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ABSTRACT

Many of the planets discovered by the Kepler satellite are close orbiting super-Earths or mini-
Neptunes. Such objects exhibit a wide spread of densities for similar masses. One possible
explanation for this density spread is giant collisions stripping planets of their atmospheres.
In this paper, we present the results from a series of smoothed particle hydrodynamics
(SPH) simulations of head-on collisions of planets with significant atmospheres and bare
projectiles without atmospheres. Collisions between planets can have sufficient energy to
remove substantial fractions of the mass from the target planet. We find the fraction of
mass lost splits into two regimes — at low impact energies only the outer layers are ejected
corresponding to atmosphere dominated loss, at higher energies material deeper in the potential
is excavated resulting in significant core and mantle loss. Mass removal is less efficient in the
atmosphere loss dominated regime compared to the core and mantle loss regime, due to the
higher compressibility of atmosphere relative to core and mantle. We find roughly 20 per cent
atmosphere remains at the transition between the two regimes. We find that the specific energy
of this transition scales linearly with the ratio of projectile to target mass for all projectile-target
mass ratios measured. The fraction of atmosphere lost is well approximated by a quadratic
in terms of the ratio of specific energy and transition energy. We provide algorithms for the
incorporation of our scaling law into future numerical studies.
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dynamical evolution and stability — planets and satellites: formation.

1 INTRODUCTION

There have been a wealth of exoplanet discoveries over recent years,
bringing the total number of confirmed planets to more than 4000.
About 20 per cent have a mass between that of the Earth and the
Neptune (henceforth super-Earth mass). Of these, two thirds orbit
at a distance less than that of Mercury from their host stars, and
more than three quarters are in systems with at least one other
planet (NASA 2019).

Planets in this mass and orbital distance range are very di-
verse, with measured densities ranging from between 0.03 and
12.7 gem™3. Even planets within the same Solar system at similar
orbital radii can be vastly dissimilar. The two innermost planets
of the Kepler-107 system (Bonomo et al. 2019), for example,
both have similar radii (1.5-1.6Rg), but Kepler-107b has a density
of 5.3gcm™> compared to Kepler-107¢c’s 12.6 gcm™3. This high
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density implies that Kepler-107c must have a different composition
from 107b.

There are two main theories that explain the diversity of densities
observed in Super-Earths and Mini-Neptunes: (1) XUV radiation
from the central star (Lopez, Fortney & Miller 2012; Lopez &
Fortney 2013; Owen & Wu 2013; Jin et al. 2014) strips close
orbiting planets of some of their lighter elements, leaving them
denser. (2) Giant impacts eject the lighter outer material (such as
crust or atmosphere) from both bodies leaving a denser remnant
planet (Inamdar & Schlichting 2016; Bonomo et al. 2019).

XUV radiation cannot always explain large differences in density
for planets orbiting at similar semimajor axes in the same planetary
system, for example, Kepler-107b and c. These two planets orbit at
a similar distance from their parent star and have similar physical
radii but differ significantly in planetary mass. The outer Kepler-
107c is more than twice as dense as the innermost 107b. Kepler-
107¢’s density can not be explained by XUV radiation because it is
orbiting outside the less massive and also less dense Kepler-107b,
which would have lost more material due to irradiation. Thus, a
giant impact is the best explanation (Bonomo et al. 2019).
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Giant impacts have been suggested as the explanation for density
diversity in several planetary systems (Liu et al. 2015; Inamdar &
Schlichting 2016). In addition, many of the tightly orbiting high-
multiplicity systems detected by Kepler appear to be on the borders
of stability (Fang & Margot 2013). Therefore, it is not unreasonable
to consider the planets gravitationally interacting with one another
in such a way that either they eject one or both planets or that they
collide with one another. Barnes & Raymond (2004) showed that
small perturbations in orbit will lead to such ejections or collisions.
Volk & Gladman (2015) even suggested close orbiting groups of
planets are common in the formation of inner solar systems (a <
0.5 au), including our own, but that they are not stable long term, and
will undergo collisional disruption and consolidation. This suggests
that the high multiplicity systems that we observe are either these
initial unstable systems, or that the planets are in an arrangement
that is stable for long time periods.

Several previous works (e.g. Schlichting, Sari & Yalinewich
2015; Inamdar & Schlichting 2016) have demonstrated that giant
impacts have the potential to remove large fractions of these planets’
atmospheres, leading to substantial density enhancement. In this
paper, we directly calculate atmosphere stripping via 3D modelling
of head-on giant impacts between Mini-Neptune mass planets with
significant atmospheres and lower mass bare super-Earth impactors.

1.1 Previous work

Until recently, simulations of atmospheric losses due to such giant
collisions were too computationally expensive to run within a
reasonable time frame. Recent advances, however, have meant high
resolutions are now much more attainable.

Because of computational demands much early work focused
on analytical predictions (some of which focus on significantly
lower mass atmospheres than we consider here, such as Earth-
like atmospheres), for example, Genda & Abe (2003) who discuss
how much of an Earth-like protoplanet’s atmosphere is likely to
survive the giant impact phase. They used one-dimensional models
to calculate the amount of material jettisoned after a collision from
the ground velocity beneath it, showing that for the canonical Moon-
forming impact only ~20 per cent of mass would be lost. Genda &
Abe (2003) also showed that the ground velocity needs to reach
the escape velocity for total atmosphere erosion. Schlichting et al.
(2015) expanded upon this by formulating a method of predicting
atmospheric loss from a wide range of projectiles colliding with
terrestrial planets. This method is the one used by Inamdar &
Schlichting (2016) when discussing the density diversity of super-
Earth mass exoplanets. Inamdar & Schlichting (2016) showed that
a single collision between similarly sized exoplanets can cause a
decrease in the mass ratio of atmospheric envelope to central core
material by a factor of 2, which in turn leads to a density increase of
a factor of 2-3. Inamdar & Schlichting (2016) thus suggested giant
impacts as a cause for the observed density diversity.

Despite computational limitations some progress has been made
in simulating collisions of planets with gaseous envelopes. Liu
et al. (2015) considered a model of the Kepler-36 system (with
target planets of 6-8 per cent atmosphere by mass). They found that
a collision could cause the density difference observed between
the two planets in this system, and suggested that giant collisions
might therefore be the cause of the dispersion we observe in
the mass—radius relationship for super-Earth mass planets. Hwang
et al. (2017a,b) used an N-body code to model the evolution and
stability of high multiplicity planetary systems (specifically Kepler-
11 and Kepler-36). For the collisions, they used a smoothed particle
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hydrodynamics (SPH) code and assumed atmosphere mass fractions
of 5—15 per cent to determine the results of highly grazing collisions
(collisions where only the atmospheres overlap), they showed that
typically the higher mass core will accrete more of the disrupted
gas envelope leading to increasing density contrasts between the
two planets. Due to problems with their equation of state, however,
they where unable to simulate the results of head-on collisions.
Kegerreis et al. (2018) also used SPH to model collisions involving
targets with atmospheres, to see if they could model the formation
of Uranus’ off-axis rotation and unusual magnetic field. Unlike
this paper, Kegerreis et al. (2018) focus mostly on higher impact
parameter collisions in order to study the change in rotation. They
considered ice giants as opposed to the metal and silicate planets
with atmospheres studied in this work.

In this paper, we present the results from a series of head-on
collisions between super-Earth mass planets where each of the
three different mass targets is a Mini-Neptune with a significant
hydrogen envelope (8-33 per cent). We run a large series of numer-
ical simulations with a wide array of atmosphere-less super-Earth
projectiles. We provide scaling relations for material loss applicable
to a wide range of masses that can be used in N-body simulations
and population synthesis models.

2 METHODS

2.1 Numerical code

The simulations presented in this paper were run using the SPH
code GADGET-2 (Springel 2005). Although GADGET-2 was initially
designed for simulations on cosmological scales, we have used
a modified version to model our planets that includes tabulated
equations of state (EOS) for the planetary constituents. For further
detail on these modifications see Marcus et al. (2009) and Cuk &
Stewart (2012). We further modified GADGET-2 to include an ideal
gas atmosphere component.

In SPH codes, such as GADGET-2, the material is split into separate
particles each representing an ensemble of material. The continuous
fluid properties, such as the density, for each ensemble of particles
are calculated using kernel interpolation methods. The gravitational
forces on the other hand are calculated using hierarchical tree meth-
ods (Springel 2005). We ran GADGET-2 in ‘Newtonian’ mode with
time-step synchronization, and the standard relative cell-opening
criterion. We use the standard time-step criterion as described in
Springel (2005), where the smaller of the time-step based on the
gravitational softening and the acceleration, or the courant condition
is used (with a courant factor of 0.1). We use the standard artificial
viscosity formulation for GADGET-2 as described in Springel (2005),
with a strength parameter of 0.8.

