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Abstract

Warm Neptunes offer a rich opportunity for understanding exo-atmospheric chemistry. With the upcoming James
Webb Space Telescope (JWST), there is a need to elucidate the balance between investments in telescope time
versus scientific yield. We use the supervised machine-learning method of the random forest to perform an
information content (IC) analysis on a 11-parameter model of transmission spectra from the various NIRSpec
modes. The three bluest medium-resolution NIRSpec modes (0.7–1.27 μm, 0.97–1.84 μm, 1.66–3.07 μm) are
insensitive to the presence of CO. The reddest medium-resolution mode (2.87–5.10 μm) is sensitive to all of the
molecules assumed in our model: CO, CO2, CH4, C2H2, H2O, HCN, and NH3. It competes effectively with
the three bluest modes on the information encoded on cloud abundance and particle size. It is also competitive
with the low-resolution prism mode (0.6–5.3 μm) on the inference of every parameter except for the temperature
and ammonia abundance. We recommend astronomers to use the reddest medium-resolution NIRSpec mode for
studying the atmospheric chemistry of 800–1200 K warm Neptunes; its corresponding high-resolution counterpart
offers diminishing returns. We compare our findings to previous JWST IC analyses that favor the blue orders and
suggest that the reliance on chemical equilibrium could lead to biased outcomes if this assumption does not apply.
A simple, pressure-independent diagnostic for identifying chemical disequilibrium is proposed based on measuring
the abundances of H2O, CO, and CO2.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (486); Exoplanets (498)

1. Introduction

With the much anticipated launch of the James Webb Space
Telescope (JWST) in 2021 (and Cycle 1 proposals due in
2020), the exoplanet community is studying the balance
between investments of telescope time and scientific yield
(Beichman et al. 2014; Barstow et al. 2015; Greene et al. 2016;
Batalha & Line 2017; Howe et al. 2017). Both the Guaranteed
Time Observations and the Early Release Science programs are
designed to gain an understanding of systematics and data
reduction strategies (Stevenson et al. 2016; Bean et al. 2018;
Kilpatrick et al. 2018) and will provide the first opportunities to
obtain JWST transit spectroscopy data over a wide range of
infrared wavelengths for many of the best-known transiting
exoplanets.

1.1. Motivation I: Anticipated Chemical Diversity of Warm
Neptunes

One of the unexpected outcomes of the Kepler mission is
that ∼1000 K sub-Neptune- to Neptune-sized exoplanets on
short-period orbits are common (e.g., Petigura et al. 2013;

Crossfield et al. 2016), which we will collectively term “warm
Neptunes” in the current study. Their bulk densities indicate the
presence of a hydrogen- and/or helium-dominated atmosphere.
The Transiting Exoplanet Survey Satellite (TESS) is discover-
ing warm Neptunes orbiting bright stars (e.g., Dragomir et al.
2019; Esposito et al. 2019; Quinn et al. 2019; Trifonov et al.
2019). With no example in our solar system, a deeper
understanding of the properties of warm Neptunes is expected
to shed light on exoplanet formation processes. The complete
chemical inventory of their atmospheres is currently unknown,
and it is expected that JWST spectra will allow the exoplanet
community to make significant progress on this question.
Across a temperature range of 800–1200 K, warm Neptunes

are theoretically predicted to exhibit remarkable chemical
diversity with water (H2O), methane (CH4), carbon dioxide
(CO2), and carbon monoxide (CO) having a wide range of
volume mixing ratios as the elemental abundance of carbon
(C/H) and the carbon-to-oxygen ratio (C/O) vary (Moses et al.
2013). At ∼1000 K, equilibrium chemistry predicts a transition
from CH4- to CO-dominated atmospheres toward higher
temperatures (e.g., Moses et al. 2011; Madhusudhan 2012;
Venot et al. 2014; Heng & Tsai 2016). However, 800–1200 K
is also the temperature range where the assumption of chemical
equilibrium breaks down, because the chemical and dynamical
timescales become comparable and photochemistry may not be
negated by high temperatures. For example, Madhusudhan &
Seager (2011) find tentative evidence for the overabundance of
CO (compared to expectations from chemical equilibrium) in
the warm Neptune GJ 436b, which has an equilibrium
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temperature of about 649±60 K (Torres et al. 2008); see also
Morley et al. (2017). In our own Jupiter, the overabundance of
CO was interpreted as a sign of disequilibrium chemistry due to
atmospheric mixing (Prinn & Barshay 1977). Similarly,
Oppenheimer et al. (1998) detected an excess of CO in the
brown dwarf Gliese 229B.

For all of these reasons, warm Neptunes with atmospheric
temperatures in the range of 800–1200 K are the next frontier in
understanding atmospheric chemistry from transmission
spectroscopy.

1.2. Motivation II: Accuracy of Constraining Elemental
Abundances and C/O

The key controlling parameters of atmospheric chemistry are
the set of elemental abundances (mainly C/H, O/H, N/H) and
C/O (e.g., Burrows & Sharp 1999; Madhusudhan 2012; Heng
& Tsai 2016). Atmospheric mixing and photolysis act to
complicate the translation between the elemental and molecular
abundances (e.g., Moses et al. 2011; Tsai et al. 2017). As
already noted by Line et al. (2013) and Greene et al. (2016), the
best approach for inferring the elemental abundances and C/O
from spectra is to directly retrieve the abundances of the major
carbon, oxygen, and nitrogen molecular carriers,
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where Xi are the volume mixing ratios of molecules and
= + + + + +X X X X X X X2 4 2 2 3H H CH HCN C H H O NH2 4 2 2 2 3. In

H2-dominated atmospheres (as studied here), »X X2H H2. It is
important to note that these are inferred quantities in the gas
phase, which may differ from their bulk values owing to
condensation, e.g., sequestration of oxygen into olivine. Only
in extremely hot conditions, such as for ultrahot Jupiters and
main-sequence stars, may we reasonably assume that the
photospheric and bulk elemental abundances are similar (e.g.,
Kitzmann et al. 2018). Line et al. (2013) caution that retrieving
directly for the molecular abundances results in a nonuniform
prior for C/O (see their Section 3.3).

