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ABSTRACT

We characterize the eccentricity distribution of a sample of ∼50 short-period planet candidates using transit and
occultation measurements from NASA’s Kepler Mission. First, we evaluate the sensitivity of our hierarchical
Bayesian modeling and test its robustness to model misspecification using simulated data. When analyzing actual
data assuming a Rayleigh distribution for eccentricity, we find that the posterior mode for the dispersion parameter
is 0.081 0.003

0.014s =  . We find that a two-component Gaussian mixture model for e cos ω and e sin ω provides a better
model than either a Rayleigh or Beta distribution. Based on our favored model, we find that ∼90% of planet
candidates in our sample come from a population with an eccentricity distribution characterized by a small
dispersion (∼0.01), and ∼10% come from a population with a larger dispersion (∼0.22). Finally, we investigate
how the eccentricity distribution correlates with selected planet and host star parameters. We find evidence that
suggests systems around higher metallicity stars and planet candidates with smaller radii come from a more
complex eccentricity distribution.

Key words: methods: statistical – planets and satellites: dynamical evolution and stability – planets and satellites:
formation

1. INTRODUCTION

The Kepler mission has identified a sample of planet
candidates detected both in transit and occultation, providing
detailed orbital information, including orbital eccentricity, for a
subset of systems with a wide variety of stellar host properties.
However, early works on the eccentricity distribution of all
Kepler objects of interest (KOIs), including those in this subset,
are limited due to uncertainties in host star properties. Recent
studies have focused on applying Bayesian data analysis for
robust error estimation (e.g., Parviainen et al. 2013), and other
studies have investigated the eccentricity distribution of planets
discovered with the radial velocity technique and the role that
tidal interactions play in shaping eccentricity distributions
(Matsumura et al. 2008; Wang & Ford 2011; Hansen &
Murray 2015). While some studies have attempted to constrain
the eccentricity distribution of planets via transit durations
identified by Kepler, these studies have been limited by
uncertainties in stellar densities (Moorhead et al. 2011; Kane
et al. 2012; Plavchan et al. 2014; Van Eylen & Albrecht 2015).
Lucy (2013) used a Bayesian approach to explore the
eccentricity distribution of eclipsing binaries (EBs). Kipping
(2014) explored biases in an eccentricity distribution using a
Beta distribution prior, but little else has been done to explore
the eccentricity distribution of exoplanets via similar methods
and with the goal of quantifying population-level parameters.
Hogg et al. (2010) proposed using a hierarchical Bayesian (HB)
model to constrain the eccentricity distribution of hot Jupiters,
but applied their model to simulated radial velocity observa-
tions, only.

Bayesian inference has made its way into exoplanet studies
as computing facilities have evolved to accommodate the
required calculations. The application of HB modeling is
highly relevant for studying the Kepler planet sample (e.g.,
Demory 2014; Foreman-Mackey et al. 2014; Rogers 2015;

Wolfgang & Lopez 2015). This framework allows us to obtain
population-level posterior distributions, such as the distribution
function for planets, while accounting for measurement
uncertainties and potentially, selection effects. HB is particu-
larly well suited for characterizing a population’s eccentricity
distribution largely because of its ability to accommodate
samples where each measurement has a large measurement
uncertainty.
As a first step in studying the exoplanet population in

general, we use HB modeling to investigate the eccentricity
distribution of the subset Kepler planet candidates that are
detected in both transit and occultation, which provides
measurements of projected eccentricity via transit duration
ratios and phase offsets. Even for this subset of planet
candidates, individual eccentricity measurements often have
large uncertainties. Fittingly, HB is designed to account for
individual measurement uncertainties. Thus, we approach this
problem from both sides: we will apply modern statistical
methods that incorporate uncertainties into our eccentricity
study (e.g., HB modeling), while also working with a subset of
planet candidates with enough information to help bypass some
of the uncertainty in their host star parameters. The projected
eccentricity measurements (e cos ω and e sin ω) are presumed to
be independent of the stellar host star density and radius, which
mitigates the problem of uncertainties in stellar parameters.
Applying HB to the eccentricity distribution is a logical starting
point while working to construct a comprehensive hierarchical
model (i.e., a joint population distribution that includes planet
parameters in addition to orbital eccentricity) in which
measurement uncertainties are naturally incorporated into the
analysis.
Furthermore, we can investigate various sub-populations of

planets from the Kepler sample and look for correlations of
planet and host star properties within these subpopulations. In
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particular, we explore mixture models where the eccentricity
distribution can be interpreted as a combination of two sub-
populations. With this analysis, more than one population in
the eccentricity distribution could arise, for example, due to
different formation mechanisms at work. Characterizing the
eccentricity distribution in this way provides insight into
postulated planet formation theories such as planet orbital
migration and planet–planet scattering. In principle, these
mechanisms could form two populations that make up the
eccentricity distribution: one population that evolved via slow
disk migration and another population that evolved via
excitation of a large eccentricity (e.g., planet–planet scattering
or secular perturbations) proceeded by tidal circularization.
With this in mind, the population of planets that came from
planet–planet scattering might have a larger dispersion, as it
would include planets with large eccentricities, while the
population of planets that came from disk migration might have
a smaller dispersion and contain fewer eccentric planets. These
populations might also correlate with host star properties,
which would allow for a framework to test physical models of
the origin of each population, thus shedding light onto planet
formation.

Here, we focus on inferring the eccentricity distribution of an
interesting subset of planets using HB modeling applied to both
simulated and real transit and occultation measurements from
the Kepler mission. This sample contains predominantly short-
period planet candidates, most of which are likely to be hot
Jupiters, identified by Kepler. We look for correlations between
the eccentricity distribution and other properties, such as stellar
effective temperature, planet radius, orbital period, and stellar
metallicity to begin to synthesize a global understanding of
planet formation. This manuscript is organized as follows. In
Section 2, we describe our observational data. In Section 3, we
describe the method behind the HB analysis calculations, and
the priors selected for the study. In Section 4, we present the
results of our HB analysis. In Section 5, we investigate
potential correlations between the eccentricity distribution and
planet or host star properties. In Section 6, we summarize our
results, and in Section 7, we discuss our conclusions, potential
biases and future work.

2. OBSERVATIONS

When a planet both transits and occults its host star, we are
able to obtain detailed information about the planetary orbit,
including information about the projected orbital eccentricity,
h = e cos ω and k = e sin ω. The relationship between orbital
eccentricity and transit observables is outlined in Winn (2010).
h can be derived from
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where Tocc is the occultation duration and Ttra is the transit
duration. More precise expressions for h and k are listed in
Ragozzine & Wolf (2009), in Section 2.5 and elsewhere. The
original full derivations of these expressions can be found in

Sterne (1940) and de Kort (1954). When analyzing Kepler
observations in Section 5, we calculate the transit and
occultation times and durations numerically using Keplerian
orbits.
We have measured the offsets and durations of transits and

occultations for a sample of planet candidates observed by
Kepler. This study is based on quarters Q0 through Q12 of
Kepler data (see Burke et al. 2014, for the Q0–Q10 data
release). In total, the data sets encompass about ∼1100 days of
quasi-continuous photometric monitoring between 2009 May
and 2012 March. We retrieved the Q0–Q12 FITS files from
MAST5 and extracted the SAPFLUX, commonly known as
“calibrated light curves,” long-cadence photometry (Jenkins
et al. 2010) for each target. Using the calibrated data eliminates
the potential instrumental corrections or cotrending basis
vectors to introduce noise correlated on short timescales.

