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Abstract

Modern blockchains support a variety of distributed applications beyond cryptocurrencies, including
smart contracts, which let users execute arbitrary code in a distributed and decentralized fashion.
Regardless of their intended application, blockchain platforms implicitly assume consensus for the
correct execution of a smart contract, thus requiring that all transactions are totally ordered. It was
only recently recognized that consensus is not necessary to prevent double-spending in a cryptocur-
rency (Guerraoui et al., PODC’19), contrary to common belief. This result suggests that current
implementations may be sacrificing efficiency and scalability because they synchronize transactions
much more tightly than actually needed.

In this work, we study the synchronization requirements of Ethereum’s ERC20 token contract,
one of the most widely adopted smart contacts. Namely, we model a smart-contract token as a con-
current object and analyze its consensus number as a measure of synchronization power. We show
that the richer set of methods supported by ERC20 tokens, compared to standard cryptocurrencies, re-
sults in strictly stronger synchronization requirements. More surprisingly, the synchronization power
of ERC20 tokens depends on the object’s state and can thus be modified by method invocations.
To prove this result, we develop a dedicated framework to express how the object’s state affects
the needed synchronization level. Our findings indicate that ERC20 tokens, as well as other token
standards, are more powerful and versatile than plain cryptocurrencies, and are subject to dynamic re-
quirements. Developing specific synchronization protocols that exploit these dynamic requirements
will pave the way towards more robust and scalable blockchain platforms.

1 Introduction

The rise of cryptocurrencies has motivated the development of distributed applications running over
blockchain platforms. These applications go far beyond the concept of a decentralized cryptocurrency,
as initially envisioned by Bitcoin [21]. Taking this diversity to the extreme, smart contracts enable a
blockchain to execute arbitrary programs, in a fully decentralized fashion akin to a “world computer.”
Introduced by Ethereum [11], smart contracts come in many different flavors and are the key element in
most blockchain projects today.

Regardless of the type of supported smart contract, blockchain platforms rely on a distributed pro-
tocol that orders transactions and emulates a ledger data structure. A transaction may be a simple “coin
transfer” in a cryptocurrency or a complex method call to a decentralized application. For either use-
case, it is widely accepted that the blockchain nodes must execute all transactions in the same order to
ensure consistency [26, 24]. That is, to ensure that the emulated ledger is consistent, transactions are
sent using protocols that implement total-order broadcast or consensus. Garay et al. [14] showed such
an equivalence formally for the Bitcoin protocol. This common theme seems to suggest that total order
is also necessary for the consistency of blockchains.

However, this folklore intuition is wrong: Recent work by Guerraoui et al. [16] shows that consensus
is not necessary to avoid double-spending in cryptocurrency applications. After distilling the essence of

1

ar
X

iv
:2

10
1.

05
54

3v
1 

 [
cs

.D
C

] 
 1

4 
Ja

n 
20

21

orestis.alpos@inf.unibe.ch
cachin@inf.unibe.ch
giorgia.marson@inf.unibe.ch
luca.zanolini@inf.unibe.ch


a cryptocurrency protocol to the problem of realizing a consistent asset transfer (AT), the authors cast the
latter as a sequential object in the shared-memory model and prove the AT object has consensus number 1
in the wait-free hierarchy [18]. In other words, consensus is not needed at all for emulating the functions
of Bitcoin! The consensus number is a well-established tool to express the synchronization requirements
of asynchronous concurrent objects. Informally, it provides an upper bound for the number of processes
that can be synchronized using (arbitrarily many) instances of a given object. For cryptocurrencies
modeled after Bitcoin that support shared accounts with up to k owners, Guerraoui et al. [16] introduce
a k-shared asset transfer (k-AT) object that has consensus number k, which is as powerful as consensus
among its k owners. Going beyond their theoretical elegance, these results are of great practical interest
because they pave the way to consensus-free implementations of cryptocurrencies [6, 17], with higher
efficiency and robustness to network partitions. In this particular case, for example, only the k owners
need to reach consensus for spending from the account, provided they have additional means to publicize
this widely in the network.

