–1662,
https://doi.org/10.5194/cp-12-1645-2016, 2016.

Russo, E., Kirchner, I., Pfahl, S., Schaap, M., and Cubasch, U.:
Sensitivity studies with the regional climate model COSMO-
CLM 5.0 over the CORDEX Central Asia Domain, Geosci.
Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-
5229-2019, 2019.

Schirber, S., Klocke, D., Pincus, R., Quaas, J., and Anderson, J.:
Parameter estimation using data assimilation in an atmospheric
general circulation model: From a perfect toward the real world,
J. Adv. Model. Earth Sy., 5, 58–70, 2013.

Solman, S., Sanchez, E., Samuelsson, P., da Rocha, R., Li, L.,
Marengo, J., Pessacg, N., Remedio, A., Chou, S., Berbery, H., Le
Treut, H., de Castro, M., and Jacob, D.: Evaluation of an ensem-
ble of regional climate model simulations over South America
driven by the ERA-Interim reanalysis: model performance and
uncertainties, Clim. Dynam., 41, 1139–1157, 2013.

Sørland, S., Schär, C., Lüthi, D., and Kjellström, E.: Bias pat-
terns and climate change signals in GCM-RCM model chains,

Geosci. Model Dev., 13, 5779–5797, 2020 https://doi.org/10.5194/gmd-13-5779-2020

https://doi.org/10.5194/acp-10-9993-2010
https://doi.org/10.5194/acp-10-9993-2010
https://doi.org/10.1038/416719a
https://doi.org/10.1088/1748-9326/aab44a
https://doi.org/10.1038/nature02771
https://doi.org/10.5281/zenodo.3523177
https://doi.org/10.5281/zenodo.3523243
https://doi.org/10.5194/cp-12-1645-2016
https://doi.org/10.5194/gmd-12-5229-2019
https://doi.org/10.5194/gmd-12-5229-2019


E. Russo et al.: Exploring the parameter space of COSMO-CLM for Central Asia 5797

Environ. Res. Lett., 13, 074017, https://doi.org/10.1088/1748-
9326/aacc77, 2018.

Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N.,
Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Mur-
phy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A.,
Thorpe, A. J., and Allen M. R.: Uncertainty in predictions of
the climate response to rising levels of greenhouse gases, Nature,
433, 403–406, https://doi.org/10.1038/nature03301, 2005.

Steinhaus, H.: Sur la division des corp materiels en parties, B. Acad.
Pol. Sci., 1, 801–804, 1956.

Takle, E. S., Roads, J., Rockel, B., Gutowski, W. J., Arritt, R. W.,
Meinke, I., Jones, C. G., and Zadra, A.: Transferability intercom-
parison: an opportunity for new insight on the global water cycle
and energy budget, B. Am. Meteorol. Soc., 88, 375–384, 2007.

Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble
in probabilistic climate projections, Philos. T. R. Soc. A, 365,
2053–2075, 2007.

Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., and Penner, J.:
Contribution of different aerosol species to the global aerosol ex-
tinction optical thickness: Estimates from model results, J. Geo-
phys. Res.-Atmos., 102, 23895–23915, 1997.

Tett, S., Mineter, M., Cartis, C., Rowlands, D., and Liu, P.:
Can Top-of-Atmosphere Radiation Measurements Constrain Cli-
mate Predictions? Part I: Tuning, J. Climate, 26, 9348–9366,
https://doi.org/10.1175/JCLI-D-12-00595.1, 2013.

Thévenot, O., Bouin, M., Ducrocq, V., Brossier, C., Nuissier, O., Pi-
anezze, J., and Duffourg, F.: Influence of the sea state on Mediter-
ranean heavy precipitation: a case-study from HyMeX SOP1, Q.
J. Roy. Meteor. Soc., 142, 377–389, 2016.

Tölle, M., Gutjahr, O., Busch, G., and Thiele, J.: Increasing bioen-
ergy production on arable land: Does the regional and local
climate respond? Germany as a case study, J. Geophys. Res.-
Atmos., 119, 2711–2724, 2014.

Vickers, D. and Mahrt, L.: Sea-surface roughness lengths in the
midlatitude coastal zone, Q. J. Roy. Meteor. Soc., 136, 1089–
1093, 2010.

Von Storch, H. and Zwiers, F.: Statistical analysis in climate re-
search, Cambridge University Press, 2001.

Voudouri, A., Khain, P., Carmona, I., Bellprat, O., Grazzini, F., Av-
goustoglou, E., Bettems, J., and Kaufmann, P.: Objective calibra-
tion of numerical weather prediction models, Atmos. Res., 190,
128–140, 2017.

Voudouri, A., Khain, P., Carmona, I., Avgoustoglou, E., Kaufmann,
P., Grazzini, F., and Bettems, J.: Optimization of high resolu-
tion COSMO model performance over Switzerland and Northern
Italy, Atmos. Res., 213, 70–85, 2018.

Wang, D., Menz, C., Simon, T., Simmer, C., and Ohlwein, C.: Re-
gional dynamical downscaling with CCLM over East Asia, Me-
teorol. Atmos. Phys., 121, 39–53, 2013.

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor,
P., Jackson, L., and Yamazaki, K.: History matching for explor-
ing and reducing climate model parameter space using observa-
tions and a large perturbed physics ensemble, Clim. Dynam., 41,
1703–1729, 2013.

Willmott, C. J.: Terrestrial air temperature and precipitation:
Monthly and annual time series (1950–1996), available at:
http://climate.geog.udel.edu/~climate/html_pages/README.
ghcn_ts.html (last access: 1 February 2020), 2000.

Wylie, D., Jackson, D., Menzel, W., and Bates, J.: Trends in global
cloud cover in two decades of HIRS observations, J. Climate, 18,
3021–3031, 2005.

Zhou, W., Tang, J., Wang, X., Wang, S., Niu, X., and Wang, Y.:
Evaluation of regional climate simulations over the CORDEX-
EA-II domain using the COSMO-CLM model, Asia-Pac. J. At-
mos. Sci., 52, 107–127, 2016.

Zhuo, H., Liu, Y., and Jin, J.: Improvement of land surface temper-
ature simulation over the Tibetan Plateau and the associated im-
pact on circulation in East Asia, Atmos. Sci. Lett., 17, 162–168,
2016.

https://doi.org/10.5194/gmd-13-5779-2020 Geosci. Model Dev., 13, 5779–5797, 2020

https://doi.org/10.1088/1748-9326/aacc77
https://doi.org/10.1088/1748-9326/aacc77
https://doi.org/10.1038/nature03301
https://doi.org/10.1175/JCLI-D-12-00595.1
http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html
http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html

	1
	Data and methods
	Model and experiments
	Observations
	Analysis methods and evaluation metrics

	Results
	Sensitivity of the model to parameter perturbation for the entire domain
	Model behaviour for different subregions
	Considerations on different uncertainty sources
	Transferability of the model configuration

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