We modelled the planets as two or three material systems, each
planet (both projectile and target) consisting of iron core, forsterite
(silicate) mantle, and a hydrogen atmosphere for the target only.
In a similar fashion to prior studies (Marcus et al. 2009; Cuk &
Stewart 2012), the mantle was twice the mass of core. We modelled
the atmosphere as a monatomic ideal gas for simplicity and ease of
comparison (see Section 4.1). Tabulated ANEOS/MANEOS EOS
from Melosh (2007) were used for the iron and forsterite (these
tables are available from Carter, Lock & Stewart 2019).

For the initial hydrogen atmosphere mass, we used the results
of the Bern global planet formation model (Alibert et al. 2005;
Mordasini 2018), which was based on the core accretion paradigm.
The model calculated the accretion of H/He of forming planets
embedded in a protoplanetary disc by solving the one-dimensional
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spherically symmetric interior structure equations (Pollack et al.
1996). In these calculations, the grain opacity in the protoplanetary
atmospheres was reduced by a factor 0.003 relative to interstellar
medium grain opacities following Mordasini et al. (2014), so it has
a value consistent with observed metal enrichment of giant planets.
Other effects considered were the accretion of planetesimals, orbital
migration, disc evolution, and N-body interactions. These models
predicted that for planets with masses between 1 and 7 Mg, the
mass of the H/He envelope, M,mos, at the end of the disc lifetime
can be approximated by

Manos _ 01 x (M&"‘>3 (1)
Mg Mg

where M g is the combined mass of iron core and forsterite mantle.
This yields an envelope mass of Mymos = 1.25Mg for a combined
mantle and core mass of of Mqgm = SMg and Mymes = 10Mg for
10 Mg of core and mantle. A 10 Mg core is close to the critical mass
for runaway gas accretion that sets in when Mcgm & Mymos, Which
is approximately captured by this relation. One should, however,
note that in the Bern model simulations, a large spread around this
mean relation of about 1 order in magnitude is observed.

2.2 Hardware

The simulations were each run using a full node on the University of
Bristol’s Bluecrystal supercomputers, either on phase 3 or phase 4.
Phase 3 nodes consist of 16 core 2.6 GHz SandyBridge processors
with 59.7 GiB RAM altogether (Gardiner 2015), whilst phase 4
nodes have two 14 core 2.4 GHz Intel E5-2680 v4 (Broadwell)
CPUs with the whole node having a combined 128 GiB of RAM
(Gardiner 2017). Each collision took between half a day and a day
depending on the masses and impact energies involved.

2.3 Initial conditions

To generate the initial planets, we began by creating the central
core and mantle. To generate density profiles we used radial
temperature profiles (from Valencia, O’Connell & Sasselov 2006)
as well as estimates for the average bulk density of each type of
material (i.e core or mantle) and the radial range that the core and
mantle occupies. From this initial assumption of constant density
per material layer, we iteratively generated new density profiles
using gravitational and hydrostatic pressure calculations, until we
obtained a density profile that was consistent with our EOS, the
expected hydrostatic pressure, and the input temperature profile.
Once a consistent profile was obtained, it was then used to
generate the position of each of the particles by splitting the planet
into a number of radial bins based on its mass and randomly
positioning a number of particles within each bin proportional to
the bin’s mass. The final number of bins being adjusted so that we
could reach our desired mass to a tolerance of 1 per cent. The type
of material being added to each bin was decided by the material
ranges given for the initial density profile. After generating an
initial SPH planet it was then equilibrated in isolation for 10°s
(simulated seconds) using a preliminary run of GADGET-2, to ensure
that we were running simulations with a planet that was stable.
During equilibration we used two ‘artificial cooling’ methods,
velocity damping of the particles, i.e applying a restitution factor of
50 per cent each time-step (see Carter et al. 2018), and also entropy
forcing, the entropy of each particle is reset to a constant value for
each material at every time-step (1.3kJ K~!kg~! for the iron core,
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3.2kJK~!'kg™! for the mantle). This entropy forcing ensures that
we produce planets with isentropic layers.

To generate a planet with an atmosphere, we added an atmosphere
to the previously generated core and mantle only planets. The radial
profiles of the planetary atmospheres were generated with the planet
interior structure and evolution model COMPLETO21, which has
already been described in several publications (Mordasini et al.
2012; Jin et al. 2014; Linder et al. 2019). Therefore, we only
give a short overview here. The structure of the atmosphere was
found in the one-dimensional spherically symmetric approximation
by solving the usual equations of mass conservation, hydrostatic
equilibrium, energy generation, and energy transport:

om oP Gm
— = dnr? — = ——0p, 2
or e ar r2 P @)
ol oT ToP

=0—=——V(T, P), 3)

ar  9r P or

where m is the mass inside of a radius (distance to the planet’s
centre) r, p the gas density, P the pressure, G the gravitational
constant, [ the (intrinsic) luminosity, 7 the temperature, and V(7, P)
the temperature gradient. The Schwarzschild criterion was used to
decide whether the energy transport occurs in a layer via radiative
diffusion or convection, meaning that V is always the smaller of
the radiative and the adiabatic gradient. When solving the structure
equations, we assumed opacities corresponding to a condensate-free
gas of solar composition (Freedman et al. 2014), and, in contrast to
past publications, an ideal gas EOS. For the (intrinsic) luminosity,
1, of the planets, which needs to be specified in order to solve the
structure equations, we employed a simple power-law scaling with
planet mass. Like equation (1), the luminosity scaling was also based
on formation simulations with the Bern model. The results obtained
correspond to planet ages of 10 Myr. This age corresponds to a
time when the systems are still dynamically active (soon after the
dispersion of the eccentricity damping gas disc), so many collisions
should occur. This gives

L5
L/L; ~ 0.1 x (%) , )
Mg
where L; is the Jupiter’s luminosity and M. is the total mass of
the planet (again there is scatter around this relation).

We then used this radial mass profile for the atmosphere to
determine the position of atmosphere particles, by splitting the
profile into radial bins and placing particles proportionally to the
mass of the bins at random positions within them, in a similar fashion
to the core and mantle. This new body was equilibrated for a longer
time of 4-8x 10° s until the radius of the planet had converged to a
constant value. The pseudo-entropy of the atmosphere was forced
to a value of 5 x 10" Bag™” cm’ where the adiabatic index was
y = 5/3, this ensured that the atmosphere would not reach densities
where it would sink underneath the mantle and core material, but
also that the base of the ideal gas atmosphere was as close as possible
to our predicted temperatures.

For the core and mantle of our targets, we used a resolution of
10° particles. All other particles in each simulation were made the
same mass as the core and mantle particles, resulting in a total
resolution between 1.2 x 10% and 2.5 x 10° particles. This results
in an atmosphere ‘thickness’ of between 5 and 10 layers of particles.
Our total particle number is smaller than that suggested by Kegerreis
et al. (2019), however, we are interested in large changes in mass
of the largest remnant so our resolution should be sufficient. We
have run resolution tests of head-on collisions of 5 Mg planets
with 0.9 Mg atmospheres against one another at both half and
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double our standard resolution (of 10° particles in the target core
and mantle) at impact velocities of 20 and 40 kms~'. The key
quantities we measure are mass of the largest remnant, atmosphere
loss fraction, and core and mantle loss fraction, each vary from the
mean value at that velocity by less than 5 percent except for the
core and mantle loss fraction at low velocity, where only a very
small number of particles are being lost. We did not consider losses
or remnants of only a few hundred particles resolvable with SPH
methods.

2.3.1 The point of impact

In collisional studies, impact parameters such as velocity, impact
energy, etc. are normally measured in terms of the point of first
physical contact between the two planetary bodies (e.g. Leinhardt &
Stewart 2012). For planets with atmospheres this becomes more
complex, however, as atmosphere densities decay approximately
exponentially so there is no clear boundary at which the atmosphere
ends. Tidal forces between planets also have a stronger distorting
effect on the atmosphere than the core and mantle. Thus, we use the
time when mantle surfaces touched as our point of impact because
this can be clearly defined.

To obtain an initial start position from our desired collision
parameters (for example, velocity and impact angle), the following
process was used: (1) the two planets were represented by point
masses at their centres, and these two planets were placed at their
position at the point of impact and set at the predicted velocity;
2) Time reversal symmetry was then used to trace the path of the
projectile back to a separation of five times the sum of the projectile
and target mantle radii (excluding atmosphere). To determine the
projectiles path we used a simple Verlet integrator, set the target
planet to be centred on the origin, and calculated the acceleration as
given by the relative gravitational force between two-point particles.
The choice of starting separation was a somewhat arbitrary one
intended to reduce the tidal forces compared to the starting distances
of previous similar studies due to us equilibrating planets in isolation
and atmospheres being more easy to tidally distort.

Note using the point where mantles touch as our point of impact is
not without its drawbacks. As can be observed in Fig. 1, the presence
of the atmosphere causes a significant observable slowing of the
relative impact velocity. This slowing is due to atmospheric drag
that distorts the projectile planet. For some collisions, this distortion
is even present when the leading edge of the projectile is greater than
an atmospheric scale height from the target. In further calculations,
which use impact energy, we used the measured velocity instead of
the predicted input value. To measure this collision point precisely,
we re-simulated the point of impact for our collisions with a higher
output frequency (snapshots were taken every 3 s as opposed to
every 100).

