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Abstract. The scope of multi-label image classification is to recognize several 

objects that appear within a single image. In the current paper we consider the 

task of multi-label food recognition, where the labels of the images in the training 

set are noisy, as they are annotated by inexperienced annotators. In our approach, 

a proposed noise adaptation layer is appended to a pretrained baseline model, 

aiming to correctly learn from these noisy labels. From the baseline model, pre-

dictions are made on the training set, given the images and the noisy labels. Out 

of these predictions and the noisy labels a confusion matrix is being created. This 

confusion matrix is used to initialize the weights of the noise layer and the full 

model is retrained on the training set. The final predictions for the testing set are 

made from the baseline model, after its weights have been readjusted by the noise 

layer. We show that the final model significantly increases the performance on 

noisy datasets. 
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1 Introduction 

Recent estimations of the World Health Organisation (WHO) [1], show that more than 

1.9 billion and 650 million people worldwide live with excess adiposity and clinical 

obesity respectively. In addition to that, around 422 million people live with diabetes. 

According to the American Centers for Disease Control and Prevention (CDC) [2], a 

healthy diet can not only prevent overweight and obesity, but also lower the risk of 

numerous chronic diseases such as type 2 diabetes, heart disease and some forms of 

cancer. In order for a person to adhere to a healthy diet, monitoring of their dietary 

habits, and, thus, proper dietary assessment is necessary. 

Continuous dietary assessment has traditionally been performed using instruments 

such as food diaries and 24-hour dietary recall [3]. One major challenge of such sub-

jective assessment methods is self-reporting errors due to the inability to estimate the 

correct portion sizes. Nowadays, with the development of Artificial Intelligence (AI) 

and computer vision, dietary assessment can be done automatically, with high accuracy 

and efficiency, using a smartphone camera. Several methods have been proposed for 

the automatic estimation of the nutritional content of an image [4]-[7] and the procedure 

usually consists of the following three steps i) food recognition ii) food segmentation 

and iii) volume estimation & nutrient content calculation. 



2 

Food recognition is the fundamental step of the dietary assessment. At the early 

stages, hand-engineered features and traditional image classifiers were used for food 

recognition [8]-[10], while recently the use of deep learning algorithms have signifi-

cantly improved the accuracy of food recognition tasks [4]-[6] [11]. 

Most of the existing approaches in the domain of food recognition focus on the sin-

gle-food recognition task, i.e. each input image corresponds only to a single food label 

[12] [13]. However, in a real scenario it is common for a food image to contain more 

than one food labels. 

In the field of multi-label food recognition, the image is first segmented into parts 

that contain a single food category, followed by a classification of the individual seg-

ments [11] [14] [15]. Although these methods can yield satisfactory results, they require 

additional computation time for food segmentation. In [14] and [16] a “sigmoid” layer 

is applied at the end of a classification network, in order to predict the multi-label food 

categories that appear in an image. Even though these methods tend to have better re-

sults, they depend on large-scale databases [10] [17] with pure annotations. Collecting 

expert label data with pure annotations is an extremely time-consuming task and low 

inter-annotator agreement is a fundamental characteristic of any such task. 

In this paper, we propose a simple but effective approach in order to deal with noisy 

labels in the training set in the case of the multi-label food recognition problem. Spe-

cifically, we build a Confusion Matrix (CM) that represents the label noise distribution 

of the training set. The CM is used to initialize the weights of a Noise Layer that con-

nects the correct labels with the noisy ones and it is removed afterwards, so that predic-

tions can be made on a clean testing set. Therefore, the Noise Layer does not have any 

negative effect on the computation time. The dataset that is used in our method contains 

images from real end-users, making it easily applicable to real-world problems. Finally, 

the training set does not have a subset of images with clean labels, that could possibly 

help the training process.  

2 Related Work 

2.1 Food Recognition 

In [8], the proposed method first detects candidate regions that probably include foods 

inside them and then estimate the probability of each region belonging to every food 

category. A similar approach is used in [9] and [10], where the Bag of Features model 

was adopted to represent an image as a collection of local features. These methods make 

use of hand-engineered features like color histograms, Scale Invariant Feature Trans-

forms or a combination of them [18] and simple architectures, like Support Vector Ma-

chines, in order to classify the images. More recently, with the advance of Deep Learn-

ing, the use of more complicated architectures like Convolutional Neural Networks 

(CNN) for food recognition [4]-[6] [11] tends to outperform the above approaches. 

