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The ongoing uptake of anthropogenic carbon by the ocean leads to ocean acidification, a 21 

process that results in a reduction in pH and the saturation state of biogenic calcium carbonate 22 

minerals (Ωcalc/arag)1,2. Due to naturally low Ωcalc/arag
2,3, the Arctic Ocean is considered the most 23 

susceptible region to future acidification and associated ecosystem impacts4,5,6,7. However, the 24 

magnitude of projected twenty-first century acidification differs strongly across Earth System 25 

Models (ESMs)8. Here we identify an emergent multi-model relationship between the 26 

simulated present-day density of Arctic Ocean surface waters, used as a proxy for Arctic deep-27 

water formation, and projections of the anthropogenic carbon inventory and coincident 28 

acidification. Applying observations of sea surface density, we constrain the end of twenty-first 29 

century Arctic Ocean anthropogenic carbon inventory to 9.0 ± 1.6 Pg C and basin-averaged Ωarag 30 

and Ωcalc to 0.76 ± 0.06 and 1.19 ± 0.09 respectively, under the RCP 8.5 climate scenario. Our 31 

results indicate greater regional anthropogenic carbon storage and ocean acidification than 32 

previously projected3,8 and increase the probability that large parts of the mesopelagic Arctic 33 

Ocean will be undersaturated with respect to calcite by the end of the century. This increased 34 

rate of Arctic Ocean acidification combined with rapidly changing physical and biogeochemical 35 

Arctic conditions9,10,11, is likely to exacerbate the impact of climate change on vulnerable Arctic 36 

marine ecosystems. 37 

 38 

 39 

 40 



While the uptake of atmospheric carbon by the ocean mitigates climate change, it also 41 

dramatically influences marine chemistry, decreasing pH and carbonate ion concentrations 42 

[CO3
2–] and increasing concentrations of aqueous carbon dioxide and bicarbonate ions [HCO3

-]1,2.  43 

These changes in seawater chemistry, collectively known as ocean acidification, have been shown 44 

to negatively impact wide-ranging marine organisms including molluscs, crustaceans, 45 

echinoderms, cnidarians and teleost fish4,5,6,7. Calcifying marine organisms are particularly 46 

sensitive to ocean acidification, which can impair their growth, reproduction and survival2,4,12. 47 

The thermodynamic stability of calcium carbonate is described by the calcium carbonate 48 

saturation state (Ω =[Ca2+][CO3
2-]/Ksp), with Ksp representing the relevant CaCO3 solubility 49 

product, and Ωcalc and Ωarag representing the saturation state of the stable calcite and metastable 50 

aragonite mineral forms, respectively. Ocean acidification acts to reduce Ω by reducing 51 

carbonate ion concentrations. Studies have shown that as Ω decreases, calcification rates at both 52 

the organism12,13,14 and community-level15 typically decline. In addition, the corrosion of pure 53 

mineral forms is actively promoted under exposure to undersaturated conditions (Ω<1).  54 

 55 

The Arctic represents the global region projected to experience the most severe climate change, 56 

with polar amplification causing a projected end-of-century surface temperature increase of up 57 

to 8.3±1.9 °C10 and loss of summer sea-ice11. The same is true for the Arctic Ocean, where low 58 

temperatures and consequently the high solubility of CO2, result in naturally low pH and Ω2,3. 59 

Given this natural state and the amplifying effect of climate change16, the Arctic Ocean is 60 



projected to experience the lowest pH and Ω conditions in the coming decades3, as well as 61 

dramatic changes in the temporal variability of marine chemistry9.  62 

 63 

Projections by ESMs under the high-emissions Representative Concentration Pathway 8.5 64 

(RCP8.5)17 suggest that the entire Arctic Ocean will be undersaturated with respect to aragonite 65 

(Ωarag<1) by the end of the twenty-first century (Fig. 1), while basin-wide calcite undersaturation 66 

(Ωcalc<1) is not expected to occur this century3,8,18 (Extended Data Figure 1). Projected changes 67 

in ocean chemistry are predominantly confined to the upper 2500 m of the water column, with 68 

large model uncertainties persisting with regard to the end-of-century anthropogenic carbon 69 

inventory (2.9-13.0 Pg C)19, and the associated average Ωarag (0.66-0.95) and Ωcalc (1.02-1.49)8. 70 