In this work, we investigate the synchronization power of smart contracts. We observe that al-
though k-AT would allow to generically implement any smart contract among k processes, it remains
open whether this level of synchronization is necessary for widely-used blockchain applications. We fo-
cus our attention on smart contracts for Ethereum, which is by far the most important platform for hosting
decentralized applications. Moreover, many other networks have adopted its programming model. We
present an abstraction of a token object that captures and generalizes the functionality of an ERC20
contract [28], which forms the basis for countless applications on Ethereum that hold billions today.
Notice that the k-AT abstraction [16] applies to Bitcoin and its UTXO model of a currency. Ethereum,
on the other hand, uses accounts, and ERC20 contracts are considerably more powerful than Bitcoin
transactions. The additional features of ERC20 make it possible, for example, to let account owners
conditionally issue transfers to other users of their choosing.

Empowering account owners to approve other spenders makes the ERC20 token object strictly more
powerful than k-AT. In addition, approval of new spenders can be performed flexibly, at any time and for
arbitrary amounts of tokens, achieving a dynamic that has no counterpart in the case of k-AT. Because of
these differences, the results established for k-AT [16] cannot be lifted to ERC20 tokens. What crucially
distinguishes an ERC20 token object from k-shared asset transfer is the increased level of dynamicity,
which is reflected in its synchronization requirements. Namely, the consensus number of ERC20 tokens
depends on the number of approved spenders for the same account, which may change as the account
owner enables more spenders. Based on the observations, we develop a formalism to express that the
consensus number of a token object can change over time, depending on the object’s state. More con-
cretely, we prove that there exist specific states from which it is possible to solve consensus among k
processes, for every k ≤ n where n is the number of accounts defined by the token contract. Moreover,
these states can be reached by letting any of the account owners approve new spenders.

Establishing the synchronization power of smart contracts is important for understanding the level
of synchronization that is required to run decentralized applications in a blockchain network. Not every
two users must be synchronized on every aspect of their respective states, this only matters when their
actions affect each other. Identifying the level of consensus needed for different applications also paves
the way for realizing more efficient blockchain networks, which may exploit more parallelism.

Organization. After discussing related work in Section 2, in Section 3 we present relevant notations
and background concepts. We then describe ERC20 tokens in Section 4, and we analyze their synchro-
nization requirements in Section 5. In Section 6, we discuss other notable token standards and elaborate
on extending our results to these tokens. Section 7 concludes our work suggesting future research direc-
tions.
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2 Related Work

Synchronization requirements and blockchain scalability. Guerraoui et al. [16] observe that con-
sensus is not necessary to realize a decentralized cryptocurrency. They propose a shared-memory ab-
straction for the asset transfer problem as implemented in Bitcoin [21] and show that it requires only
a minimal level of synchronization. Specifically, they show that asset transfer has consensus number 1
in Herlihy’s wait-free hierarchy [18]. The approach of analyzing the synchronization requirements of
shared objects in terms of consensus number has been used by others. For instance, Cachin et al. [5]
study the consensus number of various cloud-storage abstractions, and find that a key-value store has
the weakest synchronization power (i.e., its consensus number is 1) while a replica object requires the
strongest synchronization level (i.e., its consensus number is∞).

Obviating the need to reach agreement on the exact ordering of transactions opens the door to
more scalable solutions than the currently deployed, consensus-based blockchains. In this context,
Collins et al. [6] present a decentralized payment system based on Byzantine reliable broadcast. Guer-
raoui et al. [17] generalize the Byzantine reliable broadcast abstraction to the probabilistic setting and
propose a protocol which efficiently realizes it, with the goal of replacing the usual quorum-based safety
notions with stochastic guarantees for consistency in a distributed network. While the above-mentioned
protocols fulfill the synchronization requirements for implementing asset transfer, and can therefore sup-
port plain cryptocurrency applications, they are not sufficient for the implementation of generic smart
contracts.