These methods often use networks like GoogleNet [19], ResNet [20] or InceptionV3 

[21] that are pretrained on large image datasets like ImageNet which contains 1.2 mil-

lion images with 1000 classes. These networks are then fine-tuned for the food recog-

nition task. 
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The methods reviewed in this Section depend on large databases, like the UEC-

FOOD100 [8] [10] or the UEC-FOOD256 [22] where the labels of the images are free 

of noise. In practice, relying on human experts to annotate a dataset that does not con-

tain label noise can prove costly and slow. Although the Food-101 dataset [17] contains 

some label noise, it contains 101,100 images divided equally into 101 classes. There-

fore, the dataset can be used only for single-food recognition and, also, has the same 

number of samples for each category; thus, making the training process easier. In this 

paper we use a dataset that contains images from real end-users, and, therefore, contains 

label noise, has imbalanced classes and each image can contain multiple food catego-

ries. 

2.2 Noisy labels 

The presence of noise in the labels of the training set can heavily influence the results 

of food recognition. Zhang et al. [23] showed that deep neural networks can overfit on 

the noisy labels and generalize poorly on a clean testing set. An in-depth survey has 

been conducted in 2013 [24], regarding the different types of noise, the effects of the 

label noise and different methods of dealing with label noise, such as: label noise-

cleansing, noise-robust methods or algorithms that try to model label noise during train-

ing. These methods are often used in tandem to yield better results. 

The label noise-cleansing method aims to improve the quality of the data by either 

relabeling the samples that are likely to be mislabeled [25] [26], pruning them [27] or 

applying sample weights to the examples, based on the likelihood that their labels are 

correct [28] [29]. In [30] and [31] a small set of clean samples is used in conjunction 

with a much larger dataset that contains noisy labels, in order to assist in the training 

process. A method called “curriculum learning” seems to gain more and more success 

in the fields of learning from noisy data [28] [32], based on the idea that networks can 

benefit if they start learning with easy examples and progressively move to more com-

plex ones. However, the above techniques either assume that there is a subset that con-

tains clean labels, can sometimes discard useful data or adopt a complex method that 

can increase the computational time. 

Other methods propose building models that are robust to label noise [33] [34]. Na-

tarajan et al. [33], provided a way to modify a given loss function for binary classifica-

tion, so that it is more robust to label noise. In [34] the CNN learns visual features by 

being trained on millions of weakly-labeled images. Nevertheless, the label noise is not 

actually being considered in these cases. 

Finally, there are methods that try to estimate the noise transition matrix between the 

noisy labels and the true, hidden ones. Sukhbaatar et al. [35] suggested appending a 

linear layer on top of the baseline CNN, that can be interpreted as the noise-transition 

matrix. However, in their method, the noise depends only on the true labels and not the 

images themselves. In [36], a similar approach is used, but the output of the baseline 

CNN is fully connected to the noisy-label layer, and the noise depends also on the image 

features. 

Our approach is similar to that of [36], but we extend the problem for the case of 

multi-label classification. Moreover, the noisy labels in the training set are not hard 
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assigned to classes but they have a probability of belonging to each class, equal to the 

average of the annotations done by the different annotators. This method, compared to 

others [30] [31], does not rely on a subset of clean labels that can assist in the training 

process and does not affect the computation time.  

3 Method 

Our goal is to train a multi-label classifier that can distinguish the food categories that 

appear in a single RGB image. The labels of the training dataset are noisy, in a sense 

that they are annotated by inexperienced annotators. 

 In our method, a baseline image classification model (BM) is trained first, in order 

to give some preliminary results. For the BM, any prevalent network architectures such 

as GoogleNet [19], InceptionV3 [20] or ResNet [21] can be used. Here, we used the 

ResNet-101 and the InceptionV3 as BM due to their good performance in image clas-

sification [37]. The BM is used to make predictions on the training set and, out of these 

predictions and the noisy labels, the CM is built. The CM is a simple, yet valid repre-

sentation of the dataset’s noise. On top of the BM, a Noise Layer is added, using the 

values of the CM as its weights, aiming to predict the noisy labels. The final predictions 

on a clean testing set are done by the model, after removing the Noise Layer, that was 

used to learn the noise distribution in the training set. The architecture of the full model 

(FM) is depicted in Figure 1. 

