The TRAPPIST survey of southern transiting planets

Gillon, M.; Triaud, A. H. M. J.; Fortney, J. J.; Demory, B.-O.; Jehin, E.; Lendl, M.; Magain, P.; Kabath, P.; Queloz, D.; Alonso, R.; Anderson, D. R.; Collier Cameron, A.; Fumel, A.; Hebb, L.; Hellier, C.; Lanotte, A.; Maxted, P. F. L.; Mowlavi, N.; Smalley, B. (2012). The TRAPPIST survey of southern transiting planets. Astronomy and astrophysics, 542, A4. EDP Sciences 10.1051/0004-6361/201218817

[img] Text
aa18817-12.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (912kB) | Request a copy

We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41 ± 0.08 ρ⊙) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717 ± 0.025 M⊙ and 0.667 ± 0.011 R⊙. Our deduced physical parameters for the planet are 2.034 ± 0.052 MJup and 1.036 ± 0.019 RJup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035-0.0025+0.0060, is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 μm at better than 11-σ, the deduced occultation depth being 1560 ± 140 ppm. Our detection of the occultation at 1.19 μm is marginal (790 ± 320 ppm) and more observations are needed to confirm it. We place a 3-σ upper limit of 850 ppm on the depth of the occultation at ~0.9 μm. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.

Item Type:

Journal Article (Original Article)

Division/Institute:

10 Strategic Research Centers > Center for Space and Habitability (CSH)

UniBE Contributor:

Demory, Brice-Olivier Denys

Subjects:

500 Science > 520 Astronomy

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Brice-Olivier Denys Demory

Date Deposited:

05 Apr 2022 12:23

Last Modified:

02 Mar 2023 23:34

Publisher DOI:

10.1051/0004-6361/201218817

BORIS DOI:

10.48350/153316

URI:

https://boris.unibe.ch/id/eprint/153316

Actions (login required)

Edit item Edit item
Provide Feedback