Although projection uncertainties are limited in the surface ocean20, they are highly pronounced 71 

at depth (Fig. 1 and Extended Data Figure 1) and complicate assessments of likely impacts on 72 

vulnerable marine ecosystems7. 73 

  74 



 75 

Fig. 1. Projections of Arctic Ocean anthropogenic carbon and aragonite saturation state. a, ESM 76 

projections of the twenty-first century Arctic Ocean anthropogenic carbon (Cant) inventory and c, basin-77 

averaged Ωarag. Vertical profiles of b, basin-averaged anthropogenic carbon and d, Ωarag in 2100 for the 11 78 

ESMs. The GLODAPv224 observational profile of Ωarag for 2002 is marked as a black line in d. Arctic Ocean 79 

boundaries are the Fram Strait, the Barents Sea Opening, the Bering Strait and the Canadian Arctic 80 

Archipelago. 81 

 82 

To reduce Arctic Ocean projection uncertainties associated with the anthropogenic carbon 83 

inventory and concurrent acidification, here we utilise the recent approach of emergent 84 

constraints11,21,22,23. In order to constrain future ESM projection uncertainties, emergent 85 

constraints relate long-timescale climate sensitivities and impacts to observable properties, such 86 

as short-timescale climate variability or trends, across ESM ensembles. Emergent constraints 87 
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have previously been used to reduce the uncertainty, amongst other climate projections, 88 

associated with Arctic summer sea ice11, equilibrium climate sensitivity22 and impacts on marine 89 

primary production21. 90 

 91 

Here we show that across an ensemble of 11 ESMs (Table S1) there is a consistent relationship 92 

between present-day Arctic Ocean maximum sea surface water density, the projected end-of-93 

century Arctic Ocean anthropogenic carbon inventory and the extent of ocean acidification under 94 

RCP8.5 (Fig. 2, 3). All models performed simulations as part of the Coupled Model 95 

Intercomparison Project Phase 5 (CMIP5). Present-day (1986-2005) maximum sea surface density 96 

was calculated, for each model, as the mean of the 95th percentile of monthly surface water 97 

densities in the Arctic. Across all models, these maximum density waters are primarily located in 98 

the Barents Sea (Extended Data Figure 2). The anthropogenic carbon inventory was calculated as 99 

the difference in integrated Arctic Ocean dissolved inorganic carbon between RCP8.5 simulations 100 

and the respective pre-industrial control simulation of each model. While projections of variables 101 

associated with ocean acidification (Ωcalc/arag, pH and pCO2) were calculated from model outputs 102 

of total alkalinity, dissolved inorganic carbon, temperature, salinity, total dissolved inorganic 103 

phosphorus and silicon and bias-corrected using GLODAPv224 (see Methods). 104 

  105 



 106 

Fig. 2. Arctic Ocean surface water density and the anthropogenic carbon inventory. a, Present-107 

day annual-mean sea surface density from World Ocean Atlas 201325 and the b, IPSL-CM5A-LR 108 

and c, NorESM1-ME models. Contours delineate regions that contribute to the maximum surface 109 

density as defined by the 95th percentile densities. Vertically integrated anthropogenic carbon 110 

(Cant) projections in 2100 for the d, IPSL-CM5A-LR and e, NorESM1-ME models. IPSL-CM5A-LR 111 

represents the ensemble minimum for both present-day maximum sea surface density (1025.67 112 

kg m-3) and projected Cant inventory in 2100 (2.9 Pg C), while NorESM1-ME is the ensemble 113 

maximum (1028.24 kg m-3 and 13.0 Pg C). The maximum sea surface density from WOA 2013 is 114 

1027.85 kg m-3 115 
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 117 

Fig. 3. Emergent constraints on the projected anthropogenic carbon inventory and future 118 

acidification. a, The projected Arctic Ocean anthropogenic carbon inventory and c, basin-119 

averaged Ωarag in 2100 against present-day maximum sea surface density (95th percentile waters) 120 

for the ESM ensemble (black dots). Linear regression fits (red dashed lines) and the associated 121 