2.1. Derivation of the Planet Physical and Orbital Properties

We focus on a sample of planet candidates for which an
occultation is detected. We address the biases that the selection
effects introduce into our sample in Sections 3.2 and 7. We use
the Kepler planet candidate list to keep all planets larger than 8
Earth radii and with orbital periods less than 10 days. This initial
selection of planet candidates was based on early planet
candidate lists from NExSci. Note that most planets with a
detectable occultation have very high SNR transits, so we do not
expect that many additional planets would be found in the full
Q0–Q17 data sets. The preliminary parameters were derived
using the Kepler Input Catalog (KIC) stellar values, and updated
later in our analysis. We employ a Markov Chain Monte Carlo
(MCMC) framework to compute the posterior distribution of the
system’s orbital parameters using these initial values. When
performing MCMC analysis, we used an empirical main
sequence mass–radius relationship (Torres et al. 2009) to derive
more accurate planetary parameters. After the MCMC analysis
was performed, some planet candidate radii changed to be
outside the initial range stated above. Our MCMC implementa-
tion (described in Gillon et al. 2012) uses the Gibbs sampler and
the Metropolis–Hastings algorithm to estimate the posterior
distribution function of all unknown parameters. Our nominal
model is based on a star and a single transiting planet on a
Keplerian orbit about their centers of mass.
The input data provided to each MCMC run consist of the

Q0–Q12 Kepler photometry and the stellar parameters
(effective temperature Teff, metallicity [Fe/H] and spectro-
scopic log g) extracted from the KIC (Brown et al. 2011). We
correct for the photometric dilution induced by neighboring
stellar sources using a quarter-dependent dilution factor based
on the dilution values presented in the literature and on the
contamination values reported in the FITS files headers
(Bryson et al. 2013).
We divide the total light curve in segments of duration

∼24–48 hr. The smooth photometric variations due to stellar
variability or instrumental systematic effects in each segment
are fit with a time-dependent quadratic polynomial. Baseline
polynomial coefficients are determined at each step of the
MCMC for each light curve with the singular value decom-
position method. The resulting coefficients are then used to
correct the raw photometric light curves. We assume a
quadratic law for the limb-darkening (LD) and use

5 http://archive.stsci.edu/kepler/
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c u u21 1 2= + and c u u22 1 2= - as jump parameters, where
u1 and u2 are the quadratic coefficients (Mandel & Agol 2002).
We integrate over the 29.4 minute long cadence integration
time when modeling long cadence light curves.

The MCMC has the following set of jump parameters (i.e.,
parameters that are not fixed in our model and are used as a
basis for proposal steps): the planet/star flux ratio, the impact
parameter b, the transit duration from first to fourth contact, the
time of minimum light T0, the orbital period, the occultation
depth, the two LD combinations c1 and c2 and the two
parameters e cos w and e sin w. At each step of the
MCMC, the Keplerian model is constructed based on the e
and ω values derived from the e cos w and e sin w jump
parameters. A uniform prior distribution is assumed for all
jump parameters except c1 and c2. This corresponds to a prior
that is uniform in e 0, 1[ )Î and 0, 2[ )w pÎ . For the LD
parameters, we assume normal priors that are centered on
values of c1 and c2 that correspond to the values of u1 and u2
from the theoretical tables of Claret & Bloemen (2011) for the
stellar parameters obtained from the KIC. The standard
deviations of the priors for c1 and c2 were set by the
corresponding standard deviations propagated from u1 and
u2ʼs uncertainties. We run two Markov chains of 100,000 steps
for each planet candidate. The mixing and convergence of the
Markov chains are assessed using the Gelman–Rubin statistic
criterion (Gelman & Rubin 1992). Results for e cos ω and
e sin ω are shown in Table 1.

2.2. Properties of Planet Candidates Analyzed

When selecting the initial planet candidates that we perform
MCMC fits for planet properties described above, we vet for
EBs using the procedure outlined in Demory & Seager (2011).
This leaves us with a sample of 85 planet candidates for which
we have calculated posteriors for their orbital and physical
properties. From this new list of planet candidates with updated
properties from MCMC fitting, we do a second updated sweep
for EBs referring to Tenenbaum et al. (2014) and Bryson et al.
(2013), works that were published after our initial planet
candidate list was developed. We also reference the Kepler EB
catalog6 for additional newly reported EBs. From this
procedure, we are able to exclude an additional 18 planet
candidates. We include KOI 1227 in our sample of planet
candidates, as it appears in both the Kepler EB catalog with a
period of ∼4 days, and in the Kepler planet catalog as a
potential planet with an ∼2 day period. After the vetting
outlined above, we exclude an additional 17 planet candidates
for which the occultation signal-to-noise was low, resulting in
very poor measurements of h and k. This leaves us with 50
planet candidates that have approximately Gaussian measure-
ment uncertainties for h and k to use for our analysis of the
eccentricity distribution in Section 5. Working in h and k space
instead of eccentricity space greatly simplifies our HB model
for the eccentricity distribution (see Section 3.1), since the
measurement uncertainties for h and k can be assumed to be
roughly normally distributed.

The 50 remaining planet candidates have radii estimates of
∼1.9–30 Earth radii, with a median value of 10.6 Earth radii,
host star effective temperature of 3948–8848 K, with a median
value of 5728 K, orbital period of 1.03–20.13 days with a
median value of 4.24 days, and host star metallicity of −0.518

to 0.440 in [Fe/H] with a median value of 0.023 [Fe/H]. The
30 Earth Radii planet candidate (KOI 1793) is large, and is an
outlier for typical radii in our sample, but still makes it past our
EB vetting procedure outlined above. These values came from
the Kepler Star Properties Catalog as reported from the
Exoplanet Archive updated 2013 December and revised 2014
February (Buchhave et al. 2012; Huber et al. 2014). The
majority of the planets have stellar metallicity values obtained
from photometry, and 10 planets have spectroscopically
derived stellar parameters.

3. METHOD

We aim to simulate and characterize the eccentricity
distribution of a subset of the population of planet candidates
in the Kepler sample for which both transits and occultations
have been observed. First, we describe a general HB model,
before specializing it for our application of characterizing the
eccentricity distribution in Section 3.2. Next, we build and test
a model using simulated data in order to determine the accuracy
of our method and robustness to model misspecification in
Section 4.2, then we apply our model to the real data set in
Section 5.

3.1. The HB Model

HB modeling is a powerful method to estimate population
parameters by propagating the unique uncertainty from each
measurement of the population constituents into the inference
of the population parameters. An HB model requires an
analysis model that parameterizes the functional form of the
population distribution, p xp( ∣ )f , where xp represents the true
value of each quantity being measured (later we adapt this
model so that xp represents h and k). f is the set of
hyperparameters that determine the features or shape of the
prescribed analysis model. To infer these population hyper-
parameters, we must specify the priors for the hyperparameters
or the hyperpriors, p ( )f . Once this multi-level model is
applied to a sample of measurements, both the population’s
parameters and the true parameters for each of the population
members can be inferred simultaneously. The measured
properties (dp) are related to the true properties (xp) and the
measurement uncertainties (σp) by p d x ,p p p( ∣ )s . As a result,
the HB model allows us to characterize the true parameter
values and population level parameters while using the
information contained in the measurements and their
uncertainties.
The general form for the posterior for the hyperparameter

vector (f), where D represents the number of measurements
that make up the data set (dp), is given by

xp p dx p x p d x, , . 3p p
p

D

p p p p p
1

( ) ( ) ( )( ) ( )òf s f f sµ
=

Next, let us consider a simplified HB model where each
measurement dp is drawn from a normal distribution centered
on the true value xp with measurement uncertainty σp

p d x x, Normal , . 4p p p d p p
2

p( )( ) ( )s s~

Here, the “∼” can be read as “is distributed as,” a common
notation for statisticians. At the “mid-level” of the hierarchical
model, we assume that the population of true values, xpʼs, can
be parameterized by a Gaussian mixture model, where each
component of the population model has mean zero and Nm is6 http://exoplanetarchive.ipac.caltech.edu/docs/eclbin.html
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the number of mixture components.

p x f Normal 0, . 5p
i

N

i x i
2

m

p( )( ) ( )åf s=

Each component contributes a fraction fi of the population,
so

f 1, 6
i

N

i

m

( )å =

f then represents all of the fi and σi values.
7 If we assume a

common Gaussian mixture model prior for each xp as shown in
Equation (5) and Gaussian measurement error as shown in
Equation (4), then our hierarchical model can be