In the current study, we consider seven molecules. CO and CH4

are the major carbon carriers (Burrows & Sharp 1999), with CO2

being a minor carbon carrier unless the metallicity is highly
enriched (e.g., Moses et al. 2013; Heng & Lyons 2016). H2O and
CO are major oxygen carriers (Burrows & Sharp 1999). Acetylene
(C2H2) becomes nonnegligible as C/O approaches unity (e.g.,
Moses et al. 2011; Madhusudhan 2012; Heng & Tsai 2016). NH3

competes with molecular nitrogen (N2) as the major nitrogen
carrier (Burrows & Sharp 1999), while hydrogen cyanide (HCN) is
an important link between the carbon and nitrogen reservoirs (e.g.,
Moses et al. 2011). The accuracy of retrieving for the elemental
abundances hinges on a spectrum having sufficient spectral
resolution, signal-to-noise ratio, and wavelength coverage to
accurately account for the molecules that are present in sufficient

amounts. If not all of the molecules are properly accounted for, it
will lead to erroneous inferences about C/O.
A second approach is to assume chemical equilibrium and

parameterize all of the molecular abundances by two numbers:
C/O and the metallicity. Chemical equilibrium is a local
approximation in the sense that each patch of atmosphere has
no memory of its past and all of the molecular abundances may
be completely determined once one has knowledge of the local
temperature and pressure. Metallicity has three definitions in
the astronomical literature: stellar astrophysicists refer to the
relative abundance of all elements heavier than helium by mass
(Section 3.12 of Asplund et al. 2009), observational spectro-
scopists refer to the elemental abundance of iron by number
(Section 4.2 of Asplund et al. 2009), and atmospheric chemists
typically refer to the elemental abundance of a volatile element
(e.g., carbon) by number (Moses et al. 2013). In the third
definition, it is usually assumed that the ratios of the elemental
abundances are kept fixed to their solar values with the
exception of C/H or O/H, which are allowed to be free
parameters in order to allow for a variable C/O (e.g., Moses
et al. 2013; Heng 2018; Drummond et al. 2019). In chemical
equilibrium, knowledge of the abundance of a single carbon or
oxygen carrier is sufficient to constrain C/H or O/H,
respectively. However, if chemical equilibrium is a poor
assumption, then misleading conclusions will follow. None of
the atmospheres of solar system bodies are well described by
chemical equilibrium.
One of the goals of the current study is to examine the

relationship between the accuracy of retrieving for the
elemental abundances and hence C/O.

1.3. Motivation III: Novel Information Content Analysis
Approach, Feasible for Complex Models

Classical information content (IC) analysis is based on
computing Jacobians, which are the derivatives of the model
output (e.g., transit depth) with respect to the parameters. See
Section 2 of Batalha & Line (2017) for a recent review.9 Classical
IC analysis is a time-consuming process. For example, Section
3.1 of Batalha & Line (2017) states, “For each of these 84
combinations of planet types, we compute a separate Jacobian”
(these authors’ emphasis). Howe et al. (2017) introduce the use
of “mutual information” (see their Section 2) but remark how
“the difficulty with the use of mutual information is that it is
computationally intensive, especially for the dense data sets
produced by JWST.” For reasons of computational feasibility,
Howe et al. (2017) adopted a simple three-parameter model that
assumed an isothermal transit chord, gray clouds, and a
metallicity.10 Batalha & Line (2017) assumed chemical
equilibrium models described by the metallicity and C/O and
a nongray treatment of clouds.
In the current study, we adopt a qualitatively different approach

to IC analysis. Recently, Márquez-Neila et al. (2018) demon-
strated that the classical machine-learning method of the “random
forest” (Ho 1998; Breiman 2001; Criminisi et al. 2011) may be
adapted to perform atmospheric retrieval, as a complement to

9 Note that the treatment in Batalha & Line (2017) requires the assumption of
Gaussian probability distributions.
10 Presumably, this requires the assumption of chemical equilibrium, but
Howe et al. (2017) do not explicitly state this beyond the following sentence:
“Most notably, the alkali metal lines and the CO bands grow much stronger
with increasing temperature as the concentrations of these species in chemical
equilibrium increase.”
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standard methods such as nested sampling (Skilling 2006; Feroz
& Hobson 2008; Feroz et al. 2009, 2019). Fisher et al. (2020)
compare random forest retrieval to other methods (nested
sampling, Bayesian neural networks). There are three distinct
advantages of random forest retrieval in terms of practical
implementation. First, it performs “feature importance,” which in
the context of spectra means that it is able to compute the relative
importance of each data point for constraining each parameter of a
chosen model used to interpret the spectra. Second, it is able to
easily perform large suites of mock retrievals in the form of “real
versus predicted” (RvP) plots (Márquez-Neila et al. 2018; Fisher
et al. 2020; Oreshenko et al. 2020). Third, since the random forest
may be trained on a pre-computed model grid of arbitrary
sophistication, the obstacles of computational feasibility encoun-
tered by Howe et al. (2017) and Batalha & Line (2017) may be
overcome. Instead of assuming chemical equilibrium, we allow
each of our seven molecules to take on a broad range of
abundances and infer the elemental abundances and C/O from the
retrieved abundances.

Examples of RvP plots are shown in Figure 1, where we
perform a suite of 20,000 mock retrievals for Hubble Space

Telescope (HST) Wide Field Camera 3 (WFC3) transmission
spectra of the warm Neptune GJ 436b. These RvP plots may be
used to quantify the ability of a retrieval to accurately recover
each parameter value of the model. The random forest reports
the mean predicted values of the parameters in the RvP plots.
The figure of merit used is the “coefficient of determination”
(2), where = 02 means zero predictability (zero correlation
between the RvP values of a parameter) and = 12 means
perfect predictability. Model degeneracies will generally lower
the value of 2 (Márquez-Neila et al. 2018; Fisher et al. 2020;
Oreshenko et al. 2020). The RvP plots reproduce widely
accepted knowledge in the exoplanet retrieval literature: WFC3
transmission spectra probe mainly H2O, CH4, and NH3, with
some sensitivity to HCN, but are insensitive to CO and CO2.
Furthermore, while cloud particle radius and abundance may be
retrieved, one is blind to the retrieval of cloud composition. If
CO and H2O are present in comparable abundances, then the
retrieval will only accurately infer the H2O abundance, leading
to an inaccurate estimate of C/O.
Figure 2 shows the accompanying feature importance plots.