 

Fig. 1. The architecture of our full model (FM) 

3.1 Confusion Matrix (CM) Building 

Assume the training dataset contains N images that belong to one or more classes, out 

of K classes in total. Let 𝒙𝒊 ∈ X ⊂  𝑅𝑑  be the feature vector of the 𝑖𝑡ℎ  image (𝑖 ≤
𝑁) and 𝒛𝒊 = {𝑍𝑖1, … , 𝑍𝑖𝐾}  ∈ [0,1]𝐾, where 𝑍𝑖𝑟  is the average of the annotations for the 
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𝑖𝑡ℎ image and the 𝑟𝑡ℎ class. However, 𝐳 is just a noisy version of the true, hidden labels 

𝐲, which are unknown. 

At the first step, the BM is trained on the noisy dataset 𝐷 = {(𝒙𝟏, 𝒛𝟏), … , (𝒙𝑵, 𝒛𝑵)}. 

Instead of using the BM to make predictions on the testing set, it is used to predict the 

labels of the training set. The predictions are 𝑷 = {𝒑𝟏, … , 𝒑𝑵} , where 𝒑𝒊 =
{𝑃𝑖1 , … , 𝑃𝑖𝐾}  ∈ [0,1]𝐾  are the probabilities that image 𝑖 contains labels 1 to K. By 

doing that, we can observe which classes are confidently assigned to the annotated clas-

ses and which differ from them, implying they are correctly or probably incorrectly 

annotated, respectively. 

From the predictions 𝑷 and the noisy annotations 𝒁 = {𝒛𝟏, … , 𝒛𝑵}, a 𝐶𝑀 ∈ 𝑅𝐾×𝐾 is 

built, considering also that the problem is multi-label. In addition to that, the noisy la-

bels are the probabilities of every image belonging to each class, which is equal to the 

average of the annotations. The rows of the CM depict the predictions of the BM (that 

can be treated as an estimation of the true hidden labels y) and the columns depict the 

noisy labels. For each pair (𝒑𝒊, 𝒛𝒊) the CM is being updated as described below.  

Initially, the classes that are apparent in both 𝒑𝒊 and 𝒛𝒊 are found. If, for a class α ∈
K, 𝑃𝑖𝛼 > 𝑡ℎ𝛼  and 𝑍𝑖𝛼 > 0, then in the 𝛼𝑡ℎ row and 𝛼𝑡ℎ column of the CM, the value 

𝑍𝑖𝛼 is added. The threshold for predicting class 𝛼, 𝑡ℎ𝛼, is calculated so that the number 

of images with 𝑃𝑖𝑎 > 𝑡ℎ𝑎  is equal to the number of images with 𝑍𝑖𝑎 > 0. In other 

words, if 𝛢 is the number of images that at least one annotator has assumed to contain 

class 𝛼, then the 𝛢 images with the highest predicted probabilities for class 𝛼 are as-

signed to the class 𝛼. 

Assuming μ classes appear in 𝒛𝒊 but not in 𝒑𝒊 and ν classes appear in 𝒑𝒊 but not in 

𝒛𝒊, if 𝑃𝑖𝛽 > 𝑡ℎ𝛽 and 𝑍𝑖𝛾 > 0 (𝛽 and 𝛾 are classes that do not appear in the other list), 

then the element in the 𝛽𝑡ℎ row and 𝛾𝑡ℎ column of CM is increased by 
𝑍𝑖𝛾

(𝜇∗𝜈)
. 

If μ or ν are equal to 0, then the classes that appear in both lists are taken instead. 

Figure 2 shows an example of how the CM is built based on the predictions of the BM 

and the noisy labels.  
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Fig. 2. A toy example of CM calculation. In such case, μ=1, since only one category (category 

2) appears in Z but not in P; ν=1 in a similar way.  

3.2 Noise Layer 

The CM is used here, since it is generally a simple approach to estimate the label noise 

and the relationships between the classes, with high accuracy. For each of the K outputs 

of the BM, a Dense layer with K units is added. For the kth output of the BM, the Dense 

layer that is appended is initialized with bias equal to the kth row of the CM. Each col-

umn, j, of the kth row of CM represents the probability that the kth output of the BM will 

go to the jth output of the Noise Layer as shown in Figure 2.  