Table 1
Eccentricity Data Set

KOI ecosω σ+ecosω σ−ecosω esinω σ+esinω σ−esinω

13.01 0.00379 0.00073 0.00073 0.32343 0.01569 0.01559
17.01 −0.00038 0.03414 0.02824 −0.00144 0.04517 0.04379
18.01 0.02051 0.03321 0.03515 −0.00965 0.04659 0.05250
20.01 −0.01868 0.05117 0.04820 0.00010 0.05112 0.05023
22.01 −0.01123 0.05055 0.05328 −0.00137 0.04962 0.05033
97.01 −0.00353 0.02024 0.02003 −0.00336 0.03877 0.04284
98.01 0.00993 0.04816 0.04114 0.00040 0.04973 0.04662
127.01 0.02353 0.05076 0.05854 0.00120 0.05051 0.05272
128.01 −0.01801 0.03372 0.03033 0.00044 0.04655 0.04697
131.01 −0.01178 0.04109 0.04290 −0.00036 0.04971 0.04784
135.01 −0.04691 0.04427 0.03340 0.00148 0.05046 0.05497
183.01 0.01357 0.05300 0.04929 0.00246 0.05187 0.05141
186.01 −0.01337 0.04675 0.04576 0.00049 0.05070 0.04854
188.01 0.00430 0.03649 0.03731 −0.00252 0.04584 0.04577
200.01 0.01366 0.05739 0.06048 −0.00142 0.05184 0.05280
202.01 0.00563 0.04669 0.04344 −0.00377 0.04464 0.04659
203.01 0.05014 0.02115 0.02894 0.00126 0.05447 0.05276
204.01 0.01586 0.04639 0.05328 0.00028 0.05031 0.04986
206.01 −0.01727 0.05781 0.06547 −0.00069 0.05229 0.05331
254.01 −0.03065 0.05882 0.05747 −0.00141 0.05432 0.05094
421.01 0.00351 0.05653 0.05293 −0.00169 0.05077 0.05120
607.01 −0.0027 0.04021 0.03915 −0.00011 0.04710 0.04763
611.01 0.03344 0.05965 0.05111 0.01742 0.05413 0.05283
728.01 0.00330 0.04798 0.05457 0.00366 0.05367 0.05392
760.01 0.01367 0.03489 0.03363 0.00139 0.04686 0.04647
767.01 −0.00490 0.04486 0.04563 −0.00099 0.05053 0.04772
774.01 −0.16220 0.00638 0.00332 −0.00802 0.06739 0.05652
791.01 0.01588 0.02676 0.02860 0.00223 0.04661 0.04651
797.01 0.04823 0.03688 0.05262 0.01784 0.06601 0.05972
801.01 0.02502 0.05106 0.04972 −0.00221 0.05348 0.05067
805.01 0.38761 0.00080 0.00115 0.02390 0.02642 0.02648
823.01 −0.00629 0.00274 0.00284 −0.35185 0.01225 0.01219
830.01 0.00997 0.05621 0.05942 −0.00098 0.05115 0.05116
850.01 −0.01543 0.05830 0.06948 0.00094 0.05208 0.05235
883.01 −0.02412 0.06865 0.06509 0.00065 0.05498 0.05499
890.01 0.00621 0.05985 0.03740 0.00096 0.04949 0.04824
895.01 −0.06154 0.01675 0.01243 −0.00275 0.06048 0.05811
897.01 0.00571 0.05530 0.04969 0.00083 0.04771 0.05155
908.01 −0.00760 0.04825 0.04482 −0.00138 0.04992 0.04960
913.01 0.00433 0.05289 0.04532 0.00276 0.04787 0.05067
929.01 0.00446 0.03132 0.03626 −2 10 05´ - 0.04638 0.04677
931.01 −0.01950 0.06144 0.06634 0.00042 0.05485 0.05313
1066.01 −0.05694 0.06242 0.02904 −0.00046 0.05689 0.05470
1176.01 0.01372 0.04534 0.04789 −0.00070 0.04914 0.04876
1227.01 0.00424 0.03187 0.04877 −0.30367 0.05812 0.04006
1391.01 −0.02053 0.02736 0.02283 −3 10 05´ - 0.04203 0.04201
1456.01 0.00524 0.03596 0.03497 −0.00229 0.04655 0.04747
1457.01 −0.00701 0.04232 0.02725 −0.00038 0.04791 0.04625
1781.01 0.07127 0.01272 0.02821 0.00197 0.05888 0.05369
1793.01 0.00685 0.04855 0.04713 0.00578 0.04827 0.04871

Note. Result for e cos ω and e sin ω from MCMC. See Section 2.1 for details on how these values are calculated.

7 Note that σi is a hyperparameter that partly describes the underlying
population distribution along with fi, where σp is the measurement uncertainties
of the observable quantity.
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mathematically described as Equation (3) adapted to our
specific analysis:

p f d p f

dx f
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Moving the integral inside the summation and exploiting the
symmetry of the Gaussian distribution, we get

p f d p f

f dx d
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In Equation (9), we extend the limits of the integral to infinity
in order to develop an analytic approximation to our
hierarchical model that is accurate when 1i s , N; 1, m[ ]" Î
(i.e., allowing the underlying model to assign eccentricities 1)

p f d p f
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We discuss how we modify this derivation when evaluating
our model numerically, applied to the eccentricity distribution
in Section 4.1. The posterior distribution for the hyperpara-
meter vector is conditional on all observations. The posterior
modes and credible intervals can be calculated from Equa-
tion (8) using MCMC or estimated analytically based on
Equation (9). Recent applications of HB modeling applied to
other Kepler observations include Morton & Winn (2014),
Rogers (2015), Wolfgang & Lopez (2015), and Foreman-
Mackey et al. (2014).

3.2. Applying the Hierarchical Model to Eccentricity
Measurements

Next, we tailor the above model to the eccentricity
distribution. The set of projected eccentricity measurements h
and k for each planet candidate becomes the xpʼs described in
Section 3.1. We assume that each true value of h and k is
drawn from a distribution that is a mixture of Nm normal
distributions (the analysis model), where each mixture
component contributes a fraction fi, is centered on zero, and
has a standard deviation σi. Thus, the hyperparameters

f f,..., , ,...,N N1 1m m1{ }f s s=
-

describe the underlying popula-
tion’s distribution of h and kʼs. Since fractions sum to one,
f f1N i

N
i1m

m 1= - å =
- .

The values of h and k provide an alternate parameterization
for the eccentricity (e), and the argument of periastron (ω). We
assume that the orientations of planetary systems’ pericenter
directions (ω) will be randomly distributed with respect to the
direction toward Earth, i.e., ω is uniform random [0, 2π]. Thus,
the prior probability distribution for each planet’s h and k has
radial symmetry. While this is an excellent general model for
planets, it is an approximation for our sample of planet
candidates since (1) the geometric transit probability and
occultation probability depend somewhat on ω for eccentric
orbits and (2) the detection probability of both the transit and

occultation depends on the transit and occultation durations and
thus the eccentricity and pericenter direction, and the occulta-
tion duration also depends on the orbital period. We will discus
these issues further in Section 7. Results of this analysis can be
found in Sections 4 and 5.

3.3. Evaluating the Hierarchical Model

We sample from the posterior using MCMC. To calculate
Markov chains we use the publicly available code Just Another
Gibbs Sampler (JAGS; Plummer 2003). JAGS uses Gibbs
sampling when possible, and otherwise reverts to standard
random walk Metropolis–Hastings. We simultaneously sample
from both the posterior distributions for the population
parameters and the posterior predictive distributions for each
observable. We compare the within-chain variance to the
between-chain variance and evaluate the Gelman–Rubin (R̂)
ratio to test for non-convergence, and accept chains with an
R 1.01ˆ < . We also look at the autocorrelation function for the
Markov chains and accept cases that have a zero crossing at a
lag of �5. The exact JAGS input model used in our study can
be found online.8

4. RESULTS

4.1. Prior Specification

We consider three different analysis models and calculate
posteriors for each using simulated data to test the accuracy and
robustness of our method. The three analysis models used for
xpʼs in our calculation are (i) a single Gaussian (Nm = 1), (ii) a
two-component Gaussian mixture (Nm = 2), and (iii) a three-
component Gaussian mixture (Nm = 3).
We use these same three models both to analyze the data and

to generate simulated observations. In each model, the
population parameters, also known as hyperparameters, (f)
are a union of the set of dispersions for each mixture
component (σiʼs) and the set of fractions of planets associated
with each of the mixture components (fiʼs). In each case, each
mixture component is a Gaussian centered at zero and
represents a unique population.
When evaluating the eccentricity parameter space, we take

our priors for h and k to be a mixture of Gaussian distributions,
each with zero mean but truncated such that
e h k 12 2 = + . Following truncation, the prior for h and
k is renormalized, so that the total probability integrates to
unity. The truncation accounts for the selection effect of not
detecting planets on hyperbolic orbits (e 1 ), as any such
planets are not bound to their host systems and do not transit
more than once. A Rayleigh distribution can also be
parameterized as the square root of the sum of squared Normal
distributions with zero mean, where the variance of each
component is equivalent to the Rayleigh parameter. Thus, the
prior population distribution for e is a truncated Rayleigh
distribution for Nm = 1 and can be visualized as a mixture of
truncated Rayleigh distributions of Nm � 2. Choosing a
Rayleigh distribution for the eccentricity distribution is
physically motivated by the fact that it naturally arises for
exoplanets on circular orbits and subjected to a series of many
normally distributed small random perturbations to its orbit. It
is therefore a common distribution “shape” used for eccen-
tricity distributions (e.g., Moorhead et al. 2011; Fabrycky et al.