Each feature importance plot quantifies the relative importance

Figure 1. RvP values of the various parameters from a suite of 20,000 mock retrievals on HST-WFC3 transmission spectra using the random forest method. For clarity
(and with no loss of generality), we only show 5000 of these mock retrievals. The stellar and exoplanetary parameters of GJ 436 and the warm Neptune GJ 436b,
respectively, are assumed (see text). The synthetic spectra are composed of 13 wavelength bins from 0.8 to 1.7 μm following Kreidberg et al. (2015) and to provide
continuity with Márquez-Neila et al. (2018). Each synthetic data point assumes an optimistic photon-limited uncertainty of 20 parts per million (ppm). The blue and
red points correspond to cloud-free (a < -100

9 cm−1; see text for definition) and cloudy (a > -100
9 cm−1) models, respectively. Negative and positive values of the

coefficient of determination () correspond to negative and positive correlations, respectively.
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of each of the 13 data points in the WFC3 transmission
spectrum for determining the value of a parameter. For
example, the two data points near 1.4 μm constrain the water
abundance, which matches our intuition of a water feature
being present at these wavelengths. The bluest data points
constrain the cloud abundance and particle radius. When the
feature importance is about equal for all 13 data points (e.g., for
CO), it often indicates a lack of sensitivity to a given parameter,
which can only be confirmed by cross-matching with the

» 02 value from the RvP plot (Figure 1).
In the current study, we will demonstrate the usefulness of

both feature importance and RvP analysis for understanding the
IC of JWST NIRSpec transmission spectra of warm Neptunes.
The random forest technique has also been applied to ground-
based spectra of brown dwarfs at medium spectral resolution
(Oreshenko et al. 2020) and ultrahot Jupiters at high spectral
resolution (Fisher et al. 2020).

1.4. Motivation IV: Planning NIRSpec Observations on JWST

The current study is restricted to transmission spectroscopy
at optical to near-infrared wavelengths. Specifically, we
consider the NIRSpec instrument on JWST.11 In the low-

resolution (∼100) prism mode, NIRSpec has a simultaneous
wavelength coverage of 0.6–5.3 μm. It is suitable for stars
fainter than »J 10, corresponding to Kepler and fainter
TESS targets. At medium resolution (∼1000), NIRSpec has
four modes: 0.7–1.27 μm (G140M/F070LP), 0.97–1.84 μm
(G140M/F100LP), 1.66–3.07 μm (G235M/F170LP), and
2.87–5.10 μm (G395M/F290LP). These modes are suitable
for stars fainter than »J 6–8. Four high-resolution (∼2700)
modes exist as well, but as we will show, these do not add
much interpretational value, in terms of retrieving elemental
and molecular abundances, to what the medium-resolution
modes already offer. Table 1 provides a summary of the JWST
NIRSpec modes we will consider in the current study.

1.5. Layout of Study

In Section 2, we describe our methods of computation. In
Section 3, we present the results from our IC analyses and also
an improved diagnostic for chemical disequilibrium. In
Section 4, we compare our results to those of previous studies
and discuss their implications for planning JWST observations.

2. Methodology

2.1. Opacities

2.1.1. Molecules

The molecular opacities of H2O, HCN, NH3, CO, CO2, CH4,
and C2H2 are taken from the ExoMol (Barber et al. 2006, 2014;
Yurchenko et al. 2011, 2013; Yurchenko & Tennyson 2014),
HITRAN (Rothman et al. 1987, 1992, 1996, 2003, 2005, 2010,
2013), and HITEMP (Rothman et al. 2009) spectroscopic
databases; the pressure broadening parameters for H2–He
mixtures are taken from the ExoMol database. A review of the
spectroscopic databases may be found in Tennyson & Yurchenko
(2017). For a review of how to compute opacities given inputs
from the spectroscopic databases, we refer the reader to, for
example, the appendix of Rothman et al. (1996), Grimm & Heng
(2015), Chapter 5 of Heng (2017), and Yurchenko et al. (2018).
All opacities are calculated with the HELIOS-K opacity calculator
(Grimm & Heng 2015) from 10−8 to 103 bar. Table 2 states the
details of the opacities, including the range of wavenumbers/
wavelengths over which spectroscopic data needed as input exist.
When computing transmission spectra, we use opacity sampling at
the resolutions stated in Table 1.

2.1.2. Clouds

In the current study, we will use the terms “cloud,” “haze,” and
“aerosol” interchangeably, based on the reasoning that while these
terms may reflect different formation pathways, the effects on a
spectrum follow a common phenomenological treatment. There is

Figure 2. Companion figure montage to Figure 1, which shows the “feature
importance” plots from the random forest retrieval analysis. Each feature
importance plot quantifies the relative importance of each data point in an HST-
WFC3 transmission spectrum for determining the value of a given parameter.
The entries in each panel add up to unity.

Table 1
JWST NIRSpec Modes Considered

Shorthand Wavelengths (μm) Configuration Resolution

L 0.6–5.3 PRISM/CLEAR 100
M1 0.7–1.27 G140M/F070LP 600
M2 0.97–1.84 G140M/F100LP 1000
M3 1.66–3.07 G235M/F170LP 1000
M4 2.87–5.10 G395M/F290LP 1000
H4 2.87–5.10 G395H/F290LP 2700

11 https://jwst-docs.stsci.edu/near-infrared-spectrograph/nirspec-observing-
modes/nirspec-bright-object-time-series-spectroscopy
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no consensus on the use of these terms: Earth scientists use “haze”
versus “cloud” as a measure of particle size, while planetary
scientists use these terms to refer to photochemical and
thermochemical formation origins, respectively.

If a cloud consists of spherical particles of a single radius
(i.e., a monodisperse cloud), then its cross section is

s p= Q r , 2c c
2 ( )

where Q is the extinction efficiency. It may be computed using
Mie theory (Mie 1908). Kitzmann & Heng (2018) use the
open-source LX_MIE Mie code to calibrate a convenient fitting
function for Q,

=
+-

Q
Q

Q x x
, 3

a
1

0
0.2

( )

where »Q 41 (Kitzmann & Heng 2018), the dimensionless
size parameter is p l=x r2 c , and λ is the wavelength. This
fitting function smoothly transitions between the regimes of
small (x 1; Rayleigh and nongray continuum) and large
(x 1 ; gray continuum) particles. For simplicity, we assume
a=4; see Table 2 of Kitzmann & Heng (2018) for the values
of a as a function of the composition. Refractory and volatile
condensates correspond to ~Q 100 and ∼100, respectively
(see Table 2 of Kitzmann & Heng 2018). The cloud extinction
coefficient is assumed to be uniform along the transit chord.

It is worth noting that this simplified treatment of the cloud
cross section does not capture composition-specific spectral
features (e.g., Cushing et al. 2009; Lee et al. 2014).

As it is calibrated on first-principles calculations, our treatment
of clouds is an improvement over the gray cloud assumption of
Howe et al. (2017) and the approach of Greene et al. (2016) and
Batalha & Line (2017), who used a combination of a “cloud top
pressure” (for gray clouds) and a power-law parameterization (for
nongray clouds).