2.3.2 Input parameters

All collisions presented in this paper were head-on, involving a
projectile with no atmosphere and a target with atmosphere. Head-
on collisions were chosen as they are the most energetic and are
therefore expected to be the most efficient at removing material
(Leinhardt & Stewart 2012). The three target masses simulated
were (1) a 3.0 Mg core and mantle with a 0.27 Mg atmosphere
(Table Al), (2) a 5.01 Mg core and mantle with a 1.25Mg
atmosphere (Table 1), and (3) a 7.07 Mg core and mantle with
a 3.43 Mg atmosphere (Table A2). Projectiles had masses between
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Figure 1. Comparisons of the predicted velocity for the three targets and the
ratio between measured and predicted impact velocities. Impact velocities
are given in terms of the mutual escape velocity (Vesc = (2GM[01/R’)%
where R’ = (BMiot /4npbu1k)% and ppyik is the bulk density of the simulated
target). Edge colours show target mass, while central colours show projectile
mass. The reduced velocity compared to the prediction can be considered
a measure of the drag caused by the atmosphere. As might be expected,
the denser, higher mass atmospheres around the larger targets tend to cause
more drag, the lower mass and lower velocity projectiles tend to experience
proportionally more drag as well due to their lower momenta.

0.05 to 1 times the core and mantle mass of the target, giving
6—7 mass ratios per target distributed approximately evenly between
0.04 and 0.92. These masses were chosen to sample a wide range
of parameter space with a limited number of runs. 7-8 collision
velocities per target were distributed approximately evenly between
20 and 80 km s~!. These velocities were 1—4 times the mutual escape
speed, which we define in a similar fashion to Leinhardt & Stewart
(2012):

Vese = (2GMmt/R’)% : 5)

where M, is total mass and R’ is the radius of an spherical body of
mass M,y and the same density as the bulk density of the simulated
target. This measure for mutual escape velocity was chosen due
to it being a minimum velocity at which we might expect to see
ejection of material. This velocity range meant that we could sample
well both collision regimes detailed in Section 3.1, as well as the
transition between them.

2.4 Run parameters

To determine the length of time, we needed for our simulations (the
run time) we used the dynamical time for gravitational interactions
f4yn- A dynamical time for a process is a prediction of the rough time-
scale it will take to finish, generated from a few system parameters.
For gravity-dominated systems, the dynamical time is given by

R3
GM’
Taking the largest initial separation as R and the smallest total mass
as M, the largest dynamical time we obtain is 27000 s. We elected
to use a run time of 10°s, a value slightly under four dynamical
times. Whilst a longer run time gives a more reliable estimate

(6)

Tayn =
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Table 1. Simulation parameters and results for head-on collisions between a 6.26 Mg, target, with a mantle surface radius of 1.49 Rg, and an atmosphere scale
height of 0.60Rg, and a projectile of mass M), and radius R;,. The first digit of the collision ID denotes the non-atmospheric target mass (M7 = 5.01 Mg
therefore M™® = 1.25Mg). vini; is the initial relative speed of the projectile with respect to the target, at an initial separation of S to give a predicted impact

speed of v,P,;epd, the measured velocity at the point where the mantles touch is vje

T’ MiR is the total mass of the largest post-collision remnant, where M{§™**
and M{}° are the atmospheric and non-atmospheric masses, respectively, the final column gives the category we have given that collision. We have used *-’
to denote final snapshots where there where too few particles in the largest remnant to be able to properly resolve. Simulation data for M; = 3.27 Mg and

M; = 10.5Mg can be found in Tables Al and A2.

pred meas

D My Rp Ulpnrlepd v;:f Vg U::\z Vinit b N Mg MRS MER© },‘,/I,,f( D G c&m - Category
Mg Re kms™'  kms'  kms? Rg Ms Mg Mg

5-0 025 062 2000 124 1824 113 938 058 1115 650 124 526 1.0 001 —00 AM-CM
5-1 025 062 3000 185 27.92 173 2425 150 1116 643 117 526 099 006 —00  AL-CM
52025 062 4000 247 3738 231 3589 222 1115 630 105 526 097 016 —00 AL-CM
53025 062 4500 278 4212 260 4139 256 1118 622 097 525 096 022 00  AL-CM
54 025 062 5000 3.09 4684 290 4677 289 1115 614 089 525 094 029 00  AL-CM
55 025 062 6000 371 5627 348 5734 354 1118 594 071 523 091 043 001  AL-CM
56 075 088 2000 121 1866 113 1022 062 1193 690 113 576 098 0. 00  AL-CM
57075 088 3000 1.81 2865 173 2458 148 1193 666 091 575 095 027 00  AL-CM
5-8 075 088 4000 241 3837 231 3611 218 1196 629 056 573 09 055 001  AL-CM
59 075 088 4500 271 4320 261 4158 251 1194 611 041 569 087  0.67 001  AL-CM
5-10 075 088 60.00 3.62 5766 348 5748 347 1196 462 007 455 066 094 021  AL-CE
5-11 125 102 2000 118 1863 110 1011 060 1235 728 102 626 097 0.8 00  AL-CM
5-12 125 1.02 3000 177 2880 170 2454 145 1235 692 068 625 092 046 00  AL-CM
5-13 125 102 4500 265 4352 257 4156 245 1237 586 019 568 078 085 0.09  AL-CA
5-14 125 1.02 5000 295 4837 285 4693 277 1236 504 009 495 067 093 021  AL-CE
5-15 125 102 6000 354 5810 342 5746 339 1236 294 000 294 039 10 053  TAL-CE
5-16 200 118 2000 114 1874 107  9.66 055 1281 789 091 699 095 027 00  AL-CM
5-17 200 118 3000 171 2890 165 2436 139 1282 749 053 696 091  0.58 001  AL-CM
5-18 200 118 4000 228 3881 222 3596 205 1283 642 021 622 078 083 0.11  AL-CA
5-19 200 118 4500 257 4372 250 4145 237 1281 548 009 538 066 093 023 AL-CA
520 200 118 5000 285 4863 278 46.83 267 1284 415 001 414 05 099 041  TAL-CE
521 200 1.8 6000 343 5840 333 5739 328 1283 LI12 000 112 014 10 0.84 TAL-CE
522 301 132 2000 1.10 1877 1.03 869 048 1324 873 081 792 094 035 001  AL-CM
523 301 132 3000 1.65 2889 159 2399 132 1325 838 049 789 09 06l 002  AL-CM
524 301 132 4000 220 3888 214 3571 196 1325 676 017 659 073 086 0.18  AL-CA
525 301 132 4500 247 4382 241 4124 227 1325 545 007 539 059 094 033  AL-CA
526 301 132 5000 275 4874 268 4664 256 1326 378 000 378 041 10 053  TAL-CE
527 301 132 6000 330 5854 322 5723 315 1328 - - - - 1.0 - SCD
528 401 143 2000 106 1876 1.00 747 040 1358 966 081 885 094 035 002  AL-CM
529 401 143 3000 159 2889 153 2357 125 1360 937 051 88 091  0.59 002  AL-CM
530 401 143 4000 2.2 3891 207 3543 188 1360 746 017 729 073 086 0.19  AL-CA
531 401 143 4500 239 4387 233 4100 218 1359 595 006 58 058 095 035 TAL-CA
532 401 143 5000 2.66 4880 259 4643 247 1360 405 000 405 039 10 055 TAL-CE
533 401 143 6000 3.9 5863 311 5706 3.03 1359 030 000 030 003 10 097  SCD
534 501 152 2000 1.03 1868 096 580 030 1384 1072 079 993 095 037 001  AL-CM
535 501 152 3000 154 2888 149 2310 119 1385 1038 053 985 092 0.8 0.02  AL-CM
536 501 152 4000 206 3893 200 3512 181 1384 834 020 814 074 084 0.19  AL-CA
537 501 152 4500 232 4389 226 4073 210 1385 693 008 685 062 094 032 AL-CA
538 501 152 5000 257 4883 251 4619 238 1386 480 000 480 043 10 052  TAL-CE
539 501 152 6000 3.09 5865 302 568 293 1388 093 000 093 008 10 091  SCD

of the long-term final state after a collision, we were constrained
by computation time, and the results we were most interested in
(bound mass for each material component of our planets) had
already converged to a constant value by this time for all our
simulations.