8 http://www.astro.ufl.edu/∼mshabram/jags_model/eccmodel.txt
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2014). We justify its superiority over a Beta distribution
(Kipping 2014) in Section 4.2.2.

Calculating a posterior probability distribution function
(PDF) from a HB model also requires specifying a prior
probability distribution for the population parameters (f). This
is known as the hyperprior. Our hyperparameters are the
dispersions σiʼs (for each mixture component) and the
associated mixture fractions. We assume a uniform prior for
the dispersions of each mixture component between 0 and 1.
The mixture component fractions follow a Dirichlet distribution
with the concentration parameter set to 1 (e.g., no component is
given special weight). This is the multidimensional general-
ization of the Beta distribution. The Dirichlet distribution
forces the sum of the mixture component fractions to equal one.

4.2. Validating the Hierarchical Model

Since the true distribution parameters for the synthetically
generated data sets are known, analyzing these simulated
observations with our hierarchical model allows us to directly
compare the output population parameters and the input
population parameters. We are also able to test the sensitivity
of the posterior to the chosen analysis model.

We expect to see variations in the ability of a given analysis
model to recover the input model’s parameters. For instance, if
the analysis model is the same as the model used to generate
the simulated observations, then we expect to be able to recover
the input population parameters, within the limits of measure-
ment uncertainties and Monte Carlo error. However, if the
analysis model is different than the model used to generate the
data, there could be larger differences between the posterior
predictive distributions for the eccentricity distribution and the
actual distributions used to generate the data. If we can identify
an analysis model that is relatively insensitive to the model that
was used to generate the simulated observations, then we can
increase our confidence in the robustness of the procedure
when applying our hierarchical model to a real data set.

4.2.1. Generation and Analysis of Simulated Data

We are also interested in understanding the effect that the
quantity and quality of the data has on our inference. It is
important that we choose an analysis model that is relatively
robust to model misspecification, so we can be confident when
applying the HB model to real data. To accomplish this, we
generate several simulated data sets varying the number of
planets in the sample, the simulated measurement uncertainties,
or both. For each pair of generative model and analysis model,
we analyze four data sets of different qualities. We summarize
each in Table 1. Data sets labeled “good” (“half”) consist of 50
(25) planets with measurement uncertainties of 0.04 and 0.08
for h and k, respectively.9 These data sets are designed to be
similar to our actual transit and occultation data set for both h
and k. Data sets labeled “better” (“best”) contain 50 (500)
planets with measurement uncertainties of 0.001. The mixture
fractions and dispersions used to generate the synthetic data
sets are the following: for a single Gaussian distribution,
labeled as “R1” in Table 1, f = 1.0 and σ = 0.3, for a two-
component Gaussian mixture model (“R2”), f1 = 0.7, f2 = 0.3,
σ1 = 0.05, and σ2 = 0.3, and for a three-component Gaussian

mixture model (“R3”), f1 = 0.6, f2 = 0.3, f3 = 0.1, σ1 = 0.05,
σ2 = 0.2, and σ3 = 0.5. We generate 20 data sets for each pair
of data quality and generative model in order to quantify Monte
Carlo error. The goal of this particular experiment is to identify
an analysis model for the xpʼs that performs well for a variety of
plausible distributions used to generate simulated data.

4.2.2. Results for Synthetic Data

First, we validate our HB model using the same model for
the analysis as used to generate a simulated data set. Next, we
consider the results of applying an analysis model that differs
from the model used to generate the data. The purpose of
making these comparisons is to identify an appropriate analysis
model, balancing the need for flexibility with the desire to
minimize model parameters. By analyzing a variety of
simulated data sets, we develop an intuition for how different
models perform, prior to analyzing the actual data. Since the
true distribution of exoplanet eccentricities likely differs from
any of our analysis models, it is important to analyze data sets
generated under alternative models, so as to test the robustness
of our approach.
When we use the same analysis model and generative model,

it would be possible to compare the true model parameters to
the posterior distribution for the model parameters. However,
most of our comparisons involve different analysis and
generative models. In these cases, it is not possible to compare
the true model parameters to the posterior distribution for the
model parameters. Instead, we compare the predictive posterior
distribution for the eccentricity distribution (i.e., the distribu-
tion of interest). We use the Kolmogorov–Smirnov (K–S)
distance to measure how the predictive posterior distribution
for eccentricities under each analysis model compares to the
true eccentricity distribution used to generate the simulated
data. Table 3 shows the median K–S distance between each
simulated data setʼs true h and k distribution and the posterior
predictive distribution for h and k based on 20 simulations of a
particular hierarchical model from Table 2 (see Section 4.2.1
for a list of the chosen “true” eccentricity distribution values
used in our study).
We illustrate an example case in Figure 1, by showing

cumulative distributions of h∣ ∣ and k∣ ∣. The solid black curve is
the true distribution from which the simulated planetʼs h and k
values are drawn. The dashed black curve is the cumulative
distribution for one simulated data set (“R2,” “good”; f1 = 0.7,

Table 2
Model Data Sets

Model Name Np σh σk

Half 25 0.040 0.080
Good 50 0.040 0.080
Better 50 0.001 0.001
Best 500 0.001 0.001

Note. Values indicating the quantity and quality of the suite of simulated
observations used in our analysis. Data sets labeled “good” (“half”) consist of
50 (25) planets with measurement uncertainties of 0.04 and 0.08 for h and k
respectively. These data sets are designed to be similar to our actual transit and
occultation data set for both h and k. Data sets labeled “better” (“best”) contain
50 (500) planets with measurement uncertainties of 0.001, and are designed to
forecast the power of this method and model setup when the quantity of real
data grows and the quality of data is improved upon (better measurement
uncertainty).

9 The uncertainty in the phase offset of the transit is typically smaller than that
of the occultation and transit duration ratio, thus the eclipse data constrain h
with more precision than k.
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f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, see Section 4.2.1) that
includes simulated observational uncertainties. The gray
shaded region is the 68.3% credible interval for the CDFs of
the posterior distribution for the population parameters of the
intrinsic distribution of h∣ ∣ and k∣ ∣ (i.e., without intrinsic
uncertainties). This is calculated once the simulated observa-
tions have been analyzed using the same two-component
Gaussian mixture model as was used to generate the data.

The posterior predictive distributions are generated from the
posteriors for the hyperparameters obtained from applying the
hierarchical model to each simulated data set. Each column of
Table 3 represents comparison results for posteriors calculated
using an analysis model with one-, two-, or three-components
in the Gaussian mixture model, respectively, for each
eccentricity distribution. The analysis model names are
described in Table 2. Each row of Table 3 gives results for a
specific generative model and data quality. R1, R2, and R3,
indicate one-, two-, and three- component models for
generating the simulated observations, respectively.

If the model is working properly, we expect to get posterior
distributions for the populationʼs parameters that are consistent
with the values used to generate the data. Indeed, we find K–S
distances are between ∼0.05 and 0.1 for these cases. Since
models have different parameters (even when they are
represented by the same variable names), the most appropriate
way to compare the performance is based on the posterior
predictive distribution for the population of measurements. In
this case, the K–S distances between the posterior predictive
distributions for the HB model and actual model are ∼0.1
to 0.2.