68 % prediction intervals are shown, as are data-based estimates of present-day maximum sea 122 

surface density (black dashed lines) with the associated standard deviation (black shaded area). 123 

Probability density functions for the end-of-century b, Arctic Ocean anthropogenic carbon 124 

inventory and d, basin-averaged Ωarag, before (black) and after (red) the emergent constraint is 125 

applied. 126 

 127 
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ESMs such as IPSL-CM5A-LR, which simulate lower than observed present-day Arctic Ocean 129 

maximum surface densities, a proxy for Arctic deep-water formation (Extended Data Figure 3), 130 

typically project lower end-of-century anthropogenic carbon inventories under RCP8.5 than 131 

models such as NorESM1-ME, which simulate higher densities (Fig. 2). This emergent relationship 132 

across the ESM ensemble is consistent at the scale of the Arctic Ocean basin, with present-day 133 

maximum surface density exhibiting a strong relationship with end-of-century depth integrated 134 

anthropogenic carbon inventories (r2=0.79, P < 0.001; Fig. 3). Given the dominance of 135 

anthropogenic carbon uptake in driving ocean acidification (Extended Data Figure 4), models with 136 

higher maximum sea surface density also exhibit stronger twenty-first century reductions in 137 

basin-average Ωarag  (r2=0.74, P = 0.001; Fig. 3), Ωcalc (r2=0.74, P = 0.001; Extended Data Figure 1) 138 

and pH (r2=0.77, P < 0.001; Extended Data Figure 1). Observations of sea surface density25 were 139 

then used in combination with these multi-model relationships, to provide emergent constraints 140 

on projections of Arctic Ocean anthropogenic carbon storage, and concomitant acidification. 141 

Potential alternative constraints, such as present-day seasonal sea ice extent, were found to be 142 

non-indicative of future Arctic Ocean anthropogenic carbon and acidification across the ESM 143 

ensemble (Extended Data Figure 3). 144 

 145 

Our emergent constraint increases projections of the end-of-century Arctic Ocean anthropogenic 146 

carbon inventory from 7.5 ± 2.7 Pg C (CMIP5 multi-model mean) to 9.0 ± 1.6 Pg C, with a 41 % 147 

reduction in uncertainty (Fig. 3). Similarly, average end-of-century Ωarag and Ωcalc are reduced 148 

from 0.81 ± 0.09 to 0.76 ± 0.06 and from 1.27 ± 0.14 to 1.19 ± 0.09, respectively (Fig. 3, Extended 149 



Data Figure 1). As such, the low bias of maximum sea surface density in 8 of 11 ESMs is indicative 150 

of an underestimation of projected anthropogenic carbon storage and therefore future Arctic 151 

Ocean acidification in the CMIP5 multi-model mean. 152 

 153 

The mechanisms underpinning the relationship between maximum surface densities and 154 

anthropogenic carbon uptake are intrinsically related to Arctic Ocean circulation and dynamics. 155 

The majority of intermediate and deep Arctic waters and the anthropogenic carbon they carry 156 

are of Atlantic origin26,27. The dominant net influx of anthropogenic carbon from the Atlantic into 157 

the Arctic Ocean is through the Barents Sea Opening, as indicated by both data-based estimates28 158 

(41 ± 8 Tg C yr-1) and ocean carbon cycle models (21-48 Tg C yr-1; Table S2). This inflowing water 159 

is seasonally cooled in the Barents Sea via surface heat exchange and enriched in salinity via brine 160 

rejection during the formation of sea ice29,30. Consequently, during winter, seawater density 161 

increases and water masses sink into the interior Arctic Ocean, mainly via the St Anna Trough, 162 

where they supply most intermediate and deep waters26,27. As such, the present-day ability of 163 

ESMs to simulate the maximum surface densities that occur in the Barents Sea, is highly indicative 164 

of their capacity to transport future anthropogenic carbon into the Arctic interior. 165 