2.1.3. Total Extinction Coefficient

The total extinction coefficient is

åa a k r= +
m

m
X , 4c

i

i
i i ( )

where mi is the mass, Xi is the volume mixing ratio, and ki is
the opacity of each molecule. The sum is performed over all of
the molecules in the system. The mass density and mean
molecular mass of the atmosphere are given by ρ and m,
respectively. The extinction coefficient associated with clouds

is written as

a
a

=
+-Q x x

. 5c
0

0
4 0.2

( )

The mean molecular mass, cloud volume mixing ratio (Xc), and
Q1 are subsumed into a single fitting parameter,

a
p

µ
Q r X

m
. 6c c

0
1

2

( )

2.2. Transmission Spectra

Consistent with Greene et al. (2016) and Howe et al. (2017),
we assume isothermal, nonisobaric transit chords.12 We use the
HELIOS-O code to compute transmission spectra (Gaidos
et al. 2017; Bower et al. 2019). Each model atmosphere is
divided into 150 annuli in pressure (P) from 10−8 to 10 bar.
The limit of 10 bar is chosen to ensure that the atmosphere is
fully opaque at the lower boundary and has no bearing on the
final outcome of the calculation.
At each wavelength, the slant optical depth is computed

using (Brown 2001)

òt a=
-¥

¥
dx, 7( )

where x is the spatial coordinate along the line of sight. The
transmission function along each line of sight is

= t- e . 8( )

Integrating along the radial coordinate yields the transit depth
(Brown 2001),

ò= -
¥


 

R

R R
r dr

1
2 1 . 9

2

2 0

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

JWST spectra are expected to encode enough information
(Fisher & Heng 2018) to break the normalization degeneracy
(Benneke & Seager 2012; Griffith 2014; Barstow et al. 2015;
Heng & Kitzmann 2017; Heng 2019). Nevertheless, we
account for this degeneracy by matching the computed white-
light radius of each model to the measured one ( =R R0.3767 J
from 0.5 to 1.0 μm; Torres et al. 2008).
Across the wavenumber range of l =1 1800–17,000 cm−1

(wavelength range of 0.6–5.5 μm), we assume a uniform
spacing in llog 1( ) corresponding to 6700 points, such that the
spectral resolution is approximately constant with an average

Table 2
Spectroscopic Line Lists Used to Generate Opacities

Molecule Line List Shortest Wavelength Wavenumber Range References
(μm) (cm−1)

CO 12C–16O__Li2015 0.45 0–22000 Li et al. (2015)
CO2 HITEMP 2010 1.04 258–9648 Rothman et al. (2009)
CH4 12C–1H4__YT10to10 0.83 0–12100 Yurchenko et al. (2013), Yurchenko & Tennyson (2014)
C2H2 HITRAN 2016 1.01 0–9889 Gordon et al. (2017)
H2O 1H2–16O__POKAZATEL 0.24 0–41200 Polyansky et al. (2018)
HCN 1H–12C–14N__Harris 0.57 0–17585 Harris et al. (2006), Barber et al. (2014)
NH3 14N–1H3__BYTe 0.83 0–12000 Yurchenko et al. (2011)

12 It is not equivalent to assuming an isothermal atmosphere; rather, it is the
assumption that the region of the atmosphere probed by transmission
spectroscopy is isothermal over the wavelength (and hence pressure) range
considered.
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value of 3000. The spectra are then restricted in wavelength
and binned down to a spectral resolution of 100, 600, or 1000,
depending on which modes of NIRSpec one is studying (see
Table 1). An optimistic, photon-limited uncertainty of 20 ppm
per data point is assumed, consistent with Greene et al. (2016).
The intention is to identify the possible weaknesses of each
NIRSpec mode even under idealized conditions.

On a desktop computer (Intel Core i9-7960X CPU), it takes
HELIOS-O, which is written in the C++ programming
language, about 1 s to compute each model. For the entire
grid of 100,000 models, this amounts to about 30 hr of
computing time.

2.3. Random Forest Retrieval

The “random forest” is a classical, supervised method of
machine learning (Ho 1998; Breiman 2001). It belongs to a
class of methods known as Approximate Bayesian Computa-
tion (ABC). Within the ABC framework, it has been
demonstrated that one may compute approximate posterior
distributions and perform model comparison via computation
of the Bayesian evidence (Sisson et al. 2019).

As is appropriate for continuous quantities such as transit
depths or radii, a regression tree (rather than a decision tree) is
used to classify transmission spectra with different sets of
parameter values (treated as “labels”; Márquez-Neila et al.
2018). A bootstrapping method is used to generate an
uncorrelated forest of regression trees, and the combined
output of the random forest yields the posterior distributions of
parameters (Criminisi et al. 2011). Following Fisher et al.
(2020), we take as output all of the entries in a leaf, rather than
the average of the leaf, as the sampled posterior distribution of
a parameter.

As demonstrated by Márquez-Neila et al. (2018), the random
forest produces two additional diagnostics: feature importance
plots, which quantify the relative importance of each data point
in the transmission spectrum for constraining each parameter;
and RvP plots, which quantify the degree to which each
parameter may be predicted in mock retrievals given the noise
model. The RvP analysis is essentially an efficient way to
generate large suites (~104) of mock retrievals, which is
computationally challenging to accomplish using standard
retrieval methods (e.g., Barstow et al. 2015).

The range of values of the model parameters, as well as the
assumptions on their prior distributions, are stated in Table 3.
Each parameter is randomly drawn from its prior and a noise-
free transmission spectrum is generated, as explained in
Section 2.2. In order to add noise, each point in the synthetic
spectrum is assumed to follow a Gaussian distribution with a
standard deviation of 20 ppm. The points are then randomly
sampled from these distributions, centered on their noise-free
values.

This is repeated to build a grid of 100,000 models for the
forest, split into 80,000 for training and 20,000 for testing. The
random forest consists of 1000 trees. Tree splitting is
performed using the following steps: the range of values of
each parameter is normalized such that its maximum value is
100; tree splitting ceases when the change in total variance of
the parameter values (as a node is split into two branches) is
less than a stated tolerance, which is set to 0.01. Each time a
tree is split, a random subset of~ N points is used, where N is
the total number of spectral points, to reduce biases. Tree
pruning methods are not used. The implementations of the

random forest method and R2 metric are from the open-source
scikit.learn library (Pedregosa et al. 2011) in the
Python programming language.
On a desktop computer (Intel Core i7 CPU), it takes HELA,

which is written in the Python programming language, about
10 minutes to train the random forest.

3. Results

As an illustration, we will use the example of GJ 436b for
our calculations: the GJ 436 star has a stellar radius of

=R R0.455 , and GJ 436b has a surface of g=1318 cm s−2

(von Braun et al. 2012). The qualitative conclusions of our
study do not depend on the choice of these parameter values.