2.5 Analysis methods

2.5.1 Determining bound material

To determine what material was bound in the largest post-collision
remnant we used the same iterative method as Marcus et al. (2009)
and Carter et al. (2018). We began by locating the particle closest to
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the potential minimum and using kinetic energy and gravitational
potential to determine which other particles were gravitationally
bound to this deepest particle. Using the total mass and centre of
mass of these particles as our new seed, we then iteratively ran
through the process of determining that extra particles were bound
to the seed, and then adding them to the seed, until either the change
in mass of the seed was below a set tolerance or a maximum number
of iterations had been reached. For our simulations we, obtained
single particle differences in mass within a few iterations so our
tolerance was set to a single particles mass, and the maximum
number of iterations was never reached. Material type was also
tracked to determine the mass of each type of material, which was
unbound or part of the largest remnant.
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2.5.2 Collision categorization

To categorize the collision outcomes for our data, we consider
separately atmosphere (A) and core and mantle material (C). For
atmospheres if there was greater than 95 percent of the initial
atmosphere mass in the final remnant we considered there to
be a merger (AM), on the other hand if there was less than
5 per cent remaining we categorized this as total loss (TAL), the rest
were considered to undergo partial loss (AL). Although hydrogen
atmospheres as small as 0.1-1 per cent of a planet’s total mass can
have a significant effect on its radius, we do not have the resolution
to accurately probe atmosphere mass-losses that small. For core and
mantle, we define mergers (CM) for >95 per cent of the total mass
of core and mantle from both projectile and target remaining in the
largest remnant. If the mass of core and mantle in the largest remnant
is greater than that initially in the target we have an accretion event
(CA), if it is less we have an erosion event (CE). If there was less
than 10 per cent of the total mass remaining in the largest remnant
we define it as a supercatastrophic disruption (SCD). Tables 1, A1,
and A2 categorize our final results for each collision using this
system.

3 RESULTS

The main aim of this paper is to determine scaling laws for
atmosphere loss as well as total material loss during head-on giant
impacts. The wide breadth of impact energies that are simulated
in this work have uncovered a broad range of outcomes from near
perfect merging events to highly energetic catastrophic disruption
(see Fig. 2).

In the process of determining the loss scaling laws we have found
that the atmosphere loss, core and mantle material loss, and the
largest remnant mass are well-behaved functions of specific impact
energy: Or = %,u\/izmp/Mtol, where p is the reduced mass, Vip, is
the impact velocity, and M, is the sum of the projectile and target
masses (see Leinhardt & Stewart 2012). We find that atmosphere
dominates the material lost until the impact energy is large enough
to remove more than 80 per cent of the atmosphere at which point
mantle and core material begin to be removed significantly as well.
It is also at this point that there is a break and steepening in slope of
the largest post collision remnant mass (M r) as a function of Qg
(Fig. 4). In other words, the atmosphere of the target planet cannot
be completely removed in one giant impact without significantly
eroding the planet.

3.1 Mass-loss

We begin by comparing our simulation results to the prescription
described in Leinhardt & Stewart (2012) based on collisions of
planetesimals and planetary embryos constructed using solely rocky
material. A key result from Leinhardt & Stewart (2012) was that the
mass of the largest post-collision remnant, My g, scales with Qg:

M _ s <QQR - 1) +0.5, 7

*
Mo RD

where Qg is the catastrophic disruption threshold (the energy
required to disperse enough material that the largest post-collision
remnant is half the total system mass). Normalizing Or by Ofp
causes the largest remnant mass fraction for different target and
projectile masses to fit on the same line.

Fig. 3 shows the largest remnant mass from our simulations as
a function of specific impact energy for collisions with a target of
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mass M; = 10.5Mg. Each different colour represents a different
projectile mass (Mp). Instead of a straight line (as in Leinhardt &
Stewart 2012), our results appear to show two separate linear
regimes: a shallower low-energy one and a steeper high-energy
one.

While the existence of the atmosphere means that results split
into two regimes, we test Qxp, to determine whether it still scales
QOr such that we obtain a mass independent fit (see Fig. 4). To
determine Qfp, we fit our data with the following broken linear
equation:

MR . {ml (QR - Qpiv) +CLR QR < Qpiv
Mot my (Or — Opiv) + ™ Or > Ouiy,

where Q;, is the specific energy at the transition between the two
regimes, measured to be the point where the two linear sections
intersect, ¢*® is the fraction of mass that has been lost at this
transition energy, and m; and m; are the gradients of the two linear
sections. Since jettisoning material should require input of energy,
we fix this fit such that all mass is in the largest remnant for zero
energy input. The gradient for the initial section thus becomes

®)

)]

m; =
Qpiv

To ensure a robust fitting method, despite the low number of
data points, we began by generating multiple random sets of input
parameters for least-squares fitting. We determined a best fitting
set of output parameters for each input set, and chose the fit with
the smallest squared residuals as our final best fit. The fits we
obtain for each set of projectile and target masses can then be used
to determine the catastrophic disruption threshold by measuring
the energy at which half the mass of the system is in the largest
remnant (as shown in Fig. 3). The errors on Qf, were deter-
mined by propagating errors generated by the least-squares fitting
algorithm.

For solely rocky objects, Leinhardt & Stewart (2012) showed
that normalizing the impact energy by the catastrophic disruption
threshold will mean that mass fraction in the largest remnant will
overlap for each set of different targets and projectiles (following
equation 7). Marcus et al. (2010) showed that this relationship
remains true for planets without atmospheres using similar SPH
simulations with GADGET-2. The top panel of Fig. 4 shows the mass
of the largest remnant versus normalized specific impact energy
for our simulations. The Qf, scaling appears to be preserved for
all projectile and target masses although the location of the pivot
energy changes depending on the target. We fitted each of the
targets individually in order to quantify this target dependence. The
equation used for the fits is similar to that used for the un-normalized
fits (equation 8):

LR [ 9rR—Qpiv LR
Mg | (7@“}" ) +c Or < Opivs

Mot mIiR (QR_Qpiv) LR g > Opiv

%
QRD

10)

where we again assume that zero mass is lost for zero impact energy
as in equation (9). The parameters obtained via these fits are found
in Table 2. This table shows that there is a significant target mass
dependence in the pivot energy, the pivot occurs at higher energies
for higher target masses and atmosphere fractions.

The middle panel of Fig. 4 shows the fraction of atmosphere lost
from the target versus specific impact energy normalized by the
catastrophic disruption threshold. Our results show three separate
curves, one for each target mass. The results show that less massive
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(a) 0.0 hr 1.4 hr

(b) 0.0 hr 0.8 hr}:

30kms™!
5 R@ Mp =2 M@

(c) 0.0 hr 0.6 hr

50 kms~!
5 R@ Mp =4 M@

(d) 0.0 hr . 0.6hr]

60kms™?
5Re M, = 5Me

Figure 2. Cross-sectional snapshots sliced through the mid-plane for a series of head-on collisions showing different collision outcomes from merging
to catastrophic disruption as the specific relative kinetic energy Qg increases from row A to row D. Colour denotes material, red and pink — iron core,
orange and yellow — forsterite mantle, and blue — hydrogen atmosphere. The additional colours in the first panel denote material that will not be bound by
the end of the simulation, black being atmosphere, and grey core or mantle. All collisions shown have the same target mass (M; = 6.26 Mg) but differ in
projectile mass (Mp,) and impact speed (Vimp): (a) Atmosphere and core and mantle merger — v; = 20 km s, My = 0.25Mg (Table 1, 5-0); (b) Atmosphere
loss and core and mantle merger — v; = 30 km s71, M, = 2Mg (Table 1, 5-17); (c) Total atmosphere loss and core and mantle erosion — v; = 50 km
s, My = 4Mg (Table 1, 5-32); (d) Supercatastrophic disruption v; = 60 km s, Mp = 5Mg (Table 1, 5-39). Post-collision remnants were inflated
in comparison to the initial planets and the expected radius of the resultant planet. This ‘puffiness’ is because we do not cool our final remnants until
they reach equilibrium, we only run the simulations until the mass of bound material converges. Videos of these four collisions can be found online at
http://www.star.bris.ac.uk/TDenman/Paper] _Videos/.
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Figure 3. A comparison of the mass of the largest remnant for each
collision compared with its specific impact energy, overlaid with a graphical
representation of the process used to determine Q. The circles represent
the fraction of the total mass which remains in the largest remnant after
a collision with a target mass of M = 10.5Mg as a function of specific
impact energy Or. Each colour indicates one of seven M, values. A filled
circle represents a point used for fits, whilst the open circles are points
with % < 0.2 that we considered too close to the supercatastrophic
disruption regime, which our fit is not designed to cover, for all collisions
where <100 particles were observed in the largest remnant, we also
considered the results to be below the resolution limit of the simulation.
The solid lines represent our fit to the data for each projectile-target mass
ratio, following equation (8). From this fit, the empirically determined
value of Q% is shown on the horizontal axis by the intersection of a
coloured dotted line matching the M colour and M r/Mix = 0.5 on
the y-axis.

atmospheres of less massive planets are removed more easily
than higher mass atmospheres of higher mass planets. We fit the
atmosphere loss fraction, X{im®, for each target with a quadratic
curve fixed to go through the origin and peak at total atmosphere
removal:

o —A? 2
XI‘SZ‘E"s:i(Q*R) +ade (1
- 4 Okrp Okp

where A is the fit parameter. For results of these fits see Table 3.
Some deviation from the quadratic fits is observed at higher
energies, especially for the low-mass target (3.27 Mg), this devi-
ation may be due to resolution because there are fewer particles
representing the atmosphere for lower mass targets.