 166 

These mechanisms were further explored in historical (1870-2012) simulations of an ocean-only 167 

carbon-cycle model (NEMO-PISCES), performed at three spatial resolutions19. These simulations 168 

confirm the importance of Atlantic waters that flow into the Barents Sea, in determining net 169 

changes in the Arctic Ocean anthropogenic carbon inventory (Table S2). They further show that 170 



across model spatial resolutions there is a strong positive relationship (r2=0.98, P = 0.08; Fig. S1) 171 

between maximum surface density and the historical change in Arctic Ocean anthropogenic 172 

carbon inventory (Fig. S2). One of the principal drivers of the CMIP5 emergent relationship 173 

therefore appears to be variable ESM resolution and associated difficulties in resolving the 174 

transport of anthropogenic carbon into the Arctic basin at low resolutions19. Indeed, CMIP5 ESMs 175 

with higher Arctic Ocean resolution typically project greater end-of-century anthropogenic 176 

carbon inventories (r2=0.44, P = 0.03; Extended Data Figure 3). 177 

 178 

 179 

 180 

Fig. 4. Constrained end-of century Arctic Ocean vertical profiles of Ωcalc/arag. Multi-model mean 181 

vertical profiles of basin-averaged a, Ωarag and b, Ωcalc in 2100 (black lines) with the associated 182 

standard deviation (n=11; grey shading). Constrained mean estimates of Ωarag and Ωcalc (red dots) 183 

are shown for six different depth layers (0-200 m, 200-400 m, 400-800 m, 800-1400 m, 1400-184 

2000 m, 2000 m - bottom). The constrained estimates are shown at the mid-point of each layer, 185 

with error bars representing ± one standard deviation. 186 
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Extending the emergent constraint approach from the entire Arctic basin to multiple vertical 188 

depth integrals, we reduce uncertainties associated with projections of changing vertical profiles 189 

of Ωcalc/arag (Fig. 4, Extended Data Figures 5, 6), pH and pCO2 (Extended Data Figures 7, 8). Basin-190 

wide emergent constraints on twenty-first century acidification are shown to be predominantly 191 

driven by subsurface waters between 400 and 1400 m, with the strongest multi-model 192 

relationship between present-day maximum surface density and end-of-century Ωcalc/arag found 193 

between 400 and 800 m (r2 = 0.84, P<0.001; Extended Data Figures 5, 6). In these mesopelagic 194 

waters, end-of-century Ωarag is reduced from a CMIP5 multi-model mean of 0.75 ± 0.15 to 0.66 ± 195 

0.08, with end-of-century Ωcalc reduced from 1.18 ± 0.23 to 1.04 ± 0.12. A consequence of our 196 

constrained vertical profiles of marine chemistry is that the lowest average end-of-century 197 

Ωcalc/arag will likely not occur in Arctic Ocean surface waters, as previously expected3,8, but 198 

between 400-800 m (Fig. 4). In these mesopelagic waters, the probability of end-of-century Ωcalc 199 

< 1 and Ωarag < 0.75 is increased from 23% and 51% respectively in the CMIP5 prior to 37% and 200 

88% respectively after the constraint is applied (Extended Data Table 1). 201 

 202 

In the upper Arctic Ocean (0-200 m), present-day maximum surface density exhibits limited 203 

relationship with end-of-century Ωcalc/arag across the models (Extended Data Figures 5, 6) and 204 

emergent constraints offer no reduction in projection uncertainties (Fig. 4). This is to be expected 205 

in waters where deep-water formation has little impact on marine chemistry. Similarly, below 206 

2000 m where there is limited change in the anthropogenic carbon inventory and associated 207 



marine chemistry this century (Fig. 1, Extended Data Figure 1), there is no relationship between 208 

present-day maximum surface density and end-of-century Ωcalc/arag (Extended Data Figures 5, 6).  209 