For simulated data sets with smaller measurement uncertain-
ties, we find that the K–S distance between the posterior
predictive distribution and associated simulated data for h and k

is similar for analysis models that have at least the same
number for mixture components or more. Additionally, for
several combinations of analysis and generated models, we
note that the Nm = 2 analysis model results in a smaller K–S
distance to the R3 data than the Nm = 3 analysis model. This is
likely due to the greater flexibility of the Nm = 3 model and
finite number of measurements, i.e., the three-component
model “over-fits” the discrete data set. We found that the
Nm = 2 analysis model did a better job overall at recovering the
predictive distribution for the simulated data sets across all
versions for simulated data.
Some authors advocate parameterizing the eccentricity

distribution as a Beta distribution, e ∼ Beta(α, β) (e.g.,
Kipping 2014). Therefore, we also investigate using a Beta
distribution analysis model using one (“R2,” “good”) simulated
data set (see Table 2). In this model set up, α and β become the
hyperparameters (population level parameters) that we wish to
infer. We use a Gamma distribution with k = 2 and θ = 1 as the
prior probability distribution for α and β. Figure 2 shows the
results of this HB model as eccentricity versus cumulative
fraction. The simulated eccentricity data are shown as the
dotted black curve. The true eccentricity distribution generated
using a two-component Gaussian mixture model for h and k
(e.g., f1 = 0.7, f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, as described
in Section 4.2.1) is shown in red. The dashed green curve is
plotted using the posterior modes for α and β, ( 0.11 0.02

0.04a =  ,
1.73 0.24

0.85b =  ) for this HB model. The K–S distance between
the “R2,” “good” distribution (red) used and the distribution
using the posteriors modes of α and β (dashed-green) is 0.5,
which is in support of these being two distinct distributions.
Our results indicate that the standard Beta distribution is a poor
choice for an analysis model to parameterize the eccentricity
distribution as it erroneously predicts a strong peak near e = 0
and underpredicts the frequency of larger eccentricities.

Figure 1. Cumulative distributions of h∣ ∣ and k .∣ ∣ The solid black curve is the
true distribution from which the simulated planetʼs h and k values are drawn.
The dashed black curve is the cumulative distribution for one simulated data set
(“R2,” “good”; f1 = 0.7, f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, see Section 4.2.1)
that includes simulated observational uncertainties. The gray shaded region is
the 68.3% credible interval for the CDFs of the posterior distribution for the
population parameters of the intrinsic distribution of h∣ ∣ and k∣ ∣ (i.e., without
intrinsic uncertainties). This is calculated once the simulated observations have
been analyzed using the same two-component Gaussian mixture model as was
used to generate the data. The two-component Gaussian HB model does a good
job of capturing the true distribution for data sets generated with a two-
component Gaussian mixture.

Table 3
Median K–S Statistic for h

Analysis Model

Generalized Model Name (Nm = 1) (Nm = 2) (Nm = 3)

R1 half 0.1310 0.1615 0.1740
R1 good 0.1550 0.1650 0.1700
R1 better 0.0990 0.1150 0.1275
R1 best 0.0400 0.0500 0.0550
R2 half 0.2365 0.2100 0.2715
R2 good 0.2545 0.1875 0.2330
R2 better 0.1890 0.0825 0.1590
R2 best 0.1705 0.0660 0.1485
R3 half 0.1535 0.1215 0.1415
R3 good 0.2560 0.2085 0.2285
R3 better 0.1270 0.1035 0.1350
R3 best 0.1726 0.0835 0.2142

Note. Results of validation and sensitivity analysis of three hierarchical models
for eccentricities. Shown in this table are Kolmogorov–Smirnov (K–S)
statistics comparing data sets of simulated observations with data sets
generated using the posteriors of the hyperparameters from an HB model that
analyzed the same set of simulated observations (comparing input to output to
test model). Here R1, R2, and R3 represent a one-, two- and three-component
Gaussian mixture model, respectively. Table 2 summarizes the different
quantity and quality of simulated observations used in this analysis. A two-
component Gaussian mixture model does well across the majority of simulated
data sets. See Section 4.2.2 for a detailed interpretation of these results.
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In principle, we could model the transit and occultation times
and durations directly, instead of h and k. However, this would
increase the computational complexity. Even taking advantage
of our approximations, the calculations presented represent a
significant computational investment (∼2.4 CPU months).
Modeling h and k also facilitates deriving analytical expres-
sions for testing the algorithms. By modeling the projected
eccentricity, h and k, we were able to thoroughly test both the
code and algorithm on real and simulated data sets.

5. RESULTS FOR KEPLER PLANET CANDIDATES WITH
OCCULTATIONS

We calculated posteriors of one-, two-, and three-component
Gaussian mixture models applied to real Kepler transit and
occultation data (see Section 2 for a description of the data set).
Figure 3 shows a histogram of the observed h and k values
from Table 1 (shown in gray). Since we are assuming the
argument of periastron (ω) is random, h and k are equivalent, or
drawn from the same distribution. A Gaussian distribution
using population parameters from the posterior mode for the
dispersion for a one-component model is overplotted (shown as
the dotted black curve). This one-component model does a
poor job at capturing the shape of the distribution because it
struggles to match the moderate eccentricity outliers. A two-
component Gaussian mixture model using population para-
meters from the mode of the 2D marginal posterior for the
mixture fraction and dispersions is shown in red. This model
captures the peaked nature of the observed distribution as well
as the small number of measurements away from the peak. This
suggests that two populations can explain the eccentricity
distribution of our sample, although in Section 4.2.2 we show
with synthetic data that using a two-component Gaussian
mixture model is optimal for the present data set. We also
consider using a three component Gaussian mixture model and

find that only two of the three components can be constrained
given the quantity and quality of the Kepler transit and
occultation data set, suggesting that the available data are not
able to indicate the presence of a third population, or that a
third population may not exist.
The posterior distribution for the dispersion of true values of

h and k assuming a one-component Gaussian model is
displayed in Figure 4, which is based on our full data set for

Figure 2. Results of an HB model that parameterizes the eccentricity as a
standard Beta distribution. We investigate using a Beta distribution analysis
model on an “R2,” “good” (see Table 2) simulated data set. A cumulative
distribution of the simulated eccentricity data is shown as the dotted black
curve. The distribution generated using a two-component Gaussian mixture
model for h and k values (e.g., f1 = 0.7, f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, as
described in Section 4.2.1) is shown in red. The dashed green curve is a
cumulative Beta distribution, Beta(α, β), plotted using the posterior modes for
α and β, (α = 0.11±0.04

0.02, 1.73 0.24
0.85b =  ) for this HB model. The Beta

distribution erroneously predicts a strong peak near e = 0 and underpredicts the
frequency of larger eccentricities.

Figure 3. A histogram of the h and k data set is shown in gray. The dotted
black curve is a one-component Gaussian distribution using the posterior mode
for the dispersion obtained from an HB model that uses a one-component
Gaussian mixture model. Shown in red is a two-component Gaussian mixture
model using posterior modes for the mixture fractions and dispersions obtained
from an HB model that uses a two-component Gaussian mixture model. The
black model does a poor job at capturing the shape of the distribution. The red
model captures the peaked nature of the true distribution while also allowing
for a smaller number of measurements far from the central peak.

Figure 4. Posterior distribution for the dispersion of a Gaussian model for h
and k applied to our full Kepler short-period planet candidate transit and
occultation data set. The 68.3% credible intervals about the mode are shown as
dotted black lines, and the mode is shown as a vertical solid black line. A one-
component Gaussian mixture model is insufficient at characterizing the
eccentricity distribution of our sample of planet candidates from Kepler.
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planet candidates with both Kepler transit and occultation
measurements. The posterior mode for the dispersion is
σ = 0.081 0.003

0.014 . We use this value as the dispersion for our
one-component Gaussian population model shown as the
dotted black curve in Figure 3.