Many other approaches have been explored in order to increase blockchain scalability [7], most
prominently “on-chain” proposals such as optimized BFT-based consensus protocols [15, 3, 30], DAG-
based protocols [19, 25], and sharding [31, 20, 29, 12], as well as “off-chain” solutions such as payment
channels [22, 9] and sidechains [2]. Even though these alternative approaches have received a lot of
attention recently [32], they have not yet been widely adopted in practice.

Smart contracts and Ethereum tokens. Ethereum [11] is the first open-source cryptocurrency plat-
form supporting smart contracts, providing a decentralized virtual machine for executing arbitrary Turing-
complete programs. The ERC20 standard, introduced by Buterin and Vogelsteller [28], provides func-
tions for handling tokens over Ethereum, allowing users to transfer various types of transferable goods
such as digital and physical assets. It formulates a common interface for fungible tokens and has become
the most widely-deployed API for implementing a token functionality, with more than half of the overall
Ethereum transactions being ERC20 token transfers [27].

3 Preliminaries

3.1 Shared Memory and Synchronization Power of Shared Objects

We begin with presenting well-established concepts from the concurrent computing literature. We mostly
follow the standard notations and nomenclature [4, 23, 16].

Concurrent objects. We assume a (finite) set Π of processes that communicate in an asynchronous
manner by invoking operations on, and receiving responses from, shared objects. Processes are sequen-
tial, meaning that no process invokes a new operation before completing (i.e., receiving the response
from) all previously invoked operations. We assume a crash-failure model: a process may halt prema-
turely, in which case we say the process has crashed. We say that a process is faulty if it crashes during
its execution, otherwise we say that it is correct.

An object type (or simply object) defines the functionality of shared-memory programming abstrac-
tions providing a finite set of operations. We consider concurrent objects, namely objects which can be
accessed by multiple processes simultaneously and concurrently. The specification of these objects can
be sequential or not, where “sequential” means that all correct behaviors of the object can be described
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with sequences of invocations and responses (traces). In this paper, we are only concerned with sequen-
tial objects. We define an object type as a tuple T = (Q, q0, O,R,∆), where Q is a set of states, q0 ∈ Q
is an initial state, O is a set of operations, R is a set of responses, and ∆ ⊆ Q×Π×O×Q×R defines
the valid state transitions. We write (q, p, o, q′, r) ∈ ∆ to denote that process p invokes operation o on
the object in current state q, and the operation completes by returning response r and causing the object
to enter state q′.

An implementation for an object type T is a distributed algorithm describing, for each process, suf-
ficient steps to realize each of the object’s operations in such a way that desired safety and liveness
properties are met. The strongest liveness condition for object implementations is wait-freedom [18],
requiring that every invocation of any object operation terminates, despite process failures.

Registers. The simplest object type is a register, which defines a shared-memory functionality pro-
viding read and write operations. Given a register R, a process can write a value v into R by invok-
ing R.write(v); upon completion of this operation, the process is given TRUE in response. Similarly, a
process can initiate a read operation on R by invoking R.read(); the process obtains a value R stores.
In the paper, we consider atomic registers. Formally, an atomic register provides termination, i.e., if a
correct process invokes an operation, then the operation eventually completes, and validity, i.e., a read
that is not concurrent with a write returns the last value written, while a read that is concurrent with a
write returns the last value written or the value concurrently being written. Moreover, an atomic register
provides ordering, i.e., if a read returns a value v and a subsequent read returns a value w, then the write
of w does not precede the write of v. This property implies that every operation of an atomic register
can be thought to occur at a single indivisible point in time, which lies between the invocation and the
completion of the operation [4].

Consensus. Another important object type is consensus, which allows a set of processes to agree on a
value. A consensus object C provides a single operation propose. A process can invoke C.propose(v) on
input a proposal v as a candidate value to be agreed upon. Every process can call propose with their own
proposed value, and only one invocation is permitted (i.e., it is a “single-shot” object). Upon completion,
the operation returns a value d, called the decided value. Besides wait-freedom (a.k.a. termination), we
require validity, i.e., the decided value is the proposal v of some process, and consistency, i.e., every
process returns the same decided value d.