 210 

The constrained estimates of greater twenty-first century Arctic Ocean acidification presented 211 

here, have major implications for sensitive Arctic marine ecosystems already exposed to multiple 212 

climatic stressors. Enhanced subsurface acidification is likely to have negative consequences on 213 

organisms that both permanently inhabit the mesopelagic and those that utilise it as part of 214 

seasonal or diel vertical migrations31. The suitable habitat available to keystone species such as 215 

the aragonitic pteropod Limacina helicina is likely to decline to a greater extent than previously 216 

anticipated given its sensitivity to Ωarag
32, with negative consequences for dependent pelagic food 217 

webs33,34,35. Meanwhile, undersaturation with respect to calcite is likely to have major 218 

consequences for calcite forming Arctic coccolithophores36 and foraminifera37. Finally, our 219 

estimates of higher end-of century Arctic Ocean pCO2, which increases from 1070 ± 239 μatm at 220 

depths of 400-800 m to 1216 ± 121 μatm under the constraint (Extended Data Figure 8), is likely 221 

to negatively affect the growth, survival38 and behaviour39,40 of ecologically important fish such 222 

as polar cod. 223 

  224 
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Methods 316 

 317 

Earth System Models  318 

In the ensemble of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs (Table S1) 319 

utilised, all included coupled ocean biogeochemistry schemes and have been extensively applied 320 

within the context of both climate and ocean biogeochemical projections8,9,21. A single ensemble 321 

member was utilised for each ESM. Prognostic annual model output fields of dissolved inorganic 322 

carbon, total alkalinity, dissolved inorganic phosphorus and silicon, temperature, and salinity 323 

were taken across all vertical depth levels in the Arctic Ocean, limited by the Fram Strait, the 324 

Barents Sea Opening, the Bering Strait and the Canadian Arctic Archipelago19,41. Monthly sea 325 

surface density outputs were taken over the same domain. All output fields were regridded on a 326 

regular 1°×1° grid to facilitate multi-model analysis.  327 

The anthropogenic carbon inventory was calculated as the difference between dissolved 328 

inorganic carbon in historical (1850-2005) simulations merged with RCP8.5 (2006-2100) and the 329 

concurrent pre-industrial control (piControl) simulations. As such, any model drift in deep-ocean 330 

dissolved inorganic carbon was directly accounted for. Across all models, the simulated present-331 

day (2005) Arctic Ocean anthropogenic carbon inventory (0.2-2.4 Pg C) is below the data-based 332 

estimate of 2.5-3.3 Pg C42. 333 

All carbonate chemistry variables were calculated offline from dissolved inorganic carbon, total 334 

alkalinity, temperature, salinity and where available, dissolved inorganic phosphorus and silicon, 335 

over 1850-2100 using mocsy2.043 and the equilibrium constants recommended for best 336 



practices44. To account for carbonate chemistry biases in the present-day mean state of the 337 

ESMs8, model anomalies of all input variables relative to 2002 were combined with the data-338 

based GLODAPv2 observational product24 which is normalised to the year 2002. Model anomalies 339 

were corrected for potential model drift using concurrent piControl simulations. All grid cells with 340 

GLODAPv2 observational coverage (~65 % of Arctic Ocean volume) were utilised. Basin-wide 341 

averages of Ωarag, Ωcalc, pH and pCO2 were weighted based on grid cell volumes. 342 

The Arctic Ocean present-day maximum sea surface density was calculated for each ESM from 343 

1986-2005 monthly sea surface density climatologies, constructed from temperature and salinity 344 

outputs. Maximum present-day sea surface density was defined as the mean density of the 345 

densest 5 % of Arctic surface waters (95th percentile waters) throughout the climatological year. 346 

Maximum present-day sea surface density consistently occurs in the Barents Sea, across both 347 

observations and the ESM ensemble. Given the importance of the Barents Sea in supplying 348 

intermediate and deep Arctic waters26,27,29,30, maximum sea surface density, as defined, is 349 

indicative of the bowl of ventilated Arctic waters. Across all models, the volume of Arctic Ocean 350 

waters that are lighter than the maximum sea surface density increases with the maximum sea 351 

surface density (r2 = 0.59, P=0.006; Extended Data Figure 3).  352 

In addition to sea surface density, alternative potential constraints on the projected Arctic Ocean 353 

anthropogenic carbon inventory and associated acidification were assessed. The representation 354 

of Arctic sea ice extent45 and intermediate North Atlantic water masses46 varies substantially 355 

across the CMIP5 ensemble. However, both present-day sea-ice extent (Extended Data Figure 3) 356 



and the properties of North Atlantic water masses were found to be non-indicative of projected 357 