Next, we investigate joint posterior distributions for a two-
component Gaussian mixture model applied to our full Kepler
transit and occultation data set. These results are shown in
Figure 5, where the panels on the diagonal show the
marginalized posterior distribution for the population para-
meters: lows the lesser value of 1s and 2s , highs the greater value
of 1s and 2s , and flow, the weights for the mixture component
( f f1high low= - ). The use of lows and highs instead of 1s and 2s
(and corresponding fractions) is helpful for visualizing the
results, since our model has symmetry under exchanging ( f,1 1s )
and ( f,2 2s ). The off-diagonal panels show posterior samples
and contours for the 68.3% credible interval of the two-
dimensional marginal posteriors for each parameter pair. The
fact that ( f,low lows ) and ( f,high highs ) form two distinct clusters
demonstrates the value of a two-component (two population)
model for the eccentricity distribution of our sample of Kepler
planet candidates.

As expected, the uncertainties in measurements of
k e sin w= are much greater than the uncertainties in the

measurements of h e cos w= . We note that in our sample,
the k values are more tightly clustered around zero than h.
Therefore, we investigated if excluding these values
significantly impacts our results. By doing this we are
decreasing our effective sample size, but maintaining
the number of measurements with small uncertainties. When
running our simulations without k values, we get the following
results: using a single Gaussian model 0.074 0.003

0.016s =  , and
when using a two-component Gaussian mixture model, the
marginal posterior modes for the mixture fractions and
dispersions are f 0.93 , 0.003low 0.051

0.029
low 0.001

0.010s=  =  , and
f 0.07 , 0.187high 0.019

0.062
high 0.028

0.547s=  =  , respectively. These
values differ from the values obtained using the full h and k
planet candidate data set by ∼9.0%, 4.4%, 107.7%, 44.4%, and
16.2% for σ, flow, σlow, fhigh, and σhigh, respectively. Each of
these overlaps with the 68.3% credible interval for the same
parameters with the full data set. The most notable difference is
for σlow, which we estimate to be 0.03 when using k alone, but
0.01 when including both h and k observations.

5.1. Correlation of The Eccentricity Distribution with Star and
Planet Properties

Another goal of this study is to investigate potential
correlations between the eccentricity distribution and planet

Figure 5. Joint posterior distributions for a two-component Gaussian mixture model applied to our Kepler short-period planet candidate transit and occultation data
set. In each panel, the data are plotted with the horizontal axis representing σlow the lesser value of σ1 and σ2, σhigh the greater value of σ1 and σ2, and flow the
corresponding weight for the low mixture component, on a logarithmic scale. Since fhigh = 1−flow, we only show flow here. The vertical axis shows these same
variables, and each panel is the corresponding two-dimensional marginal posteriors for each parameter pair. The contour region plotted over the sampled posterior
represents the 68.3% credible interval. The one-dimensional histograms are plotted as log density, with the 68.3% credible intervals shown as dotted black lines, and
the mode is shown as a vertical solid black line. The two-component Gaussian mixture model characterizes the eccentricity distribution of our sample of planet
candidates better than a one-component analysis model.
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or host star properties. Specifically, we consider whether the
planet candidate eccentricity distribution is correlated with
stellar metallicity, host star effective temperature, planet radius,
or orbital period. Values for each planet candidate are obtained
from the Kepler Star Properties Catalog as reported in the
Exoplanet Archive updated 2013 December and revised 2014
February (Buchhave et al. 2012; Huber et al. 2014). The
majority of the planets have effective temperatures and stellar
metallicity values obtained via KIC photometry, however, 10
planets have spectroscopically derived values. Given the
relatively small sample size, we focus on comparing the
distribution of planet candidates with large and small values for
each parameter. We sort the planet candidates in our data set
from largest to smallest values of a given property, and then
create two sub-samples of the original population. Unless
otherwise specified, we divide the data in half to maximize the
statistical power when comparing the two samples and to avoid
introducing an additional parameter specifying the dividing
point between the high and low subsets. We analyze each
subset as described in Section 3.

Initially, we evaluate each subset of data using an HB model
with a one-component Gaussian distribution for h and k, as we
did before for the full data set. This is shown in Figure 6, where

we have applied the HB model to the small-valued (blue) and
large-valued (red) halves of the Kepler occultation data, sorted
by (a) stellar effective temperature, (b) planet radius, (c) orbital
period, and (d) stellar metallicity. The histograms of the
posterior distribution for the dispersions for stellar effective
temperature (a) and orbital period (c) suggest that the two
subsets do not come from significantly different distributions if
we assume the eccentricity distribution is described by a simple
Rayleigh distribution. However, for planet radius (b), and
stellar metallicity (d), the differences in the posteriors for the
dispersion suggest that the two subsets may have different
eccentricity distributions. This provides motivation to consider
more complex models for correlations between the eccentricity
distribution and stellar and planet properties.
Next, we look at posterior distributions based on applying

the HB model using a two-component Gaussian mixture for the
analysis model applied to the small-valued half or large-valued
half of the data subsets, again based on sorting by (a) stellar
effective temperature, (b) planet radius, (c) orbital period, and
(d) stellar metallicity. Figure 7 shows posterior distributions for
the small-valued half of data (blue and green clusters), and
large-valued half (red and orange clusters). The two groups of
clusters represent samples of the posterior distribution for the

Figure 6. One-component Gaussian analysis model applied to subsets of the Kepler transit and occultation data. We apply an HB model to small-valued (blue) and
large-valued (red) halves of the Kepler short-period planet candidate transit and occultation data, sorted by (a) stellar effective temperature, (b) planet radius, (c) orbital
period, and (d) stellar metallicity. The dotted lines correspond to the 68.3% credible intervals and the solid vertical lines correspond to the mode for each posterior
distribution. For panel (b) planet radius, and panel (d) stellar metallicity, differences in the small-values and large-valued data subsets merit further investigation. In
order to explore these results further, we analyze these subset using a two-component Gaussian mixture model (see Figure 6).
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hyperparameter vector, in this case for σlow and flow (top left
group of clusters in each sub-plot), and σhigh and fhigh (bottom
right group of clusters in each sub-plot). The data are plotted
with the vertical axis representing the low value of the mixture
fraction, flow, in green and orange, and, fhigh, in blue and red for
the two subsets of sorted data shown (small and large). The
contours correspond to 68.3% credible intervals. In this plot we
can compare the two high and low value subsets to the full
sample to check for correlations with each parameter.

Interestingly, the posteriors of the mixture fractions for the
planet candidates with larger planet radii are consistent with 0
and 1 for planet radius (b) and host star metallicity (d),
indicating only one population is required to accurately model
the eccentricity distribution for this subset of planet candidates.
When modeling the eccentricity distribution of a sample of
planet candidates with host star metallicities less than 0.023 dex
(median [Fe/H] of our full sample), we find a one-component
mixture model is sufficient. On the other hand, planet
candidates of host star metallicities above 0.023 dex are better

modeled with a two-component mixture model for h and k. We
find a similar, but weaker correlation between eccentricity
distribution and planet radius. Planet candidates with radii
smaller than 10.6 R⊕ are better modeled with a two-component
mixture model, while a one-component mixture model is
favored for planet candidates with radii above 10.6 R⊕. There is
not a strong correlation between planet radius and metallicity in
our sample. Furthermore, we verified that the subsamples based
on metallicity and planet radius are distinct from each other.
Next, we consider whether the data can constrain more

complex models that allow for a flexible choice of the break
point between the two subsets of planet candidates, rather than
fixing the break point to divide the data set in half. We choose
to investigate a more flexible model for orbital period first,
because the measurement uncertainties for orbital period are
negligible. We allow the period break point to be a free
parameter in a single HB model where each subset of planet
candidates is modeled with a two-component mixture model as
before. Instead of fixing the break point near the median and

Figure 7. Two-component Gaussian mixture model applied to the Kepler transit and occultation data. We apply an HB model to small- and large-valued halves of the
short period Kepler candidate occultation data, sorted by stellar effective temperature (a), planet radius (b), orbital period (c), and stellar metallicity (d). The full sample
is divided into two equally sized small- and large-value subsets before being processed through our HB model. The small-valued subset of data corresponds to the blue
and green clusters, and the large-valued subset corresponds to the red and orange clusters. The two groups of clusters represent samples of the posterior distribution for
the hyperparameter vector, in this case for σlow and flow (top left group of clusters), and σhigh and fhigh (bottom right group of clusters). The data are plotted with the
vertical axis representing the low value of the mixture fraction, flow, in green and orange, and, fhigh, in blue and red for the two subsets of sorted data shown. The
contours represent 68.3% credible intervals. Interestingly, for planet radius (b), and stellar metallicity (d), the posteriors of the mixture fractions for the planet
candidates with large-valued planet radii and for small-valued host star metallicities are consistent with 0 and 1, indicating only one population is required to
accurately model the eccentricity distribution for these subsets of planet candidates. For planet radius and stellar metallicity, we also see that the two-component
population models are somewhat different for small and large value subsets.
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dividing the data into equal sized subsets, we place a uniform
prior on the period break point. Figure 8 shows the marginal
posterior distribution for the period break point from analyzing
the actual data set. The marginal posterior for the period break
has peak values that are clustered near the minimum and
maximum of the period values in our sample. This indicates
that the model favors period breaks causing one data subset to
have so few observations that the population parameters from
one subset are minimally constrained. We conclude that the
present data set is not able to usefully constrain this more
complex model. Therefore, we do not attempt to apply a similar
model allowing for two eccentricity distributions with an
unknown break in terms of the host star metallicity or planet
radius, since their measurement uncertainties are much larger.