3.1. RvP Analysis of Different JWST NIRSpec Modes

Table 1 lists the four medium-resolution modes of JWST
NIRSpec. The expectation is that the M1 (0.7–1.27 μm) and
M2 (0.97–1.84 μm) modes, which probe a collective wave-
length range similar to the WFC3 instrument of HST, encode
the most information on cloud properties (e.g., Lecavelier des
Etangs et al. 2008) but may be insensitive to important carbon-
bearing molecules such as CO and CO2. Therefore, we begin
the discussion by comparing the M1 and M4 (2.87–5.10 μm)
modes.
Figure 3 shows the outcomes of performing 20,000 mock

retrievals for each of the modes in turn. For clarity of
presentation (and with no loss of generality), we display only
5000 out of the 20,000 mock retrievals. It is emphasized again
that the random forest reports the mean predicted value of each
parameter.13 Based on the similar 2 values obtained, the M1
and M4 modes do comparably well at constraining the H2O and
NH3 abundances, as well as the temperature. The M4
mode outperforms the M1 mode by more than 0.1 in 2

value for constraining the abundances of HCN, CH4, and C2H2.
As demonstrated by the low 2 values, the M1 mode is
insensitive to CO2 ( = 0.1382 ) and essentially blind to CO
( = - 0.0032 ). The M4 mode offers drastic improvements on
constraining CO ( = 0.5082 ) and CO2 ( = 0.7792 ) owing
to their spectral features across 4–5 μm (Figure 4).
When a mock retrieval fails to predict the value of a given

parameter, the RvP analysis returns values that are the mean of
the range considered. In the case of CO, since the range of
volume mixing ratios considered is 10−9 to 10−2 (in log-
uniform spacing), the random forest returns = -X 10CO

6 to
10−5 for the M1 mode. In other RvP plots where the predicted
values of the parameters level off at a value that is below the
mean of the range considered, these indicate the minimum or

Table 3
Retrieved Parameters and Their Prior Distributions

Quantity Symbol Units Range Prior Type

Temperature T K 800–1200 uniform
Volume mixing ratios Xi L 10−9

–10−2 log-uniform
Cloud extinction coeffi-
cient normalization

a0 cm−1 10−11
–10−7 log-uniform

Proxy for cloud
composition

Q0 L 1–100 uniform

Cloud particle radius rc μm 10−3
–103 log-uniform

13 The median value may also be reported, which is the approach followed by
Fisher et al. (2020).
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Figure 3. RvP analysis of the medium-resolution M1 (top montage of 11 panels) vs. M4 (bottom montage of 11 panels) modes of JWST NIRSpec. As in Figure 1, the
blue and red points correspond to cloud-free (a < -100

9 cm g−1) and cloudy (a > -100
9 cm g−1) transmission spectra, respectively. For clarity of presentation, we

show only 5000 out of the actual 20,000 mock retrievals performed.
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threshold value of a parameter that can be constrained given the
noise model. For example, -X 10H O

7
2 for both the M1 and

M4 modes. Generally, volume mixing ratios as low as ~ -10 8

may be constrained given the assumed 20 ppm noise floor.
In Figure 3, the points have been color-coded blue

(a < -100
9 cm−1) or red (a > -100

9 cm−1) to correspond to
cloud-free or cloudy atmospheres, respectively. This threshold
value of a0 was obtained by trial and error and is guided mainly
by inspecting the RvP behavior of both a0 and rc. The bimodal
behavior of a0 above this threshold is an indication of the
degeneracy between the degree of cloudiness and the molecular
abundances. The trend of rc leveling off at1μm is the outcome
of the cloud opacity becoming gray/constant as the cloud
particles become large compared to the wavelengths probed.
This trend is consistent with the basic principles of Mie theory.
In all of the RvP plots of the molecular abundances and
temperature, a subpopulation of the red (cloudy) points cluster in
the middle of the range of values considered, indicating that the
random forest does not predict a value for the given parameter.

The M1 and M4 modes constrain a0 ( = 0.4882 vs. 0.452)
and rc ( = 0.2072 vs. 0.210) almost equally well. Both the M1
and M4 modes have no sensitivity to the cloud composition (via
Q0; » 02 ), which implies that it is challenging to identify cloud
composition by constraining changes in the gradient of the
spectral continuum alone. It does not rule out the possibility that
higher-order spectral features that are composition specific may
retain constraining power (e.g., Cushing et al. 2009; Lee et al.
2014).

For completeness, the RvP plots of the M2, M3, and L modes
are included in the Appendix as Figures A2, A4, and A6,
respectively. The M2 mode exhibits similar behavior to the M1
mode in that it is somewhat insensitive to CO2 ( = 0.3222 ) and
nearly blind to CO ( = 0.0392 ). The M3 mode (1.66–3.07μm)
is blind to CO ( = 0.0752 ) but sensitive to CO2 ( = 0.6692 ).
The L mode has good sensitivity to CO2 ( = 0.7632 ) but is
largely insensitive to CO ( = 0.1712 ). Section 4.2 and Figure 9
perform a detailed comparison of the 2 values of every
parameter for all of the modes considered in the present study.

3.2. Feature Importance Analysis of JWST NIRSpec Modes

Figure 4 shows the feature importance analysis of the M1
versus M4 modes. Each panel shows the fractional importance
of each data point for constraining a given parameter. It cannot
be overemphasized that the feature importance values cannot
be compared between panels, because the entries are normal-
ized such that they add up to unity within the same panel.
The feature importance analysis of the M4 mode reproduces

our intuition about the warm Spitzer Space Telescope channels.
Channel 1 of the IRAC instrument, which ranges from about 3.1
to 3.9μm and is often quoted as the “3.6 μm channel,” probes
several spectral features of methane (e.g., Sudarsky et al. 2003;
Fortney et al. 2005, 2006, 2010). Channel 2 of IRAC, which
ranges from about 3.9 to 5.1 μm and is often quoted as the
“4.5μm channel,” probes carbon monoxide (e.g., Sudarsky et al.
2003; Fortney et al. 2005, 2006, 2010; Charbonneau et al. 2008).
It is consistent with the narrative that the flux ratios of these

Figure 4. Feature importance analysis of the medium-resolution M1 (left montage of 12 panels) vs. M4 (right montage of 12 panels) modes of JWST NIRSpec.
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channels probe the relative abundances of CH4 to CO, and is thus
a measure of disequilibrium chemistry (e.g., Madhusudhan &
Seager 2011; Moses et al. 2011).

Other properties are less apparent without detailed scrutiny
of the feature importance plots. Generally, molecules such as
H2O, HCN, NH3, CH4, and C2H2 have multiple spectral lines
distributed across the wavelength ranges of both the M1 and
M4 modes. For the M4 mode, there are strong CO2 features
between 4 and 5 μm. It also encompasses a CO feature at
4.7 μm, which explains the ability of the 4.5 μm channel of
IRAC to constrain carbon monoxide. The M1 and M4 modes
are equally good at constraining a0 and the cloud particle
radius (based on comparing the2 values as discussed earlier),
but these constraints come from different wavelength regions.