The FM, that contains the BM and the Noise Layer, is then retrained on the training 

set. It is worth noting here, that the weights of the BM that gave the best results were 

transferred to this FM. The Noise Layer is used to re-adjust the weights of the BM, by 

trying to estimate the noise distribution. Therefore, the predictions for the testing set 

are based on the output of the BM. 

If the CM were diagonal, each BM output would only connect to the Noise Layer 

that depicts the same class. However, this is not the case. By connecting each BM out-

put to several Noise Layer outputs, a correlation between these classes is also consid-

ered. If the element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the CM is high, then the relation 

between the 𝑖𝑡ℎ BM output and the 𝑗𝑡ℎ Noise Layer is also high, meaning there is a 

chance that label 𝑖 could possibly be mislabeled as class 𝑗. 

4 Experimental Results 

4.1 Dataset 

The dataset we used contains in total 5778 RGB food images, which were taken under 

free living conditions by the end users of Oviva [38]. The database was annotated into 
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31 food categories by 5 inexperienced annotators and each image may contain more 

than one food category. For each food category in an image the mean of the annotations 

is taken. To quantitatively measure the noise level of the database, we randomly chose 

200 food images from the database and conducted a consistency study among 5 anno-

tators. According to the study, the Intersection over Union (IoU) of different annotators 

is around 0.8. We split the database into training and testing set, with 5485 and 293 

food images, respectively. For the testing set, an additional experienced dietitian was 

involved to correct the annotations, so that the testing labels were much cleaner than 

those of the training set. Examples of images taken from the database are shown in 

Figure 3, along with the annotations. 

 

Fig. 3. Example images of the training set (upper row) and the testing set (lower row) of the 

database along with their annotations. 

4.2 Evaluation metrics 

The mean Average Precision (mAP) is typically used for the evaluation of multi-label 

classification tasks. mAP is calculated as described below: 

𝑚𝐴𝑃 =
1

𝐾
∑ 𝑚𝑒𝑎𝑛(max (𝑃R

𝑘))
𝐾

𝑘=1
,                                   (1) 

where K is the number of classes and max(𝑃R
𝑘 ) is the max precision for each recall 

value of category k. 

 The per-class Average Precision (AP) is also considered, which is, for each class k, 

the 𝑚𝑒𝑎𝑛(max (𝑃R
𝑘)). 
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4.3 Results 

We used the ResNet-101 and the InceptionV3 as BM, which were pretrained on the 

images of ImageNet. With the addition of a Dense layer with K=31 units, the BM were 

used to predict the probability of every image belonging to each class. For both BM, 

the Stochastic Gradient Descent was preferred as the optimizer, with learning rate set 

to 0.01, momentum 0.9 and decay 10-5. The BM were supervised with a binary cross-

entropy loss for 30 epochs and with a batch size equal to 8. The BM achieved a mAP 

of 0.466 on the testing set for the ResNet-101 and outperformed the InceptionV3, that 

achieved a mAP of 0.416. 

 After the BM was trained, it was used again to make predictions on the training set, 

in order to build the CM as suggested in Section 3.1. The noise layer was then appended 

to the BM. The same optimizer was used to train the FM for a batch size equal to 16 on 

2 NVIDIA GeForce GTX TITAN X GPUs for another 30 epochs. The learning rate 

was set to 0.01 for the first 10 epochs and 0.005 for the rest. Changing the hyperparam-

eters of the optimizer or the learning rate had minimal effect on the output of the model. 

Table 1 shows a comparison between the two BM and their respective FM with the 

addition of the Noise Layer. The FM with the InceptionV3 as a BM reached its highest 

mAP of 0.499 at the 20th epoch and the FM with the ResNet-101 as a BM at the 10th 

epoch with mAP of 0.507. This is an 8.3% increase in mAP for the InceptionV3 model 

and a 4.1% increase for the ResNet-101 model. 

Table 1. Comparison of mAP between the FM and the BM for the InceptionV3 and the Res-

Net-101 architecture. 