Arctic Ocean carbon uptake and associated acidification across the model ensemble. 358 

An assessment of the potential for model internal variability to influence the Arctic Ocean 359 

emergent constraint approach is provided in the supplementary material. Utilising four ensemble 360 

members of the IPSL-CM5A-LR model, the internal variability of present-day sea surface density 361 

and projected anthropogenic carbon inventory is shown to be highly limited compared to the 362 

differences across the CMIP5 models (Extended Data Figure 9). 363 

 364 

Ocean-only simulations 365 

Hindcast ocean-biogeochemical simulations of the NEMO-PISCES model47 that have been 366 

previously published19 are used in this study to explore the mechanisms behind the identified 367 

Arctic Ocean emergent constraint. The model is run at a nominal resolution of 0.5° from 1870 to 368 

1958 and at three different nominal horizontal resolutions from 1958 to 2012: 2° (ORCA2), 0.5° 369 

(ORCA05), and 0.25° (ORCA025). All three model configurations are forced with the DRAKKAR 370 

historical reanalysis forcing dataset48 and therefore only differ in horizontal resolution and the 371 

associated diffusion scheme and coefficients. 372 

 373 

 374 

 375 



Observational constraints  376 

Observational sea surface density constraints were derived from the World Ocean Atlas 2013 377 

temperature and salinity climatologies25. The maximum Arctic Ocean sea surface density was 378 

then calculated in the same manner as for the ESM ensemble.  379 

The uncertainty associated with Arctic Ocean maximum sea surface density observational 380 

constraints was estimated using standard propagation of uncertainty and combining (1) the 381 

published standard deviations of sea surface temperature and salinity for each grid cell and each 382 

month in WOA2013 to derive standard deviations for sea surface density, and (2) the standard 383 

deviation obtained when computing the weighted mean of 95th percentile density waters. 384 

Arctic Ocean salinity in World Ocean Atlas 2013 was recently evaluated against available in-situ 385 

data49. This comparison suggests that salinity observations in the World Ocean Atlas may have a 386 

small negative bias in the Barents Sea that may contribute to a negative density bias. 387 

Corroboration and correction of such a bias would, if anything, result in a minor increase in our 388 

constrained estimates of projected Arctic Ocean anthropogenic carbon and associated 389 

acidification. 390 

 391 

Probability density functions of anthropogenic carbon and ocean acidification 392 

Probability density functions (PDFs) of anthropogenic carbon storage and basin-averaged Ωarag, 393 

Ωcalc and pH in 2100 were calculated for the unconstrained (prior) CMIP5 ensemble and the 394 

emergent constraints.  The prior PDF was derived assuming all models were equally likely and 395 



sampled from a Gaussian distribution. The constrained PDFs were calculated as the normalised 396 

product of the conditional PDF of the emergent relationship and the PDF of the observational 397 

constraint following previously established methodologies21,22,50.  398 

 399 
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Extended Data Table 1. The probability (%) of different year 2100 acidification extremes under RCP8.5 490 
in the CMIP5 prior and after the application of the maximum surface density emergent constraint. 491 

 492 

 

Ωarag < 0.75 Ωcalc < 1.0 pH < 7.85 

 

Arctic Basin 
(0-bottom) 

Mesopelagic 

(400-800m) 

Arctic Basin 
(0-bottom) 

Mesopelagic 

(400-800m) 

Arctic Basin 
(0-bottom) 

Mesopelagic 

(400-800m) 

CMIP5 prior 24 51 3 23 35 83 

Emergent 
constraint 

41 88 1 37 62 100 
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 496 

Extended Data Figure 1. Projections of Arctic Ocean calcite saturation state and pH. a, ESM 497 

projections of the twenty-first century Arctic Ocean basin-averaged Ωcalc and c, basin-averaged 498 

pH. Vertical profiles of b, basin-averaged Ωcalc and d, pH in 2100 for the 11 ESMs. The GLODAPv2 499 

observational profiles of Ωcalc and pH for 2002 are marked as a black line in b and d. 500 
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 503 