We also investigate the dependence of core and mantle loss on the
impact energy (bottom panel Fig. 4). We observe a similar broken
linear relation to the broken linear relation seen for the mass of the
largest remnant (Figs 3 and 4, top). In this case, we have a shallow
gradient below the pivot energy (negligible for the two larger mass
targets) indicating very little core and mantle mass-loss, and a much
steeper gradient (therefore much greater loss) above. For lower mass
targets (lower atmosphere fractions), there is greater loss of core and
mantle at low energies.

In order to compare the energies of the pivots in the mass of the
largest remnant and the core and mantle mass-loss fraction, we fit
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Figure 4. Top: My versus Qr/Qgp, for all simulations. Colour indicates
target mass, the open circles represent points that were excluded from the
fit. Coloured solid lines are best fits to data for a given M;. The black solid
line is the best fit to the entire data set. The dotted black line is the universal
law from Leinhardt & Stewart (2012). Middle: Fraction of atmosphere lost
versus Qr/Qxp- The dashed coloured lines indicate best fits. The dotted
vertical and horizontal lines show the specific energy of the break in the
M; r fit and the respective fraction of atmosphere loss. Botfom: Fraction of
core and mantle lost versus Or/Qyp- The dashed lines are a broken linear
fit. The shaded vertical sections show the difference between the specific
energy of the break in the MR fit and the break in the core loss fit. For
all three graphs, the horizontal error bars represent the error in the Qxp
determination method.
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Table 2. Parameters for fits using equation (10) to the largest remnant mass
with O, normalized specific impact energy.

M; Mg) miR IR Qpiv/Qip

3.27 —0.68 +0.01 0.92 & 0.01 0.39 & 0.01
6.26 —0.78 £ 0.02 0.86 + 0.01 0.54 £ 0.02
10.5 —0.85 £ 0.02 0.76 £ 0.01 0.69 £ 0.02

Table 3. Parameters for fits to the fraction of atmosphere
lost from the largest remnant with Qg normalized
specific energy using equation (11).

Target mass (Mg) A

3.27 2.42 4 0.06
6.26 1.89 4+ 0.03
10.5 1.54 +0.02

Table 4. Parameters for fits using equation (12) to the fraction of core
material lost from the largest remnant with Qf, normalized specific energy.

M; (Mg) m my cedm Qpiv/Qfp

3.27 0.28 £ 0.02 0.73 £0.01 0.08 £ 0.01 0.45 £0.01
6.26 0.03 £0.03 0.88 £ 0.02 0.02 +£0.01 0.53 £0.01
10.5 0.07 £ 0.03 1.02 £ 0.02 0.03 £0.01 0.67 £0.01

the core and mantle loss fraction using the following equation:
min (S50 ) 4 0 < O
RD

OrR—Opi
mg&m( RQ pw) +CC&m QR - Qpiv~

e
RD

c&m __
loss —

(12)

Parameters for these fits are given in Table 4. As can be seen from
the coloured vertical bars in the bottom panel of Fig. 4, there appears
to be a correlation between this pivot energy and the pivot energy
found for the mass of the largest remnant. The similar energies of
these pivot points implies that the break in slope for largest remnant
mass is due to the break in slope for loss of core and mantle material.
We therefore categorize impacts into two energy loss regimes: below
the pivot energy we have atmosphere-dominated loss, and above it
we have substantial core and mantle loss.

An important point to note here is that at this pivot energy, the
amount of atmosphere remaining is consistently 20-30 per cent.
This means that a single giant impact cannot remove all of a planet’s
atmosphere without also removing core and mantle material.

3.2 Atmospheric loss scaling law

As we saw in Fig. 4, the atmosphere mass-loss fraction coinciding
with the pivot energy is consistently 70-80 per cent. We therefore
suggest a normalization based on this pivot energy instead of Qgp.
The results for this are shown in the top panel of Fig. 5. To build
a scaling law for atmosphere loss, we have fitted the loss fraction
using a quadratic curve (again with a constraint of zero mass-loss
at zero input energy and a peak at total atmosphere mass-loss)

—A2 2
X = —— ( = ) Fale, (13)
4 Qpiv Qpiv
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Figure 5. Top: Fractional atmosphere loss compared to specific impact
energy scaled with respect to the pivot energy for each target mass. The
amount of energy required to remove more atmosphere increases as the
amount of atmosphere removed increases. Fitted to the data is a simple
quadratic that has been fixed to cross the origin and have a peak at
total atmosphere loss (equation 13). Bottom: Specific energy of the pivot
normalized by the total mass of the system compared with projectile-target
mass ratio. Mass normalized pivot energy appears to be approximately
constant, decreasing slightly as projectile masses increase. The fit is given
by equation (14).

where our fitting parameter A = 0.94 £ 0.01. The other ingredient
we require for building a scaling law for atmosphere loss is a way of
predicting the pivot energy. After some experimentation, we found
a linear relation between the pivot energy divided by the total mass
and the projectile target mass ratio for all atmosphere fractions
tested (see bottom panel of Fig. 5):

iv M, — —
Dov _ 51 4 1a6+06) [10°Tkg™' Mg'] . (14)
Mot M,

Equation (14) has quite a shallow gradient, meaning that the
energy of the pivot is strongly dependent on the the total mass,
i.e. the impact energy is strongly dependent on the square of the
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total mass, implying it is related to the total gravitational binding
energy of the system. The error envelope in Fig. 5 is generated
from the variance of the fit parameters. Together equations (13)
and (14) can be used to predict the mass fraction of atmosphere
lost from the target for any head-on giant impact in the regime
tested.

4 DISCUSSION

4.1 Caveats

4.1.1 Atmosphere fraction effects

We chose the initial atmosphere fraction for each target planet
based on the most likely atmosphere fractions from the Bern global
planet formation model (equation 1). One issue with this method
is that it makes distinguishing between the effects of target mass
and atmosphere fraction somewhat difficult, as both are directly
related. An important result that requires further investigation is
the relation between atmosphere fraction and pivot energy. One
might expect that less massive atmospheres would require less
energy to remove and thus core and mantle material would begin
to be removed earlier, decreasing the pivot energy. We observe a
decrease in pivot energy but we cannot distinguish whether this is
due to a smaller atmosphere fraction or a shallower gravitational
potential well from a less massive target. In future, we could test
the cause of the decrease in pivot energy by simulating collisions
involving targets of the same masses with different atmosphere
fractions.

4.1.2 Equation of state effects

One simplification we have made in this work is to use ideal
gas atmospheres as opposed to a more realistic EOS. For Earth
atmospheric pressures this would have a negligible effect, but we
are dealing with significantly more massive atmospheres (roughly 7
orders of magnitude). For such massive atmospheres, the pressures
and densities at the base of the atmosphere are such that the assump-
tion that molecules do not interact (inherent in using an ideal gas)
may not be realistic. The lack of interparticle interactions means that
we have unrealistically high densities at high pressures, (the base
of our atmospheres post equilibration being 1.2-19.2 x 103 atm or
1.2-19.2 x 10° GPa). One effect of this is a significant compression
of the atmosphere when equilibrating a GADGET-2 planet. During
the equilibration, the radii of atmospheres shrank on average by a
factor of 2. Despite these issues, we have used an ideal gas as a
starting point, more realistic EOS should be the subject of a future
study.

4.1.3 Impact angle effects

For impact angle we have also elected to investigate the simplest
case — head-on collisions. In general, we would expect an average
collision angle of 45° (Shoemaker & Hackman 1962). Leinhardt &
Stewart (2012) present in their prescription a method to relate the
mass-loss of an off angle collision with a head-on one, which
uses an interacting mass. In the impact scenarios considered in
this work, we would expect the impact angle correction to become
more complicated due to the density contrast between atmosphere
and mantle. Hwang et al. (2017a,b) have previously done work on
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grazing collisions where the cores and mantles did not touch. Their
results show that mass-loss follows a power-law dependence on
impact parameter. We plan to investigate this further in future work.

4.2 Catastrophic disruption threshold scaling

Leinhardt & Stewart (2012) predict that for equal mass impacts the
catastrophic disruption threshold should obey:

4
ki) = € STPIGRE,, (15)
where y = M,/M,, c* is a measure of the catastrophic disruption
threshold in units of the gravitational binding energy (measured to
be ¢* = 1.9 + 0.3 for hydrodynamical simulations of large rocky

1
planets), p; = 1000kg m~3, and R¢y = (%;;’;) * is the radius a
spherical body would have if it had the total system mass and a
density of p;.

Leinhardt & Stewart (2012) also propose a further correction for
this catastrophic disruption threshold for collisions of different mass
projectiles and targets,

v+ 12\ 7
y a
Orp = QED(y:]) ( 4y ) s (16)

which is dependent upon a parameter i where i has values between
1/3 (pure momentum scaling) and 2/3 (pure energy scaling). This
multiplicative correction becomes unity for all mass ratios with
perfect energy scaling because the index becomes zero.

Fig. 6 details how our results compare to Leinhardt & Stewart’s
predictions. Our results run parallel to the prediction of equa-
tion (15) indicating a larger ¢* value of 2.52 (compared to the
value given in Leinhardt & Stewart 2012). The larger ¢* means
that a greater excess over the binding energy is required to remove
material from planets with atmospheres than those without. This
is presumably due to the increased compressibility and decreased
viscosity of atmosphere compared to mantle and core material.