Parameters associated with » 02 typically have almost
equal feature importance distributed across wavelength, as is
the case for Q0 (both M1 and M4) and CO (only M1). For
completeness, we include in the Appendix the feature
importance plots of the M2, M3, and L modes in Figures A3,
A5, and A7, respectively.

3.3. Posterior Distributions from Mock Retrievals

As an illustration, we consider a case study that is motivated by
qualitative trends in gaseous, equilibrium chemistry at ∼1000K
(e.g., Moses et al. 2011, 2013; Madhusudhan 2012; Heng &
Tsai 2016): a carbon-rich (water-poor) atmosphere consisting
of = = -X X 10CO CH

3
4 , = = = -X X X 10HCN C H CO

4
2 2 2 , and

=XH O2
-10 5, which corresponds to »C O 1.98/ or »log C O/

0.30. For illustration, we assume T=1000 K, a = -100
10 cm−1,

=Q 100 , and rc=1μm.
Consistent with the insensitivity of the M1 mode to CO, CO2,

and C2H2, the posterior distributions of these molecules are

unconstrained (Figure 5). The M4 mode does surprisingly poorly
on CO, but this is because its spectral lines are being masked by
those of CO2 and CH4 (see Appendix). Both modes obtain only
an upper limit for NH3, which is absent from this model
atmosphere. Overall, the M4 mode does somewhat better at
retrieving the C/O ratio compared to the M1 mode (Figure 6).
Identifying the minimum set of molecules needed to explain

a spectrum may be achieved using Bayesian model comparison
(e.g., Benneke & Seager 2012; Waldmann et al. 2015; Fisher &
Heng 2018) or deep learning methods (e.g., Waldmann 2016),
which are beyond the scope of the present study.

3.4. An Alternative Diagnostic for Detecting Chemical
Disequilibrium

Line & Yung (2013) previously proposed a simple diagnostic
for identifying chemical disequilibrium in an atmosphere, based
on measuring the volume mixing ratios associated with the
following chemical reaction (e.g., Moses et al. 2011):

+ +CH H O CO 3H . 104 2 2 ( )

When rewritten in the formalism of Heng & Tsai (2016),
Equation (2) of Line & Yung (2013) is the reciprocal of

X

X X

P

P
, 11CO

CH H O 0

2

4 2

⎛
⎝⎜

⎞
⎠⎟ ( )

where =P 1 bar0 is an arbitrary reference pressure. If the transit
chord probed is in chemical equilibrium, then the preceding
expression is the equilibrium constant,

= -
D


K
G

T
exp , 12eq

0,1

univ

⎛
⎝⎜

⎞
⎠⎟

˜
( )

Figure 5. Posterior distributions from mock retrievals of a carbon-rich (water-poor) atmosphere with T=1000 K, = = -X X 10CO CH
3

4 , = =X XHCN C H2 2

= -X 10CO
4

2 , = -X 10H O
5

2 , a = -100
10 cm−1, =Q 100 , and rc=1 μm. The left and right montages are for the M1 and M4 modes, respectively. The kink in the

synthetic spectrum associated with the M1 mode is due to the nonexistence of CH4 line list data at bluer wavelengths. The vertical black dotted lines show the median
value of each posterior distribution. Wherever applicable, the vertical red solid lines show the truth values of a parameter.
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where = 8.3144621univ J K−1 mol−1 is the universal gas
constant and DG0,1˜ is the molar Gibbs free energy of the
reaction (at the reference pressure) tabulated in the JANAF
database14 and listed in, for example, Table 2 of Heng & Lyons
(2016).

The key idea proposed by Line & Yung (2013) is to retrieve
for the volume mixing ratios (X X X, ,CO CH H O4 2 ) and obtain an
estimate for Equation (11). If this estimate disagrees with Keq
(which requires the retrieved temperature as an input), then the
region of the atmosphere probed by transmission spectroscopy
is in chemical disequilibrium. The major uncertainty with this
approach is that the pressure probed in transmission (P) needs
to be accurately and precisely known, especially since it
appears as the square of itself in Equation (11). See Section 6.3
of Greene et al. (2016) for a critique of Line & Yung (2013).

Using the same concept, we propose to focus on another
chemical reaction (e.g., Moses et al. 2011),

+ +CO H CO H O, 132 2 2 ( )

where the corresponding combination of volume mixing ratios
has no dependence on pressure (e.g., Heng & Tsai 2016),

X X

X
, 14CO H O

CO

2

2

( )

because the number of molecules associated with the reactants and
products is the same. As we will see in Section 4.2, only the M4
mode of JWST NIRSpec is highly sensitive to the presence of
CO, CO2, and H2O. By retrieving for their mixing ratios and
obtaining an estimate for the preceding expression, one may then
compare it to the corresponding equilibrium constant,

= -
D


K
G

T
exp , 15eq,2

0,2

univ

⎛
⎝⎜

⎞
⎠⎟

˜
( )

where DG0,2˜ is again listed in Table 2 of Heng & Lyons
(2016). In chemical equilibrium, Equations (14) and (15) are
equal. Figure 7 shows that Keq,2 varies by a factor of about 7
from 800 to 1200 K.

To accurately employ this diagnostic, the spectra measured
using JWST NIRSpec would have to be of a good enough
quality to demonstrate that X X XCO H O CO2 2 is sufficiently
different from Keq,2. In Figure 8, we show as an illustration
the pair of posterior distributions of X X XCO H O CO2 2 from
retrievals on a mock spectrum corresponding to the M1 and M4
modes for the carbon-rich case study considered in Figure 5.
The posterior corresponding to the M4 mode firmly excludes
the equilibrium value of »K 0.7eq,2 , indicating that the carbon-
rich model atmosphere considered is out of chemical
equilibrium. The posterior corresponding to the M1 mode is
only marginally consistent with the equilibrium value.

4. Discussion

4.1. Comparison to Previous Work

4.1.1. Greene et al. (2016)

Greene et al. (2016) did not perform an IC analysis, but they
did study mock retrievals across several exoplanet types

Figure 6. Posterior distributions of C/O, C/H, O/H, and N/H, computed by post-processing the primary posteriors obtained in Figure 5. The left and right montages
are for the M1 and M4 modes, respectively. The vertical black dotted lines show the median value of each posterior distribution, which are also indicated numerically
in each panel (as the logarithm of each quantity). The vertical red solid lines correspond to the truth values.

Figure 7. Equilibrium constant associated with the chemical reaction
+ +CO H CO H O2 2 2 . There is no dependence on pressure.