Extended Data Figure 2. Arctic Ocean surface water density. Present-day annual-mean sea 504 

surface density from a-k, the 11 ESMs and from l, World Ocean Atlas 2013 observations. Contours 505 

delineate regions that contribute to the maximum surface density as defined by the 95th 506 

percentile densities. 507 
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 532 

Extended Data Figure 3. Arctic Ocean present-day density anomaly and anthropogenic carbon 533 

inventory in 2100 against the volume of light waters: a, Arctic Ocean present-day maximum 534 



density anomaly and b, Arctic Ocean anthropogenic carbon inventory in 2100 against the volume 535 

of light waters. The volume of light waters is defined as the volume of water masses with 536 

densities below the respective maximum sea surface density (95th percentile waters). 537 
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 540 

Extended Data Figure 4. Correlations between projections of the Arctic Ocean anthropogenic 541 

carbon inventory and Ωarag, Ωcalc and pH. Arctic Ocean basin-averaged a, Warag in 2100, b, Wcalc in 542 

2100, c, pH in 2100, and (d) the anthropogenic carbon inventory in 2002 against the 543 

anthropogenic carbon inventory in 2100 for the 11 ESMs. 544 
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 549 

Extended Data Figure 5. Emergent constraints on projected Ωcalc and pH. a, The projected Arctic 550 

Ocean basin-averaged Ωcalc and c, basin-averaged pH in 2100 against present-day maximum sea 551 

surface density (95th percentile waters) for the ESM ensemble (black dots). Linear regression fits 552 

(red dashed lines) and the associated 68 % prediction intervals are shown, as are data-based 553 

estimates of present-day maximum sea surface density (black dashed lines) with the associated 554 

standard deviation (black shaded area). Probability density functions for the end-of-century b, 555 

Arctic Ocean basin-averaged Ωcalc and d, basin-averaged pH, before (black) and after (red) the 556 

emergent constraint is applied. 557 
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 560 

Extended Data Figure 6. Arctic Ocean anthropogenic carbon inventory in 2100 against the 561 

number of grid cells in the Arctic Ocean on the native model grid. Arctic Ocean anthropogenic 562 

carbon inventory in 2100 against number of grid cells on the native model grid in the Arctic Ocean 563 

for each of the 11 ESMs. 564 
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 566 

Extended Data Figure 7. Emergent constraints on future aragonite saturation state in different 567 

depth layers. The projected end-of-century Arctic Ocean Ωarag, across six depth layers from a-f, 568 

against maximum sea surface density (95th percentile waters) for the ESM ensemble (black dots). 569 

Linear regression fits (red dashed lines) and the associated 68 % prediction intervals are shown, 570 

as are data-based estimates of present-day maximum sea surface density (black dashed lines) 571 

with the associated standard deviation (black shaded area). 572 
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Extended Data Figure 8. Emergent constraints on future calcite saturation state in different 574 

depth layers. The projected end-of-century Arctic Ocean Ωcalc, across six depth layers from a-f, 575 

against maximum sea surface density (95th percentile waters) for the ESM ensemble (black dots). 576 

Linear regression fits (red dashed lines) and the associated 68 % prediction intervals are shown, 577 

as are data-based estimates of present-day maximum sea surface density (black dashed lines) 578 

with the associated standard deviation (black shaded area).	579 
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 581 

Extended Data Figure 9. Constrained end-of century Arctic Ocean vertical profiles of pH and 582 

pCO2. Multi-model mean vertical profiles of basin-averaged a, pH and b, pCO2 in 2100 (black lines) 583 

with the associated standard deviation (grey shading). Constrained estimates of pH and pCO2 584 

(red dots) are shown for six different depth layers (0-200 m, 200-400 m, 400-800 m, 800-1400 m, 585 

1400-2000 m, 2000-3500 m). The constrained estimates are shown at the mid-point of each layer, 586 

with error bars representing ± one standard deviation. 587 
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