Asset transfer (AT). The asset transfer object was proposed by Guerraoui et al. [16] as an abstraction
for cryptocurrencies. Let A be a finite set of accounts, |A| = n, and let µ : A → 2Π denote the owner
map that associates each account a ∈ A to the set of processes sharing the account. If |µ(a)| = k, we
say that a is a k-shared account.

Definition 1 (Asset transfer). The asset transfer object associated to A and µ, denoted by AT =
(Q, q0, O,R,∆), is defined as follows:

• Set Q contains all balance maps, i.e.,

Q = {β : A → N}. (1)

• The initialization map q0 = β0 assigns an initial balance to each account.

• O contains two operations, O = {transfer(as, ad, v) : as, ad ∈ A, v ∈ N} ∪ {balanceOf(a) :
a ∈ A}, where transfer(as, ad, v) lets the caller process, say p, transfer v tokens from a source
account as to a destination account ad, provided that p ∈ µ(as), and balanceOf(a) reads the
balance of account a.

• R contains the possible responses to operations in O, R = {TRUE, FALSE} ∪ N.
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• ∆ defines the valid state transitions. Given a state q = β ∈ Q, a process p ∈ Π with account ap,
an operation o ∈ O, a response r ∈ R, and a new state q′ = β′ ∈ Q, we have (q, p, o, r, q′) ∈ ∆ if
and only if either of the following conditions holds:

– o = transfer(as, ad, v) ∧ p ∈ µ(as) ∧ β(as) ≥ v ∧ β′(as) = β(as) − v ∧ β′(ad) =
β(ad) + v ∧ ∀c ∈ A \ {as, ad} : β′(c) = β(c) ∧ r = TRUE;

– o = transfer(as, ad, v) ∧ (β(as) < v ∨ p /∈ µ(as)) ∧ q′ = q ∧ r = FALSE;

– o = balanceOf(a) ∧ q′ = q ∧ r = β(a).

If the maximum number of processes sharing an account is k, we name the object a k-shared asset
transfer, and we denote it by k-AT.

Synchronization power of shared objects. The prominent result by Fischer, Lynch, and Paterson [13]
establishes the impossibility of wait-free implementing consensus from atomic registers. This means that
consensus requires a higher level of synchronization than atomic registers. In fact, the consensus object
is universal, in the sense that any shared object described by a sequential specification can be wait-free
implemented from consensus objects and atomic registers [18]. Therefore, consensus can be used to
reason about the synchronization power of all shared objects (which admit a sequential specification)
among a number of processes. This leads to the central concept of consensus number to express the
synchronization power of shared objects.

Definition 2 (Consensus number [18]). The consensus number associated with an objectO is the largest
number n such that it is possible to wait-free implement a consensus object from atomic registers and
objects of type O, in a system of n processes. If there is no largest n, the consensus number is said to be
infinite. Given an object O, we denote its consensus number by CN (O).

The consensus number allows comparing objects based on their synchronization power, thereby es-
tablishing a hierarchy among objects—the consensus hierarchy. In this work, we leverage the concept of
consensus number to study the level of synchronization required for popular smart-contracts tokens.

Theorem 1 ([18]). Let O and O′ be two objects such that CN (O) = n and CN (O′) > CN (O). Then
there is no wait-free implementation of an object of typeO′ from objects of typeO and read/write registers
in a system of n processes.

4 Defining ERC20 Tokens as Shared Objects

In this section, we present a smart contract for transferring tokens defined, by the Ethereum Request for
Comment (ERC) 20 specification, and propose a corresponding shared-memory abstraction.

Tokens are blockchain-based assets which can be exchanged across users of a blockchain platform.
Ethereum Request for Comment (ERC) 20 defines a standard for the creation of a specific type, dubbed
ERC20 token, one of the most widely adopted tokens on Ethereum. ERC20 tokens are transferred
through dedicated transactions among Ethereum addresses, and are managed by smart contracts. For
completeness, we reproduce in Appendix A the algorithmic specification defined in the EIP-20 pro-
posal [28], with minimal notational changes to ease the comparison with the objects defined in this
paper.