6. SUMMARY OF RESULTS

We investigated the eccentricity distribution for a sample of
short-period single-planet candidate systems from Kepler that
are detected in both transit and occultation. We demonstrated
that HB models are well-suited for characterizing the
eccentricity distribution using transit and occultation data.
We modeled the distribution of h and k as coming from either a
single Gaussian distribution with zero mean or a mixture of
Normal distributions. After testing our hierarchical model on a
suite of simulated data sets and analysis models with one, two,
or three mixture components, we find that a two-component
mixture model (Nm = 2) performed well in all cases considered,
including simulated data sets generated using a three-
component mixture model. Thus, the two-component mixture
model is a robust analysis model for our hierarchical model
applied to Kepler transit and occultation data. Additionally, we
investigate the usage of a standard Beta distribution analysis

model in our HB model. Our results indicate that the standard
Beta distribution is a poor choice for an analysis model to
parameterize the eccentricity distribution.
Next, we applied HB modeling to analyze a real data set of

h = e cos ω and k = e sin ω measurements, derived from transit
and occultation measurements. If we model the population
distribution of h and k with a single Gaussian, then we infer a
dispersion of 0.081 0.003

0.014s =  . When we applied the two-
component mixture model to the full data set, we found
f 0.89low 0.057

0.045=  , 0.01 ,low 0.002
0.014s =  and f 0.11high 0.045

0.057=  ,

0.22high 0.026
0.100s =  . These results suggest the presence of a

small population of planet candidates (∼11%) that contain
planets with a broad range of orbital eccentricities and a larger
population of planet candidates (∼89%) that contain planets on
very nearly on circular orbits.
Next, we assessed whether there is evidence for more

complexity in the eccentricity distribution by considering
analysis models that allow correlations between the eccentricity
distribution and other planet or host star parameters. For the
current sample of Kepler planet candidates seen in both transit
and occultation, we find interesting correlations of the
eccentricity distribution with either the planet radius or the
host star metallicity, but not with stellar effective temperature
or orbital period.
We present evidence that host stars in our sample with

higher metallicity and planet candidates with smaller radii have
a more complex eccentricity distribution than stars with low
metallicity and planet candidates with larger radii. The
eccentricity distributions of these more complex populations
are well described by a two-component Gaussian mixture
model with a zero mean, suggesting a potential physical
explanation in terms of proposed planet formation models,
which we will describe in more detail in Section 7.

7. DISCUSSION

Previous studies of the period-size distribution of Kepler
planet candidates have identified two common architectures of
planetary systems: (1) Systems with Tightly packed Inner
Planets (STIPS; Lissauer et al. 2011; Payne et al. 2013; Boley
et al. 2014) and (2) systems with a single short-period planet
(often a giant planet) with either no additional planets detected
or a large gap between the short-period planet and the next
detectable planet (Steffen et al. 2012a, 2013; Dawson &
Murray-Clay 2013). This work focuses on a sample containing
primarily isolated giant planet candidates. Of course, these
systems may have undetected companions, particularly at
larger orbital separations where the geometric transit prob-
ability is small.
Two broad classes of mechanisms have been proposed to

explain the formation of hot Jupiters. In both models, planets
form at greater distances from their host star. In one model, a
giant planet experiences a gradual inspiral through a gas or
planetesimal disk until they halt near their present orbit (e.g.,
Kley & Nelson 2012). In the other model, gravitational
perturbations from another massive body (potentially another
planet or a stellar companion) excite a giant planetʼs orbital
eccentricity until its periastron distance is so small that tidal
forces begin to circularize the orbit (e.g., Rasio & Ford 1996;
Fabrycky & Tremaine 2007; Naoz et al. 2011). Several studies
have assessed the relative merit of these two classes of models,
making use of the observed orbital period distribution (Ford &
Rasio 2006; Valsecchi & Rasio 2014), spin–orbit obliquity

Figure 8. Marginal posterior distribution for the critical period break point
from a joint period-eccentricity distribution HB model. We analyze the full data
set using an HB model that allows for the eccentricity distribution to differ
depending on whether the orbital period is greater or less than the critical
period break point. We infer that the present data does not allow us to
empirically identify a period cutoff that depicts two populations.
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distribution (Morton & Johnson 2011; Albrecht et al. 2012;
Naoz et al. 2012; Dawson 2014) and orbital architectures
(Dawson et al. 2012; Steffen et al. 2012b; Dawson & Murray-
Clay 2013). Collectively, these studies suggest that multiple
mechanisms likely contribute to the formation of hot Jupiters.
In this case, the two populations would likely have different
distributions of orbital eccentricities, with disk migration
leading to the smaller dispersion of eccentricities. This
motivates us to consider interpreting evidence of a two-
component mixture model for the eccentricity distribution in
terms of two formation models.

Our analysis of Kepler’s short-period planet candidates with
occultation measurements suggests that the eccentricity dis-
tribution can be well described by a two-component mixture
model, where the less abundant population of planets has a
broader dispersion of eccentricities. If the mixture components
indeed translate into formation mechanisms of hot Jupiters,
then this could suggest that disk migration could be the more
common formation mechanism. Alternatively, if tidal circular-
ization of highly eccentric proto-hot Jupiters is sufficiently
rapid, then the current eccentricities could reflect late-stage
excitation of orbital eccentricities due to undetected planets. Of
course, a complete formation theory would need to explain all
observations, including the low abundance of additional planets
near hot Jupiters (Steffen et al. 2012a), the final semimajor axis
of hot Jupiters (e.g., Ford & Rasio 2008; Valsecchi & Rasio
2014), the distribution of orbital obliquities (e.g., Fabrycky &
Winn 2009; Morton & Johnson 2011; Albrecht et al. 2012) and
correlations between obliquity and other star and planet
properties (e.g., Winn 2010; Morton & Winn 2014).

It is particularly interesting to compare the eccentricity
distribution of our sample to that of other subsamples of the
Kepler planet candidate list, particularly subsamples dominated
by smaller planets. Since the eccentricity affects the transit
duration (Barnes 2007; Burke 2008), the distribution of transit
durations can constrain the eccentricity distribution for
arbitrary sub-samples of Kepler planet candidates (Ford
et al. 2008). Early studies of the eccentricity distribution of
Kepler’s planet candidates (Moorhead et al. 2011; Kane
et al. 2012; Plavchan et al. 2014) were limited due to the
uncertainty in stellar parameters. Transit durations combined
with stellar properties from photometry (Moorhead et al. 2011),
high-resolution spectroscopy (Buchhave et al. 2012; Dawson &
Johnson 2012) and/or flicker (Kipping et al. 2014) can
effectively recognize high eccentricity planets. However,
further research is needed to obtain stellar properties that are
precise and accurate enough to enable population studies of the
more typical low eccentricity planets. Fortunately, one can
characterize the eccentricity distribution of substantial subsets
of Kepler planet candidates, either by using stars with high
quality stellar characterization (e.g., asteroseismology, Huber
et al. 2013; E. Ford et al. 2015, in preparation) or by using
ratios that eliminate the dependence on stellar properties (e.g.,
Kipping 2011; Fabrycky et al. 2014; A. Morehead et al. 2015,
in preparation).