It should be noted that we appear to be observing pure energy
scaling for these collisions as no mass ratio correction is required,
this is illustrated best in the bottom part of Fig. 6. Here, the black
lines represent the predicted catastrophic disruption threshold using
energy scaling, whilst coloured lines represent the momentum scal-
ing that Leinhardt & Stewart (2012) predict we should be close to.
As can be observed, our results follow the energy scaled prediction
closely. This runs contrary to the results in Leinhardt & Stewart
(2012) that predict near-perfect momentum scaling. Presumably,
this difference is due to the presence of the atmosphere, as the
Leinhardt & Stewart (2012) method is based on Holsapple &
Schmidt (1987)’s crater scaling, where they show that porous
materials tend to follow momentum scaling, while perfect gases
tend to follow energy scaling.

4.3 Mass-loss efficiency comparisons

Leinhardt & Stewart (2012) predict that the mass of the largest post-
collision remnant scales with normalized specific impact energy
(equation 7). This equation gives a gradient with respect to Qg for
the largest remnant mass of

d(Mir/Mior) 0.5
dOr = T WIS ¢ )
RD
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Figure 6. Top: Catastrophic disruption threshold Qf, compared with Rc|
the radius a spherical body would have if it had the total system mass and a
density of 1000 kg m~3, with the black and grey lines showing their predicted
relationship for different values of the strength parameter ¢* following
equation (15). We observe a value of ¢* = 2.52, which is a 32 per cent
increase compared to Leinhardt & Stewart (2012)’s value of 1.9 for solely
rocky bodies. Coloured lines show the predicted catastrophic disruption
threshold for equal mass collisions for particular velocities. The colour of
each data point indicates the relative velocity the pair of planets would have
for each collision if they were equal mass. Bottom: Comparison between the
catastrophic disruption threshold, and the total mass of each set of collisions.
The black lines detail predictions of the catastrophic disruption threshold
for each total mass for pure energy scaling for different values of ¢*, the
dotted is our measured value of 2.52, the dot—dashed is Leinhardt & Stewart
(2012)’s value of 1.9, coloured lines show predictions for pure momentum
scaling. Our results (the dots with colours representing target mass as per
Fig. 4) appear to follow the prediction for pure energy scaling.

In this work, we found that the largest remnant mass as a function of
specific energy falls into two regimes (see Fig. 3) with two different
gradients. Fig. 7 compares the gradients measured from our results
to Leinhardt & Stewart’s prediction.

We can consider these gradients as a measurements of the
efficiency of mass-loss in each regime. The efficiency of mass-
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Figure 7. Comparisons between the mass-loss efficiency for core and
mantle, and for atmosphere to the total mass of the system. Atmosphere
loss shows a decreased efficiency in comparison to core and mantle loss, as
might be expected considering the increased compressibilty of atmosphere
material. The filled shapes are gradients where we obtained four or greater
data points for that line, open are where we have three or fewer. The grey
line shows the loss efficiency predicted by Leinhardt & Stewart (2012) for
rocky material, the coloured line beneath them is this value multiplied by 1
plus the atmosphere fraction for that particular target as per equation (18).
This appears to show reasonable correlation with our results especially for
higher mass targets. The coloured dotted line above this shows a prediction
of what the atmosphere gradient must be that uses all previously derived
scaling laws, is linear and passes through zero mass-loss for zero input
energy (equation 19). Our results show some degree of correlation with this
value, but we do not have a high enough density of data in this region to
effectively probe the accuracy of this prediction.

loss for the core and mantle loss region is typically at least double
that for the atmosphere-dominated loss regime, this is presumably
due to the increased compressibility of the atmosphere.

As can be observed, the Leinhardt & Stewart (2012) model
(equation 17 above) appears to underpredict the efficiency of mantle
and core material loss for planets with substantial envelopes. This
is likely due to the pressure of the atmosphere above providing
a resisting force to reduce mantle loss. Once the atmosphere is
removed, the specific energy of the impact is higher than would
have been necessary to remove significant mantle if no atmosphere
was present, so more material is being removed per unit of specific
energy.

We have found that an approximate prediction of the gradient in
the core and mantle loss regime is given by

d(MLR/Mtot) 05(1 + falmos)
do = *(LS12)  ° (18)
R RD
where fymos 1S the atmosphere fraction of the target. For our
higher mass targets with more massive atmospheres, this seems
to be a reasonably good predictor of loss efficiency; for the
smallest target with the lowest mass atmosphere, however, the
initial prediction from equation (17) seems to match more

closely.

To predict the loss efficiency (gradient) in the atmosphere loss
dominated regime, we assume that there is zero mass-loss for
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zero input energy, and use our scaling laws for the pivot energy
(equation 14) and catastrophic disruption threshold (equation 15)
along with our correction to the gradient in the core and mantle
loss regime (equation 18) to predict the fraction of material in the
largest remnant at the pivot energy. We also assume that the gradient
in the atmosphere loss regime is constant with respect to energy (as
in equations 8 and 9). Combining these equations, we obtain the
following relation:

*(New)
d(MRr/ M) —0.5 —m3" (QRD - Qin)
dQR Qpiv ’

Our results show a reasonable match with this prediction for
the gradient in the atmosphere loss regime. However, we do
not have a sufficient data in this region to fully probe the
accuracy of this scaling; for example, we cannot test whether
atmosphere loss begins at zero impact energy (as we have assumed
in deriving the scaling) or requires some small initial energy
input.

19

4.4 Implications

This study was motivated by the density disparity observed in exo-
planet systems. The post-impact bodies in our simulations are hot
and inflated, often with a large mass of vaporised silicate, and thus
do not represent the structure of planets millions of years after their
final giant impacts (Lock & Stewart 2017; Carter, Lock & Stewart
2020; Lock, Stewart & Cuk 2020). To determine the bulk density of
the remnants from their post-collision material composition, we use
the approximation suggested in Lopez & Fortney (2014). In their
model the total radius of a planet, Ryjanet, from which we determine
the density, can be calculated from summing the radial contributions
of the following three components: the core and mantle, which has
a power-law relation to mass; the convective envelope, which is
dependent on the temperature of the atmosphere, which itself is a
function of stellar flux and planet age; and the radiative atmosphere
(also dependent on temperature). Here, we ignore the contribution of
the radiative atmosphere due to its small effect (~0.1Rg). We used
an age of 5 Gyr for our comparison planets (see Fig. 8) as this is the
most common age for stars in the local Galactic neighbourhood.
We used a flux, Fpane, of 100Fg as the type of planets we
simulated are most commonly observed at ~0.1au around the
Sun-like stars. Fig. 8 shows contour plots of the radius (top) and
density (bottom) as a function of mass and atmosphere fraction
according to the Lopez & Fortney (2014) approximation described
above.

The prediction we obtained for the envelope radius of our
initial targets using the Lopez & Fortney (2014) model was within
10 per cent of the radius of our initial thermodynamic profiles. This
radius was, however, significantly larger than our GADGET-2 targets
due to the compression caused using an ideal gas. We also note
that we could not reach the 20 mBar pressures which Lopez &
Fortney (2014) consider to be the edge of the atmosphere with
computationally practical resolutions.

For our collisions, we always observe a decrease in atmosphere
fraction. This decrease in atmosphere fraction means that for all the
collisions we simulate, except for those resulting in largest remnants
below the resolution limit, we observe an increase in density as
shown in the bottom panel of Fig. 8.
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Figure 8. Top: Radius as a function of mass following the prescription of
Lopez & Fortney (2014), compared against our initial targets (the squares)
and also our post-collision largest remnants (the circles), the same colour
scheme for target masses is used as for the rest of the paper. Bottom: Density
as a function of mass calculated using the radius above, this is similarly
compared against our initial targets (the squares) and also our post-collision
largest remnants (the circles), collisions with full atmosphere removal have
been removed so atmosphere fraction could be plotted logarithmically.

4.5 New prescriptions for atmosphere loss and largest
remnant mass

Here, we summarize the process one would need to use to predict the
atmosphere loss from any giant impact in the regime probed by this
paper, as well as the modifications to the Leinhardt & Stewart (2012)
prescription for largest post-collision remnant mass for an arbitrary
head on collision between a mini-Neptune with a significant gaseous
envelope and a lower mass super-Earth without an atmosphere. This
algorithm can be incorporated into N-body codes and population
synthesis models.
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(i) For a given collision scenario (M,,, M;, and Vi), calculate
the specific relative kinetic energy of the impact,

1 Vi -
QR — EMMK)[ B ( )

where M,c = M; + M,,, and u = MM,/(M; + M,) is the reduced
mass, M is the target mass, M,, the projectile mass, and Viy,, is the
impact velocity.

(ii) Then, calculate the specific kinetic energy of the transition
between the atmosphere loss and core and mantle loss regimes:

M M
Qpiv = < “) (—2.45—" + 14.56) [10°Tkg™']. @1)
Mg M,

(iii))  (iv) Calculate the catastrophic disruption threshold,

4
Oip = c*gnplGRél, (22)
using a value of ¢* = 2.52 for collisions involving planets with

atmospheres (Qn") and ¢* = 1.9 (Q5%"?, as in Leinhardt &

Stewart 2012) for targets with no atmosphere. p; = 1000kgm~>,
1

4
had the total system mass and a density of p;.