The definition of a token object we propose is a generalization of an ERC20 token. The reason for
slightly deviating from the original specification (as per Algorithm 3, Appendix A) is that it represents a
more expressive abstraction: it allows us to reason about synchronization requirements of ERC20 tokens
as well as comparing them with the asset transfer object.

Let A be a finite set of accounts. We assume one account per process, |Π| = |A| = n, and define
a bijection ω : A → Π between accounts and processes, i.e., ω(ai) = pi for all i ∈ {1, . . . , n}. We
name ω : A → Π the owner map that associates to each account a the corresponding process ω(a) which
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owns the account.1 To simplify the notation, we use the shorthand ap for the account owned by process p,
i.e., such that ω(ap) = p.

Notice that in the case of asset transfer (cf. Definition 1), account ownership captures a slightly
different setting than compared to token objects: the former allows for shared ownership while the latter
does not. We make this explicit by using different owner maps µ and ω, respectively. However, as we
explain in detail in the next section, ERC20 tokens offer a richer set of operations that, among others,
enables a conditioned form of shared ownership.

Using this notation, below we provide a specification for the ERC20 token smart contract using the
formalism of shared objects (cf. Section 3.1).

Definition 3 (ERC20 token object). Let A be a set of accounts and let Π be the set of corresponding
owner processes. A token object T associated to A consists of a tuple T = (Q, q0, O,R,∆), where:

States: Q contains all balances maps and allowances maps, i.e.,

Q = {β : A → N} × {α : A×Π→ N}. (2)

Intuitively, for a ∈ A and p ∈ Π, β(a) indicates the balance of account a, and α(a, p) denotes the
amount of tokens that process p is allowed to spend from account a.

Initial state: q0 = (β0, α0) denotes the pair of initial account balances and allowances.

Operations: O contains the following operations:

O = {transfer(ad, v) : ad ∈ A, v ∈ N} (3)

∪ {transferFrom(as, ad, v) : as, ad ∈ A, v ∈ N} (4)

∪ {approve(p, v) : p ∈ Π, v ∈ N} (5)

∪ {balanceOf(a) : a ∈ A} (6)

∪ {allowances(a, p) : a ∈ A, p ∈ Π}. (7)

Operation transfer(ad, v) lets the caller process, say p, transfer v tokens from its account ap to
destination account ad; similarly, transferFrom(as, ad, v) lets the caller process transfer v tokens
from source account as to destination account ad. Operation approve(p′, v) lets the caller process p
authorize another process p′ to transfer up to v tokens from p’s account. Finally, balanceOf(a)
reads the balance of account a, and allowances(a, p) reads the amount of tokens that process p is
authorized to transfer from a.

Responses: R contains the possible responses for all operations inO, namelyR = {TRUE, FALSE}∪N.

Sequential specification: ∆ defines the valid state transitions. Given a state q = (β, α) ∈ Q, a process
p ∈ Π with account ap, an operation o ∈ O, a response r ∈ R, and a new state q′ = (β′, α′) ∈ Q,
we have (q, p, o, r, q′) ∈ ∆ if and only if either of the following conditions holds:

• o = transfer(ad, v) ∧ β(ap) ≥ v ∧ β′(ap) = β(ap)− v ∧ β′(ad) = β(ad) + v ∧ ∀c ∈
A \ {ap, ad} : β′(c) = β(c) ∧ α′ ≡ α ∧ r = TRUE;

• o = transfer(ad, v) ∧ β(ap) < v ∧ q′ = q ∧ r = FALSE.