Previous studies suggest that the typical eccentricity of
planet candidates in systems with multiple transiting planet
candidate systems (;0.00−0.06) is likely smaller than in our
sample (e.g., Fang & Margot 2012; Fabrycky et al. 2014).
Similarly, Wu & Lithwick (2013) and Hadden & Lithwick
(2014) analyze transit timing variations (TTVs) in systems with
near-resonant planet candidates. Hadden & Lithwick (2014)

report a maximum likelihood estimate of the dispersion of
eccentricities of 0.018e 0.004

0.005s = -
+ . This is significantly smaller

than the 0.08 0.003
0.014s = -

+ of our one-component model for the
eccentricity distribution. Their result is comparable to the

0.01low 0.002
0.014s = -

+ that describes nearly 90% of planets when
using our two-component model. Hadden & Lithwick (2014)
explicitly consider dividing their sample into subsets based on
the estimated planet size being larger or smaller than R2.5 Å.
Interestingly, they find an even smaller eccentricity dispersion
( 0.008 0.002

0.003s = -
+ ) for subset of larger planets with measurable

TTVs. This is the opposite of what would be expected based on
a simple comparison to either our results or planets discovered
by radial velocity surveys, both of which are dominated by
significantly larger and/or more massive planets. Future
observations and analyses with improved statistical methodol-
ogy will be important for understanding the underlying nature
of these differences.

7.1. Potential Biases

We note several potential sources of bias in our character-
ization of the eccentricity distribution. First, there is a purely
geometrical effect due to the fact that we analyze only planet
candidates observed to both transit and occult their host stars.
Since the geometrical transit and occultation probabilities are
both functions of the orbital eccentricity and direction of
pericenter, the eccentricity distribution of planets in our sample
is different than the eccentricity distribution of all planets (even
if we controlled for orbital separation relative to the star
radius). Mathematically, we assume a uniform distribution for
the argument of periastron, ω, which is true for all planets in
nature, but not true for our sample. Previous studies have
suggested that the difference between the eccentricity distribu-
tion of transiting planets and all short-period planets is modest
(Burke 2008; Kipping 2014). For our sample, the effect will be
even weaker, since we require both transit and occultation to be
included in our sample and the two have opposite dependence
on e sin ω. We confirm this by computing the distribution of ω
for a simulated population generated by starting with a uniform
distribution and rejecting planets that do not both transit and
occult. We find ω to be very nearly uniformly distributed for
these cases, where there is a non-zero effect but it is less that
4%. Therefore, we do not account for this effect in our study.
We quantify the significance of this effect in an upcoming
study by employing Approximate Bayesian Computing (ABC),
which can naturally model complex selection criteria such as
this (J. Cisewski et al. 2015, in preparation).
A second potential bias in our characterization of the

eccentricity distribution is simply that the population of planet
candidates we study may not be representative of all planet
candidates. The decreasing geometric transit probability as a
function of orbital period or semimajor axis inevitably leads to
our sample being dominated by planet candidates with short
orbital periods, similar to all population studies based on
known transiting planets. Detection probability is also a
function of the signal-to-noise of the transit and occultation.
Since the transit is typically much deeper than the occultation,
the detection probability for the occultation (rather than the
transit) is the dominant effect for this study. The occultation
signal-to-noise depends on the occultation depth and duration.
In principle, the duration depends on the density of the host
star, impact parameter, eccentricity, and pericenter. In practice,
the occultation duration is most sensitive to the impact
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parameter. Thus, our sample may have excluded some planets
with large impact parameters, resulting in the occultation going
undetected. Similarly, the occultation depth depends on the
effective temperature of the planet, and thus indirectly on the
effective temperature of the star, the orbital distance and the
stellar radius. Therefore, our sample is likely enriched in
planets with larger radii, planets with higher effective
temperatures, host stars with higher effective temperatures
and smaller radii, and planets orbiting even more closely to
their host star. If planet formation proceeds differently around
more massive stars, then the eccentricity distribution for planets
in our sample could deviate from the eccentricity distribution of
the overall planet population.

Furthermore, our sample could be enhanced with planets
with significant eccentricity if tidal forces on planets in
eccentric orbits led to substantial heating and increased thermal
emission. Since the sample analyzed in this study consists of
mostly giant planets and host stars with a single detected
transiting planet, the eccentricity distribution for our sample
may differ from the eccentricity distribution of smaller planets
and/or planets in systems with multiple closely spaced planets.
These potential biases can also be viewed as opportunities to
constrain planet formation and tidal theories. By comparing the
eccentricity distribution of different planet populations, future
studies can quantify how the eccentricity distribution changes
with planet size, multiplicity, and stellar properties.

We anticipate several ways that future observations will
allow for improvements to our analysis. First, we analyzed a
subsample of the Kepler planet candidates that had already
been evaluated for any indication that the KOI was actually due
to an EB star, rather than a planet (e.g., Bryson et al. 2013;
Tenenbaum et al. 2014). Both the transit shape and comparison
of the target centroid location during and out-of-transit provide
powerful diagnostics for recognizing likely false positives.
Estimates of the false positive rate are sufficiently low (∼10%–

20%; Fressin et al. 2013; Burke et al. 2014), that we can
interpret our results in terms of the eccentricity distribution of
planets. Nevertheless, one should be cognizant that the sample
of planet candidates we analyze may include one or more false
positives, such as diluted EBs. In particular, our study
necessarily selects planet candidates for which an occultation
is measured, which may lead to an increased rate of diluted EB
false positives. Properly accounting for a non-zero fraction of
false positives would require a significantly more complex
model. Therefore, we leave such work for future studies.
Alternatively, future observations of these very interesting
planet candidates may identify any remaining false positives
and characterize the false positive rate sufficiently well that
adding further complexities to the model is not necessary.

7.2. Future Research

Transit and occultation observations from future missions
could lead to improved understanding of the eccentricity
distribution of short-period planets as a function of host star
mass and temperature. In particular, there could be differences
between a volume-limited sample of target stars and our sample
due to the target selection algorithm for the Kepler planet
search targets as well as variations in Kepler’s detection
sensitivity. Given the Kepler target selection criteria and
detection sensitivity, most of the planet candidates we analyze
are orbiting F and G stars. Future missions such as NASAʼs
Transiting Exoplanet Survey Satellite (TESS) (Ricker et al.

2014) and ESAʼs PLATO (Rauer et al. 2014) are expected to
survey a broader range of target stars and to have a simpler
target selection function.
Finally, future observations and analysis of host star

properties could also result in improved characterization of
correlations between the eccentricity distribution and host star
properties. In particular, a large fraction of host star
metallicities used in our analysis were derived from photo-
metric observations as opposed to higher quality spectroscopic
observations (Huber et al. 2013). As metallicities derived from
high-resolution spectroscopy are published for more stars in
our sample, we will be able to make more robust conclusions
about the potential correlation of the eccentricity distribution
with metallicity.
This paper demonstrates that it is practical to apply rigorous

HB models to evaluate key dynamical properties of exoplanet
populations. In principle, these methods can be readily
generalized to provide a more accurate characterization of
other aspects of the exoplanet population, such as the frequency
of planets as a function of size and orbital period (Foreman-
Mackey et al. 2014), the planet radius–mass relationship
(Rogers 2015; Wolfgang & Lopez 2015), the distribution of
mutual orbital inclinations and multiplicity, and the frequency
of small planets in the habitable zone of solar-type stars
(Foreman-Mackey et al. 2014). A challenge for future HB
analysis will be to develop rigorous model comparison
techniques. Each unique problem is often limited by the
statistical power of the data, where there is no universal
technique applicable in all cases. In practice, the high-
dimensional integration required can be computationally
challenging. Therefore, careful thought and problem specifica-
tion is needed, so as to render the necessary calculations
tractable. Fortunately, recent collaborations between astron-
omers and statisticians, such as the 2013 program on Modern
Statistical and Computational Methods for Analysis of Kepler
Data (SAMSI) at the Statistical and Applied Mathematical
Sciences Institute have significantly enhanced the level of
sophistication among exoplanet researchers. Forthcoming
publications will describe recent efforts application of impor-
tance sampling and ABC to enable application of HB models to
more complex problems (e.g., Morton & Winn 2014;
J. Cisewski et al. 2015, in preparation; Rogers 2015).
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