(v) Calculate the gradients of each of the linear sections of the
largest remnant mass fraction relation. For the core and mantle loss
regime this is

_05(1 + fatmos)

Megm = +(LS12) )
RD

and Rc = (3’7‘14;)‘;‘) ’ is the radius a spherical body would have if it

(23)

where fymos 1S the mass fraction of the target which is atmosphere.

(vi) Zero impact energy means zero mass-loss therefore the
gradient for the atmosphere loss dominated part of the relation
is, from equation (9),

Megm (Qpiv - ;%\IEW)) -0.5
Matmos = . (24)
Qpiv
(vii) Next, calculate the supercatastrophic disruption threshold,
taking this to be where <10 per cent of the initial mass ends up in the
largest remnant (following Leinhardt & Stewart 2012) we obtain

0.4
*(New) (25)

qupercat = YRrDp .
Megm
(viii) Then, the total mass in the largest remnant is

Matmos QR +1 0< QR < Qpiv
Mir

Mo,

Mc&m (QR - E(]I)\IBW)) +0.5 Qpiv < QR < qupercat~
(26)

We did not probe the supercatastrophic disruption regime in this
study due as this would require much higher resolution; for colli-
sions in this energy regime we recommend using the prescription
of Leinhardt & Stewart (2012).

(ix) Finally, the atmosphere fraction lost is

092 [ or \? 0 0
atmos. 4 (QPI?") +0.94 Opiv Qp]?v <212 27)

loss
0
1 Qp]?v > 2.12.
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5 SUMMARY

In this paper, we present the results from a series of SPH simulations
of head-on collisions of planets in which the target has a significant
atmosphere. Our findings are summarized next:

(i) Giant impacts can have sufficient energy to remove large
fractions of mass from the target planet; the mass lost is dependent
upon the specific kinetic energy of the impact.

(i1) Giant impacts can result in substantial increases in the
densities of mini-Neptune planets by ejecting a fraction of their
atmospheres.

(iii) The fraction of mass lost splits into two regimes — at
low specific impact energies only the outer layers are ejected
corresponding to atmosphere dominated loss, at higher energies
material deeper in the potential is excavated resulting in significant
core and mantle loss.

(iv) Approximately 20 per cent of the initial atmosphere remains
at the transition between the two regimes.

(v) A single collision cannot remove all the atmosphere without
also removing a significant percentage of mantle material.

(vi) Mass removal is less efficient in the atmosphere loss domi-
nated regime compared to the core and mantle loss regime.

(vii) The specific energy of this transition (pivot energy, Opiy)
scales linearly with the ratio of projectile to target mass for all
projectile-target mass ratios measured:

Qv = Mg (—24552 +14.56) [10°Tke' M),
(viii) The fraction of atmosphere lost is well approximated by a
quadratic in terms of the ratio of specific energy to transition energy:

2
o = #942 (QQTR“) + 0.94%, for Or < 2.12 Qyiy, and total

atmosphere loss for energies greater than this.
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APPENDIX: FURTHER IMPACTS

We present results in this paper for collisions against three separate
simulated super-Earth targets, a 3.27 Mg target with a 0.27 Mg
atmosphere, 1 Mg core, and 2 Mg mantle (initial conditions and re-
sults given in Table A1); a 6.26 Mg one with a 1.25 Mg atmosphere,
1.67 Mg core, and 3.34 Mg mantle (Table 1); and a 10.5Mg one
with a 3.43 Mg atmosphere, 2.36 Mg core, and 4.71 Mg mantle
(Table A2).
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Table Al. Parameters for head-on collisions between a 3.27 Mg, target (M = 3.0 Mg, M{ ™ = 0.27 Mg) with a mantle surface radius of 1.31 Rg, and
an atmosphere scale height of 0.52 Rg, and projectiles of mass M. Similar to Tables 1 and A2.

red meas
D M, R, hed L ufes ”;':SI; Vinie N Mg MERS My JRR xumes o xpemo Category
Mg) (Rg) (kms™) (kms™) (kms™") Rg)  Mg) Mg)  (Mg)
3-0 050 078 2000 146 1928 141 1498 110 959 3.66 0.17 3.49 097 037 0.0 AL-CM
3-1 050 078 2500 1.83 2432 178 2120 155 959 359 012 3.47 0.95 056 0.0l  AL-CM
32050 078 3000 219 2931 214 2692 197 959 349 008 3.41 092 07 0.03  AL-CM
33 050 078 3500 256 3429 251 3239 237 960 327  0.05 3.22 0.87  0.81 0.08  AL-CA

I§

050 078 40.00 292 3925 287 3774 276 959 290 0.02 2.88 0.77 0.93 0.18 AL-CE
050 078 50.00 3.66 49.14 359 4821 353 9.59 200  0.00 2.00 0.53 1.0 0.43 TAL-CE
1.00 097 2000 140 1930 135 1477 1.04 10.13 4.07 0.11 3.96 0.95 0.59 0.01 AL-CM
1.00 097 2500 1.75 2437 171 21.05 148 10.12 392 0.07 3.85 0.92 0.74 0.04 AL-CM
1.00 097 30.00 210 2940 2.06 2680 1.88 10.14 3.5 0.04 3.51 0.83 0.85 0.12 AL-CA
1.00 097 3500 246 3441 241 3230 227 10.13 3.03 0.02 3.01 0.71 0.93 0.25 AL-CA

125 1.03  50.00 344 4935 340 48.09 331 103l - - - 1.0 - SCD

200 1.18 2000 131 1932 126 1403 092 1077 5.03 0.11 4.92 0.95 0.59 0.02 AL-CM
200 118 2500 1.63 2438 1.59 2054 134 1078 4.69  0.06 4.63 0.89 0.78 0.07 AL-CA
200 1.18 30.00 196 2942 192 2639 1.73 1079 4.10  0.04 4.06 0.78 0.85 0.19 AL-CA
200 1.18 3500 229 3446 225 3196 209 1078 3.23 0.01 3.21 0.61 0.96 0.36 TAL-CA
200 1.18 40.00 2.62 3946 258 3737 244 1078 229  0.00 2.29 0.43 1.0 0.54 TAL-CE
200 1.18 50.00 327 4942 323 4792 313 10.79 - - - 1.0 - SCD

250 126 2000 127 1927 122 1359 086 11.01 552  0.11 5.41 0.96 0.59 0.02 AL-CM
250 1.26 25.00 1.59 2442 155 2024 128 11.01 516  0.06 5.10 0.89 0.78 0.07 AL-CA
250 126 30.00 190 2946 1.87 26.17 166 11.01 452  0.03 4.48 0.78 0.89 0.19 AL-CA
250 1.26 3500 222 3447 219 31.78 202 11.00 3.62 0.01 3.61 0.63 0.96 0.34 TAL-CA
250 1.26  40.00 254 3947 250 3721 236 11.01 256  0.00 2.56 0.44 1.0 0.53 TAL-CE
3.00 133 2000 123 1920 1.19 13.14 081 11.20 6.0l 0.11 5.90 0.96 0.59 0.02 AL-CM
300 133 2500 154 2438 150 1994 123 1121 568  0.07 5.61 0.91 0.74 0.07 AL-CA
3.00 133 3000 1.85 2943 1.82 2593 160 1122 501 0.04 4.97 0.8 0.85 0.17 AL-CA

-10  1.00 097  40.00 2.81 3939 276 3766 264 10.12 240  0.00 2.40 0.56 1.0 0.4 TAL-CE
-11  1.00 097 50.00 351 4931 346 4815 338 10.14 032  0.00 0.32 0.07 1.0 0.92 SCD
-12 1.25 1.03 20.00 138 1929 133 1460 1.00 1031 430 0.11 4.19 0.95 0.59 0.02 AL-CM
-13 1.25 1.03 2500 172 2439 168 2093 144 1031 4.08  0.06 4.02 0.9 0.78 0.06 AL-CA
-14 125 1.03 30.00 2.06 2943 203 2670 1.84 1031 3.64 0.04 3.60 0.8 0.85 0.15 AL-CA
-15 125 1.03 3500 241 3443 237 3222 222 1031 298  0.02 2.97 0.66 0.93 0.3 AL-CE
-16 125 1.03  40.00 275 3942 271 3759 259 1032 227  0.00 2.27 0.5 1.0 0.47 TAL-CE

7

8
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(98]
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N
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-32  3.00 133 3500 216 3446 2.13 3158 195 1121 4.06  0.02 4.04 0.65 0.93 0.33 AL-CA
-33  3.00 133 40.00 247 3947 244 3705 229 1122 293 0.00 2.93 0.47 1.0 0.51 TAL-CE
-34 3.00 133 50.00 3.09 4945 3.05 4767 294 1121 - - - - 1.0 - SCD
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Table A2. A summary of collision parameters and results for head-on collisions between a 10.50 Mg target (M = 7.07 Mg, M¥™* = 3.43Mg) with a
mantle surface radius of 1.60 Rg, and an atmosphere scale height of 0.70 Rg, and projectiles of mass M,,. Similar to Tables 1 and Al.