Model mAP 

InceptionV3 0.416 

InceptionV3 with Noise Layer 0.499 

ResNet-101 0.466 

ResNet-101 with Noise Layer 0.507 

 

A comparison between the per-class AP of the BM and the FM for each category of 

the dataset is presented in Table 2, for both architectures. The foods are placed in order, 

so that the first category, “Vegetables”, has the most samples in the training set, while 

the last category has the fewest. In the 1st column of Table 2, the 31 food categories are 

shown, in the 2nd and 3rd column the AP for the BM and the FM are presented respec-

tively and in the 4th and 5th column the number of samples that appear in the training 

and the testing sets. In the last column the subtraction of AP for the FM and the BM is 

calculated and it appears in white background if there is no difference between those 

two, in green if the AP is increased with the FM and in red if the AP is actually worse. 

In general, we observe that for the ResNet-101 there are 19 out of 31 food categories 

that have their AP increased after the addition of the Noise Layer. For the InceptionV3 

there are 24 out of 31 food categories with their AP increased. Therefore, the FM can 
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predict with higher consistency the most common food categories. Specifically, from 

the results, the FM can better distinguish between red meat and white meat compared 

to the BM and are able to predict with better accuracy the class yoghurt, which is con-

sidered a “difficult” category. Moreover, for both models, the AP is increased in most 

cases for the drinks, which are generally harder to recognize and often include label 

noise. Generally, in food categories that the annotators disagree the most tend to have 

their AP increased with the FM, meaning that the Noise Layer can effectively learn the 

noise distribution. For the food categories that annotators agree more, the results may 

vary, and, thus further investigation is needed.  

Figure 4 shows some comparison examples of the testing set, regarding the results 

of the BM and the FM for the ResNet-101 architecture. 

Table 2. The 31 food categories (1st column), the AP for each class for the BM and the FM (2nd 

and 3rd column), the samples of each class in the training and the testing set (4th and 5th column) 

and the difference between the AP for the FM and the BM, when using the ResNet-101 and the 

InceptionV3 architecture. Green color indicates an increase in performance by using FM, while 

red color means decrease in performance with FM. 

Class 

AP of BM AP for FM 

# of sam-
ples in 

the train-

ing set 

# of sam-
ples in 

the test-

ing set 

Difference of AP 

between the FM and 

the BM 
ResNet-

101 

Incep-

tionV3 

ResNet-

101 

Incep-

tionV3 

ResNet-

101 
Incep-

tionV3 

Vegetables 0.95 0.90 0.95 0.93 2505 140 0.00 0.03 

Red meat 0.61 0.45 0.63 0.60 896 51 0.02 0.15 

Sweets 0.61 0.55 0.57 0.66 863 36 -0.04 0.11 

Yoghurt 0.33 0.45 0.40 0.55 832 22 0.07 0.10 

Fruits 0.80 0.64 0.80 0.76 808 38 0.00 0.12 

Cheese 0.67 0.62 0.72 0.59 707 40 0.05 -0.03 

Non-white 

bread 0.74 0.64 0.64 0.71 652 31 -0.10 0.07 

White meat 0.15 0.24 0.20 0.41 571 16 0.05 0.17 

White bread 0.61 0.50 0.59 0.62 507 51 -0.02 0.12 

Breaded Food 0.10 0.07 0.10 0.11 442 8 0.00 0.04 

Milky coffee 0.26 0.24 0.27 0.23 378 7 0.01 -0.01 

Legumes 0.17 0.23 0.22 0.35 375 9 0.05 0.12 

Eggs 0.72 0.52 0.70 0.74 315 25 -0.02 0.22 

Water 0.36 0.19 0.47 0.34 309 5 0.11 0.15 

White pasta 0.57 0.58 0.60 0.58 308 21 0.03 0.00 

Milk 0.43 0.42 0.47 0.51 279 10 0.04 0.09 

Sweet drink 0.56 0.43 0.61 0.57 257 14 0.05 0.14 

Non-fried po-

tatoes 0.30 0.27 0.39 0.33 243 8 0.09 0.06 

White rice 0.72 0.75 0.68 0.81 232 22 -0.04 0.06 
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Fish 0.19 0.20 0.26 0.21 224 15 0.07 0.01 