14 https://janaf.nist.gov
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(see their Tables 1–3) and JWST modes (see their Table 4), in
both emission and transmission. Six molecules were explicitly
considered in the mock retrievals: CO, CO2, H2O, CH4, NH3,
and N2. For transmission spectra, the transit chord was assumed
to be isothermal. The cloud model consists of a cloud top
pressure (for gray clouds) and a power-law prescription (for
nongray clouds consisting of small particles). A key finding of
Greene et al. (2016) is the following: “λ=1–2.5 μm
transmission spectra will often constrain the major molecular
constituents of clear solar-composition atmospheres well.”

The fourth rows of Figures 7 and 8 of Greene et al. (2016)
show mock retrievals for a warm Neptune (700 K) and warm
sub-Neptune (600 K), respectively, with clouds and solar
metallicity. It is worth noting that Greene et al. (2016) have
fixed = ´ -X 3.16 10CO

11
2 and = -X 10CO

9 for both cases
(see their Table 3). While the comparison is imperfect, the M2
mode (0.97–1.84 μm) may be compared to the NIRISS mode
(1–2.5 μm) considered by Greene et al. (2016). Our RvP
analysis in Figure A2 (Appendix) suggests that CO (with

= 0.0392 for the M2 mode) is undetectable across the
wavelength range of NIRISS, which is consistent with the
unconstrained posterior distributions of XCO obtained by
Greene et al. (2016) in the fourth rows of their Figures 7 and
8. Since the contributions of CO and CO2 to C/O are negligible
in both cases, we have

=
+ +
+ +

»
X X X

X X X

X

X
C O

2
. 16CO CO CH

CO CO H O

CH

H O

2 4

2 2

4

2

( )/

This explains why the posterior distributions of C/O associated
with the 1–2.5 μm versus 1–5 μm retrievals are similar in the
fourth rows of Figures 7 and 8 of Greene et al. (2016).

As a further check, the third row of Figure 6 of Greene et al.
(2016), which describes a mock retrieval for a hot Jupiter
( ~ -X 10CO

4), shows an unconstrained posterior distribution of
XCO associated with 1–2.5 μm. However, the posterior
distribution of XCO associated with 1–5 μm is bounded on
both sides, consistent with the findings of the current study.

4.1.2. Howe et al. (2017)

Howe et al. (2017) traded model sophistication for a broad
exploration of the JWST modes of the NIRcam, NIRISS,
NIRSpec, and MIRI instruments (see their Table 1), including
the proposal of a set of observing programs for hot Jupiters (see
their Table 2). Mock atmospheric retrievals are performed
using a Markov Chain Monte Carlo code. Their Table 3 lists
the 11 hot Jupiters considered in their study. Figure 7 of Howe
et al. (2017) shows examples of calculations of Jacobians with
respect to the metallicity, temperature, and pressure. Even
though Howe et al. (2017) suggest the use of Jacobians to
diagnose cloud properties, they ultimately do not explore this
option in their study. For reasons of computational feasibility,
Howe et al. (2017) opted for a three-parameter model that
explores the temperature (of the isothermal transit chord),
metallicity, and cloud top pressure (or, equivalently, a constant
cloud opacity).
Howe et al. (2017) remarked, “For our simple forward

model, the instrument that consistently gives the most
information is the NIRISS G700XD mode,” which corresponds
to a wavelength range of 0.6–2.8 μm. At face value, the
statement about the NIRISS G700XD mode appears to be at
odds with the conclusions of the current study that the blue
modes of NIRSpec are suboptimal for constraining the
elemental abundances and C/O (see Section 4.2). The solution
to this conundrum lies in the assumption of chemical
equilibrium made by Howe et al. (2017). In chemical
equilibrium, knowledge of the elemental abundances, temper-
ature, and pressure allows one to fully specify all of the
molecular abundances. Equivalently, one can back out the
elemental abundances if the temperature, pressure, and only a
subset of the molecular abundances are known.
For example, at a given temperature and pressure one can

infer O/H given only XH O2 if chemical equilibrium is assumed
(e.g., Heng 2018). It bypasses the need to detect CO or CO2,
which are generally needed, in a chemical disequilibrium
situation, for accurately inferring O/H. If the ratios of O/H to
the other elemental abundances are further assumed to take on
their solar values, then the metallicity may be inferred as a
single number (e.g., Heng 2018). Otherwise, the metallicity is
generally a set of numbers given by the different elemental
abundances. The inferred IC of the 0.6–2.8 μm mode hinges on
accepting these assumptions.

4.1.3. Batalha & Line (2017)

Batalha & Line (2017) used an approach to IC analysis that
is similar to that of Howe et al. (2017), which is based on
computing Jacobians. Their model explorations are based on a
WASP-62b-like gas giant, where the main parameters are the
temperature, C/O, and metallicity. It is unclear whether the
C/H or O/H has a fixed (solar) ratio to the other elemental
abundances. The cloud model follows that of Greene et al.
(2016). Key conclusions from Batalha & Line (2017) include
the following: “A single observation with NIRISS always
yields the highest IC content spectra with the tightest
constraints, regardless of temperature, C/O, [M/H], cloud
effects or precision.” As elucidated in Section 4.1.2, this
conclusion hinges on the assumption of chemical equilibrium.
The temperature range considered by Batalha & Line (2017;

Figure 8. Posterior distributions of the chemical disequilibrium diagnostic
corresponding to the carbon-rich case study presented in Figure 5. The solid
vertical line is the truth value, while the dashed vertical line is the value in
chemical equilibrium (0.695).
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600–1800 K) crosses the transition where chemical equilibrium
starts to break down at low temperatures.

4.1.4. Nixon & Madhusudhan (2020)

In a recent study, Nixon & Madhusudhan (2020) assessed
the random forest technique for atmospheric retrieval. They
compared several retrievals using both random forests and the
traditional nested-sampling method. They also added the
extension of a likelihood function to the forest to produce
posteriors that match the nested-sampling retrievals. The close
agreement between their extended random forest and the
nested-sampling posteriors is unsurprising, as the same
likelihood function is used in both. The agreement implies
consistency and not necessarily veracity.

In their comparisons, Nixon & Madhusudhan (2020) show
some discrepancies between the standard random forest and the
nested-sampling retrievals. In an improvement on the imple-
mentation of Márquez-Neila et al. (2018), we have upgraded
the trees in the forest to predict the entire set of parameters in
the given leaf, as opposed to taking the average value of each
leaf (as described in Section 2.3). This gives a more accurate
sampling of the posterior. This upgrade is not included in the
standard random forest used in Nixon & Madhusudhan (2020)
and could account for the discrepancies in their Figure 13.