D M R pred L'E;epd meas Vimp . Vinit. S M, gatmos pcore Mir yatmos xe&m C

P P Vimp Vese Vimp Ves Vinit Vese LR LR LR Mot loss loss ategory

Ms) (Rg) (kms~)) (kms!) (kms) Re) Ma) OMo) (M)
7-0 1.01 0.95 30.00 1.51 27.76 1.39  21.07 1.06 13.54  11.20 3.12 8.08 0.97 0.09 0.0 AL-CM
7-1 1.01 0.95 40.00  2.01 37.18 1.87  33.82 1.70 13.54  10.81 2.73 8.08 0.94 0.2 0.0 AL-CM
7-2 1.01 0.95 50.00 2.51 4647 233 4521 2.27 13.55 1022 2.15 8.07 0.89 0.37 0.0 AL-CM
7-3 1.01 0.95 55.00 276 51.12 257 50.68 2.54 13.57 9.85 1.79 8.07 0.86 0.48 0.0 AL-CM
7-4 1.01 0.95 60.00 3.01 5599 281 56.07 2.81 13.57 9.48 1.42 8.06 0.82 0.59 0.0 AL-CM
7-5 1.01 0.95 65.00 326 60.57 3.04 6139 3.08 13.56 9.05 1.03 8.01 0.79 0.7 0.01 AL-CM
7-6 1.01 0.95 70.00  3.51 65.18 327 66.66 3.35 13.58 8.55 0.70 7.85 0.74 0.8 0.03 AL-CM
7-7 1.01 0.95 80.00 4.01 7450 374 77.10 3.87 13.55 6.96 0.24 6.72 0.6 0.93 0.17 AL-CE
7-8 2.02 1.17 30.00 146  28.16 1.37  21.11 1.03 14.17 11.85 2.76 9.09 0.95 0.2 0.0 AL-CM
7-9 2.02 1.17 40.00 1.95 37.80 1.84  33.85 1.65 14.19 11.03 1.96 9.08 0.88 0.43 0.0 AL-CM
7-10  2.02 1.17 50.00 244 4732 231 45.23 2.21 14.18 10.15 1.16 8.98 0.81 0.66 0.01 AL-CM
T7-11  2.02 1.17 55.00 2.68 5202 254 5070 247 14.19 942  0.76 8.66 0.75 0.78 0.05 AL-CM
7-12 2.02 1.17 60.00 293 56.64 276 56.09 274 14.19 8.40 040 7.99 0.67 0.88 0.12 AL-CA
7-13  2.02 1.17 65.00 3.17 6147 3.00 6141 3.00 14.16 7.14  0.19 6.95 0.57 0.94 0.24 AL-CE
7-14  2.02 1.17 70.00 342 6626 323 66.67 3.25 14.21 547  0.02 5.45 0.44 0.99 0.4 TAL-CE
7-15  2.02 1.17 80.00 3.90 75.81 3.70  77.11 3.76 14.19 1.65  0.00 1.65 0.13 1.0 0.82 TAL-CE
7-16  3.03 1.32 30.00 143 28.33 1.35  20.89  0.99 14.62 1258 249 10.09 0.93 0.27 0.0 AL-CM

7-17 3.03 132 40.00 190 38.07 1.81 3371 160 1461 11.63 158 10.05 0.86 0.54 0.01 AL-CM
7-18 3.03 132 50.00 238 47.68 227 4513 215 1464 10.07 0.78 9.28 0.74 0.77 0.08 AL-CA

7-19 3.03 132 5500 262 5250 250 5061 241 14.65 887 0.42 8.45 0.66 0.88 0.16 AL-CA
7-20 3.03 132 60.00 2.85 5725 272 5600 266 1464 731 0.17 7.15 0.54 0.95 0.29 TAL-CA
7-21 3.03 132 6500 3.09 6205 295 6133 292 14.65 5.02  0.01 5.01 0.37 1.0 0.5 TAL-CE
7-22 3.03 132 70.00 333 6678 3.18 66.61 3.17 14.62 3.05 0.00 3.05 0.23 1.0 0.7 TAL-CE

7-23 3.03 132 80.00 3.80 7641 363 77.05 3.66 14.64 - - - 1.0 - SCD

724 404 143 30.00 139 2837 132 2053 095 1494 1341 231 11.10 0.92 0.33 0.0 AL-CM
7-25 4.04 143 40.00 1.86 38.19 1.77 3349 155 1495 1239 143 10.96 0.85 0.58 0.01 AL-CM
726 4.04 143 50.00 232 4791 222 4496 209 1497 1029 0.63 9.66 0.71 0.82 0.13 AL-CA
7-27 404 143 5500 255 5272 245 5046 234 1494 8.81 0.30 8.51 0.61 0.91 0.23 AL-CA
7-28 4.04 143 60.00 279 5757 267 5587 259 14.96 6.32  0.06 6.25 0.43 0.98 0.44 TAL-CE
7-29 404 143 6500 3.02 6236 289 6120 284 1498 4.01  0.00 4.01 0.28 1.0 0.64 TAL-CE
7-30 4.04 143 70.00 325 67.15 3.12 6649 3.09 1498 1.75  0.00 1.75 0.12 1.0 0.84 TAL-CE
7-31 404 143 80.00 371 7675 356 7695 357 1499 - - - - 1.0 - SCD

7-32  5.05 152 30.00 136 2840 129 20.11 091 1521 1436 225 12.11 0.92 0.34 0.0 AL-CM
7-3
7-3
7-3
7-3
7-3
7-3
7-3

3 505 152 4000 1.82 3824 1.74 3323 151 1522 13.19 138 11.81 0.85 0.6 0.03 AL-CM
4 505 152 5000 227 4801 218 4477 203 1521 1073 0.55 10.18 0.69 0.84 0.16 AL-CA
5 505 152 5500 250 5285 240 5029 228 1524 9.01 0.22 8.79 0.58 0.94 0.27 AL-CA
6 505 152 6000 272 57.69 262 5571 253 1525 6.17  0.02 6.16 0.4 0.99 0.49 TAL-CE
7 505 152 6500 295 6253 284 61.07 277 1525 378 0.00 3.77 0.24 1.0 0.69 TAL-CE
8§ 505 152 7000 3.18 67.35 3.06 6637 3.0l 1521 1.65 0.00 1.65 0.11 1.0 0.86 TAL-CE
9 505 152 8000 363 7701 350 76.84 349 1525 - - - 1.0 - SCD

7-40 6.06 1.60 30.00 133 2839 126 19.67 087 1546 1533 222 13.11 0.93 0.35 0.0 AL-CM
7-41 6.06 1.60 40.00 1.78 3827 1.70 3297 147 1546 14.14 140 12.74 0.85 0.59 0.03 AL-CM
7-42  6.06 1.60 50.00 222 48.04 2.14 4457 198 1547 1140 051 10.89 0.69 0.85 0.17 AL-CA
7-43 6.06 1.60 55.00 244 5296 235 50.12 223 1546 947 020 9.27 0.57 0.94 0.29 AL-CA

7-44  6.06 1.60  60.00 2.67 57.82 257 5556 247 1548 6.35 0.01 6.34 0.38 1.0 0.52 TAL-CE
7-45 6.06 1.60 65.00 2.89 6262 278 6092 271 1546 390 0.00 3.90 0.24 1.0 0.7 TAL-CE
7-46 6.06 1.60 70.00 3.11 6750 3.00 6623 294 1549 1.78  0.00 1.78 0.11 1.0 0.86 TAL-CE

7-47 6.06 1.60 80.00 356 77.14 343 7672 341 1550 - - - - 1.0 - SCD

7-48 7.07 1.67 30.00 131 2838 124 19.18 084 1567 1630 2.18 14.12 0.93 0.36 0.0 AL-CM
7-49 7.07 1.67 40.00 1.74 3830 1.67 3268 142 1567 1510 1.36 13.75 0.86 0.6 0.03 AL-CM
7-50 7.07 1.67 50.00 2.18 48.10 2.10 4436 193 1567 12.19 0.0 11.69 0.69 0.85 0.17 AL-CA
7-51 7.07 1.67 55.00 240 5298 231 4993 218 1565 1030 0.19 10.11 0.59 0.94 0.29 AL-CA

7-52  7.07 1.67 60.00 261 57.85 252 5539 241 1566 7.00 0.01 6.99 0.4 1.0 0.51 TAL-CE
7-53 7.07 1.67 65.00 283 6266 273 60.77 265 1570 427 0.00 4.26 0.24 1.0 0.7 TAL-CE

7-54 7.07 1.67 70.00 3.05 6755 294 66.09 2.88 15.69 223 0.00 2.23 0.13 1.0 0.84 TAL-CE
7-55 7.07 1.67 80.00 349 7725 337 7660 334 15.67 - - - 1.0 - SCD
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