Nuts 0.62 0.65 0.72 0.65 223 5 0.10 0.00 

Unprocessed 

cereal 0.41 0.31 0.48 0.33 167 6 0.07 0.02 

Non-white 
pasta 0.20 0.17 0.24 0.25 132 12 0.04 0.08 

Fried potatoes 0.26 0.15 0.22 0.31 123 8 -0.04 0.16 

Non-white 

rice 0.14 0.14 0.31 0.12 116 6 0.17 -0.02 

Processed ce-

real 0.51 0.57 0.47 0.62 110 9 -0.04 0.05 

Tea 0.46 0.47 0.50 0.67 96 6 0.04 0.20 

Coffee 0.59 0.53 0.61 0.46 74 15 0.02 -0.07 

Liquor 0.00 0.00 0.00 0.00 42 0 0.00 0.00 

Wine 0.07 0.33 1.00 0.50 31 1 0.93 0.17 

Beer 0.83 0.25 0.40 0.50 27 2 -0.43 0.25 

 

 

Fig. 4. Examples of images in the testing set along with predictions from the BM and the FM 

using the ResNet-101 architecture. The categories appear in green, red and red with grey back-

ground for correct, wrong and missing predictions, respectively. 
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5 Conclusions 

In this paper we propose a method in order to deal with multi-label datasets containing 

label noise, where the noise distribution is unknown. We showed that by constructing 

a CM, the relations between the different classes, and, therefore, the existence of noise, 

can be observed. The FM, consisting of the BM and the Noise Layer yields an 8.3% 

increase in mAP compared to the BM when using the InceptionV3 architecture and a 

4.1% increase when using ResNet-101. In addition to that, the Noise Layer was only 

used during the training phase, while it is not needed in the testing phase; thus, the 

proposed approach does not increase the computational time. In future, we intend to 

evaluate our proposed method on much bigger datasets. 

 

Acknowledgments 

This work was funded by Innosuisse under agreement n° 33780.1 IP-LS 

[www.innosuisse.ch] and it is a part of the medipiatto project [www.go-food.tech]. 

References 

1. World Health Organization (WHO): https://www.who.int/, last accessed 2020/10/15 

2. Centers for Disease Control and Prevention (CDC): https://www.cdc.gov/, last accessed 

2020/10/15 

3. Thompson, F. E., Subar, A. F.: Dietary assessment methodology. In Nutrition in the Preven-

tion and Treatment of Disease, pp. 5-48, Academic Press (2017). 

4. Meyers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N., Guadar-

rama, S., Papandreou, G., Huang, J. and Murphy, K.P.: Im2Calories: towards an automated 

mobile vision food diary. In Proceedings of the IEEE International Conference on Computer 

Vision, pp. 1233-1241 (2015). 

5. Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., Ma, Y.: Deepfood: Deep learning-based 

food image recognition for computer-aided dietary assessment. In International Conference 

on Smart Homes and Health Telematics, pp. 37-48, Springer, Cham (2016). 

6. Christodoulidis, S., Anthimopoulos, M., Mougiakakou, S.: Food recognition for dietary as-

sessment using deep convolutional neural networks. In International Conference on Image 

Analysis and Processing, pp. 458-465, Springer, Cham (2015). 

7. Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.: Two-view 3D reconstruc-

tion for food volume estimation. In IEEE transactions on multimedia, 19(5), pp. 1090-1099 

(2016). 

8. Matsuda, Y., Hoashi, H., Yanai, K.: Recognition of multiple-food images by detecting can-

didate regions. In 2012 IEEE International Conference on Multimedia and Expo, pp. 25-30, 

IEEE (2012). 

9. Anthimopoulos, M. M., Gianola, L., Scarnato, L., Diem, P., Mougiakakou, S. G.: A food 

recognition system for diabetic patients based on an optimized bag-of-features model. IEEE 

journal of biomedical and health informatics, 18(4), pp. 1261-1271 (2014). 

10. Kawano, Y., Yanai, K.: Foodcam: A real-time food recognition system on a smartphone. 

Multimedia Tools and Applications, 74(14), pp. 5263-5287 (2015). 

https://www.innosuisse.ch/
https://go-food.tech/
https://www.who.int/
https://www.cdc.gov/


12 

11. Lu, Y., Stathopoulou, T., Vasiloglou, M. F., Pinault, L. F., Kiley, C., Spanakis, E. K., 

Mougiakakou, S.: goFOODTM: An Artificial Intelligence System for Dietary Assessment. 

Sensors, 20(15), 4283 (2020). 

12. Kagaya, H., Aizawa, K., Ogawa, M.: Food detection and recognition using convolutional 

neural network. In Proceedings of the 22nd ACM international conference on Multimedia, 

pp. 1085-1088 (2014). 