Nixon & Madhusudhan (2020) also discuss the issue in
Cobb et al. (2019), who showed an example where the forest
predicts an overconfident, incorrect value of ammonia at the
prior minimum in a mock retrieval. As discussed in Section 4.4
and Figure A4 of Fisher et al. (2020), this effect arises from a
limitation of the training set used and not because of the
random forest. Specifically, because spectroscopic line list data
needed to compute the ammonia opacity did not exist above
1500 K, the ammonia mixing ratio was artificially set to 10−13

when the temperature crossed this threshold. Fisher et al.
(2020) showed that this artifact was also detected using the
nested-sampling method. In other words, Cobb et al. (2019)
succeeded in identifying the limitation of the training set but
drew the wrong conclusion from their findings.

In Section 4 of Nixon & Madhusudhan (2020), it is
suggested that the forest cannot be used for a retrieval with
many parameters, claiming that “a Random Forest retrieval
with n free parameters appears to require 10n models for an
adequate training set.” There is in fact no explicit rule for the
size of the training set, which will likely depend on many
variables such as the relationships between the parameters, the
prior ranges, the resolution of the spectra, etc. We found no
issues in the current study when using our 11-parameter model
on both the WFC3- and JWST-like spectra. One can see from
the predicted versus real plots that the forest’s performance is
quite reasonable given the degeneracies one expects from
multiple parameters.

4.2. Recommendations for JWST Observing Proposals

In Figure 9, we consolidate all of our findings into a
summary plot that quantifies the predictive power of every
JWST NIRSpec mode considered in the current study. Several
key points arise from inspecting Figure 9:

1. The three bluest medium-resolution modes (M1, M2, and
M3) are essentially blind to CO ( » 02 ), implying that
the derived elemental abundances of carbon and oxygen
may be inaccurate if CO is a major constituent, data are

only available in these modes (1.8 μm), and the
atmospheric abundances are out of chemical equilibrium.

2. All of the modes do equally well at constraining a0
(which subsumes the cloud abundance) and the cloud
particle size (which is constrained by the slope of the
spectral continuum) but do equally poorly at identifying
cloud composition via constraining the change in slope of
the spectral continuum.

3. Perhaps the most surprising finding is that the M4 mode
(2.87–5.10 μm) outperforms the low-resolution (∼100)
prism mode (0.6–5.3 μm) on the ability to constrain every
parameter except for the temperature and ammonia
abundance. Both modes constrain the cloud properties
equally well (or poorly). In the trade-off between spectral
resolution (by a factor of ∼10) and wavelength coverage,
the former triumphs.

4. While increasing the resolution from ∼100 to ∼1000
enhances the constraining power substantially, a further
increase of resolution to ∼2700, corresponding to the
high-resolution modes of JWST NIRSpec, adds dimin-
ishing value. We demonstrate this by performing an RvP
analysis of the M4 mode with a resolution of ∼2700,
which we label as “H4” in Figure 9. On average, the 2

value increases by 0.026 or about 5.3% across the 11
parameters. The biggest improvement in 2 is associated
with CO: from 0.508 to 0.577 (increase of 13.6%).

In this study, we have adopted a fiducial noise model in
which every spectral value is sampled with an uncertainty of
20 ppm, which is the optimistic theoretical noise floor of JWST
(Beichman et al. 2014). As a sensitivity test, we perform
another set of calculations using PandExo (Batalha et al.
2017) to simulate a Bright Object Time-Series observation of
GJ 436b and to obtain a more realistic noise model for
application to the M4 mode. The noise model is simulated by
assuming a single transit time series of GJ 436b with the
G395M grating and the sub2048 subarray read-out mode. The
standard deviation as predicted by PandExo varies between
200 and 550 ppm over the M4 wavelength range. Our model
spectra that serve as training data are subsequently interpolated

Figure 9. Constraining power of various JWST NIRSpec observing modes as
quantified by the coefficient of determination (2). See Table 1 for an
explanation of the modes and wavelength coverage. Zero predictability and
perfect predictability correspond to = 02 and = 12 , respectively. For
comparison, the WFC3 channel (0.8–1.7 μm) of HST is included. The H4
mode covers the same wavelength range as the M4 mode, but at a higher
resolution of ∼2700.
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onto the wavelength grid simulated by PandExo. An example
model spectrum after interpolation and addition of noise is
shown in Figure 10.

Figure 9 shows the constraining power for various model
parameters obtained using the different modes, including M4
with the realistic noise model obtained with PandExo. Despite
the fact that the noise of the realistic model is ∼10 to ´20
higher than initially assumed, the qualitative conclusions
remain unchanged: the M4 mode’s ability (or inability) to
constrain the 11 parameters of the model are similar to when
20 ppm uncertainties are assumed. The exception is CO, where
the2 value drops from 0.508 to 0.389. However, the2 value
associated with CO2 remains high: 0.731 versus 0.779.

Overall, we recommend that the medium-resolution M4
mode be used as it offers the most balanced portfolio of
constraining power across temperature, molecular abundances,
and cloud properties. If the goal is to constrain these parameters
accurately in order to infer the elemental abundances and C/O
without assuming chemical equilibrium, the medium-resolution
M4 mode is sufficient; the corresponding high-resolution mode
is unnecessary.
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Appendix A
Additional Figures

Figure A1 shows various transmission spectra associated
with the carbon-rich case study of Section 3.3. It is apparent
that the transmission spectra with = -X 0, 10CO

3 and 10−2 are
very similar. The similarity of these spectra is due to the
spectral lines of CO being masked by those of CH4 and CO2 at
the chosen abundances ( = = -X X 10CO CH

3
4

, = -X 10CO
4

2
).

The transmission spectrum with =X 0.1CO is markedly
different only because CO is so abundant that it changes the
mean molecular mass—and hence the pressure scale height—
significantly.
For completeness, we include in Figures A2–A7 the RvP and

feature importance plots of the M2, M3, and L modes.

Figure 10. Sample model spectrum from the training set, computed at a
resolution of 3000 over the full wavelength range (black) and interpolated onto
the wavelength grid of the M4 mode (NIRSpec G395M; red). The gray points
denote a single realization of the model with errors sampled from the noise
model as computed by PandExo.
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Figure A2. Same as Figure 3, but for the M2 mode.

Figure A1. Transmission spectra corresponding to the carbon-rich case study of Figure 5, but with the CO abundance removed (labeled “0”) or varied from 10−3 (its
default value) to 10−1. Three additional curves with CO only, CH4 removed, and CO2 removed are included.
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Figure A3. Same as Figure 4, but for the M2 mode.
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Figure A4. Same as Figure 3, but for the M3 mode.
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Figure A5. Same as Figure 4, but for the M3 mode.
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Figure A6. Same as Figure 3, but for the L mode.
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Figure A7. Same as Figure 4, but for the L mode.
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