13. Martinel, N., Foresti, G. L., Micheloni, C.: Wide-slice residual networks for food recogni-

tion. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 

567-576, IEEE (2018). 

14. Anthimopoulos, M., Dehais, J., Diem, P., & Mougiakakou, S.: Segmentation and recogni-

tion of multi-food meal images for carbohydrate counting. In 13th IEEE International Con-

ference on BioInformatics and BioEngineering, pp. 1-4, IEEE (2013). 

15. Aguilar, E., Remeseiro, B., Bolaños, M., Radeva, P.: Grab, pay, and eat: Semantic food 

detection for smart restaurants. IEEE Transactions on Multimedia, 20(12), pp. 3266-3275 

(2018). 

16. Bolaños, M., Ferrà, A., & Radeva, P.: Food ingredients recognition through multi-label 

learning. In International Conference on Image Analysis and Processing, pp. 394-402, 

Springer, Cham (2017). 

17. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101–mining discriminative components 

with random forests. In European conference on computer vision, pp. 446-461, Springer, 

Cham (2014). 

18. Martinel, N., Piciarelli, C., Micheloni, C., Luca Foresti, G.: A structured committee for food 

recognition. In Proceedings of the IEEE International Conference on Computer Vision 

Workshops, pp. 92-100 (2015). 

19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, 

V., Rabinovich, A.: Going deeper with convolutions. In Proceedings of the IEEE conference 

on computer vision and pattern recognition, pp. 1-9 (2015). 

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778 

(2016). 

21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z.: Rethinking the inception 

architecture for computer vision. In Proceedings of the IEEE conference on computer vision 

and pattern recognition, pp. 2818-2826 (2016). 

22. Kawano, Y., & Yanai, K., Automatic expansion of a food image dataset leveraging existing 

categories with domain adaptation. In European Conference on Computer Vision, pp. 3-17, 

Springer, Cham (2014). 

23. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks 

with noisy labels. In Advances in neural information processing systems, pp. 8778-8788 

(2018). 

24. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. In: IEEE 

transactions on neural networks and learning systems, 25(5), 845-869 (2013). 

25. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep 

neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 (2014). 

26. Tanaka, D., Ikami, D., Yamasaki, T., & Aizawa, K.: Joint optimization framework for learn-

ing with noisy labels. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 5552-5560 (2018). 

27. Northcutt, C. G., Jiang, L., Chuang, I. L.: Confident learning: Estimating uncertainty in da-

taset labels. arXiv preprint arXiv:1911.00068 (2019). 



13 

28. Jiang, L., Zhou, Z., Leung, T., Li, L. J., Fei-Fei, L.: Mentornet: Learning data-driven curric-

ulum for very deep neural networks on corrupted labels. In International Conference on 

Machine Learning, pp. 2304-2313 (2018). 

29. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep 

learning. arXiv preprint arXiv:1803.09050 (2018). 

30. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy 

large-scale datasets with minimal supervision. In Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp. 839-847 (2017). 

31. Lee, K. H., He, X., Zhang, L., & Yang, L.: Cleannet: Transfer learning for scalable image 

classifier training with label noise. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 5447-5456 (2018). 

32. Chen, X., Gupta, A.: Webly supervised learning of convolutional networks. In Proceedings 

of the IEEE International Conference on Computer Vision, pp. 1431-1439 (2015). 

33. Natarajan, N., Dhillon, I. S., Ravikumar, P. K., Tewari, A.: Learning with noisy labels. In 

Advances in neural information processing systems, pp. 1196-1204 (2013). 

34. Joulin, A., Van Der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large 

weakly supervised data. In European Conference on Computer Vision, pp. 67-84, Springer, 

Cham (2016). 

35. Sukhbaatar, S., & Fergus, R.: Learning from noisy labels with deep neural networks. arXiv 

preprint arXiv:1406.2080, 2(3), 4 (2014). 

36. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation 

layer (2016). 

37. Ciocca, G., Napoletano, P., & Schettini, R.: CNN-based features for retrieval and classifica-

tion of food images. Computer Vision and Image Understanding, 176, pp. 70-77 (2018). 

38. Oviva S.A., Zurich, Switzerland: https://oviva.com/global/ 

https://oviva.com/global/