• o = approve(p̄, v) ∧ α′(ap, p̄) = v ∧ α′(a, p) = α(a, p) ∀(a, p) 6= (ap, p̄) ∧ β′ ≡
β ∧ r = TRUE;

• o = transferFrom(as, ad, v) ∧ β(as) ≥ v ∧ α(as, p) ≥ v ∧ β′(as) = β(as) −
v ∧ α′(as, p) = α(as, p) − v ∧ β′(ad) = β(ad) + v ∧ α′(a, p) = α(a, p) ∀(a, p) 6=
(as, p) ∧ ∀c ∈ A \ {as, ad} : β′(c) = β(c) ∧ r = TRUE;

1Although we use a similar formalism as Guerraoui et al. [16] to define account ownership, we make the restriction to
single-owner accounts to meet the Ethereum-token specification. As we will see in later sections, in Ethereum tokens there are
no shared accounts, however, a similar concept is enabled by means of dedicated methods.
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• o = transferFrom(as, ad, v) ∧ (β(as) < v ∨ α(as, p) < v) ∧ q′ = q ∧ r = FALSE;

• o = balanceOf(a) ∧ q = q′ ∧ r = β(a);

• o = totalSupply ∧ q = q′ ∧ r =
∑

a∈A β(a);

• o = allowances(a, p̄) ∧ q′ = q ∧ r = α(a, p̄).

The example below illustrates the various ERC20 token operations and their interplay.

Example 1 (ERC20 token: sample execution). Consider a set of three processes, Π = {A,B,C}
(Alice, Bob, and Charlie), and corresponding accounts, A = {aA, aB, aC}. Let Alice be the deployer of
an ERC20 token contract, and suppose Alice provides an initial supply of 10 tokens, i.e., totalSupply =
10. According to the ERC20 specification, the token object T associated to the contract is initialized as
follows:

q0 : balances[aA, aB, aC ] = [10, 0, 0], and

∀a ∈ A : allowances[a][A,B,C] = [0, 0, 0].

Starting from this initial configuration, let Alice invoke transfer(aB, 3), sending 3 tokens to Bob’s ac-
count. This operation triggers the transfer of 3 tokens from account aA to account aB and, upon comple-
tion, it causes the following state update:

q1 : balances[aA, aB, aC ]← [10− 3,+3, 0].

Let now Bob invoke approve(C, 5), authorizing Charlie to transfer up to 5 tokens from account aB . Upon
completion, this operation causes the following state update:

q2 : allowances[aB]← [0, 0,+5].

Upon being approved, let Charlie invoke transferFrom(aB, aC , 5) to transfer 5 tokens from Bob’s account
to his own account. Despite the fact that Charlie’s allowance allowances[aB][C] = 5 would in principle
permit such transfer, Bob’s balance balances[aB] = 3 is currently insufficient. Therefore, the operation
returns FALSE, leaving the state unmodified:

q3 ← q2

Finally, let Charlie invoke transferFrom(aB, aA, 1) to transfer 1 token from account aB to Alice’s ac-
count. This time, the amount of tokens to be transferred is below the account balance and, upon comple-
tion, the operation triggers the following state update:

q4 : balances[aA, aB, aC ]← [7 + 1, 3− 1, 0] and allowances[aB]← [0, 0, 5− 1].

Further notation. In later sections of the paper, we will make use of the following shortcut nota-
tion. For every state q ∈ Q, we write Tq to denote the token object initialized with state q, i.e.,
T = (Q, q,O,R,∆). Similarly, for Q′ ⊆ Q we write TQ′ to indicate that token object is initial-
ized with any state q ∈ Q′. We will also rely on an auxiliary token object T |Q′ , which is obtained
from T by restricting the valid state transitions to remain within Q′, i.e., T |Q′ = (Q′, q0, O,R,∆

′)
where q0 ∈ Q′ and ∆′ = {(q, p, o, r, q′) ∈ ∆ : q′ ∈ Q′}. Finally, we note that in the ERC20 standard
(cf. Algorithm 3, Appendix A) the state of the smart contract is fully specified by the arrays balances[ ]
and allowances[ ]. Namely, for all a ∈ A and all p ∈ Π, we have T.balances[a] = T.β(a) and
T.α(a, p) = T.allowances[a][p].

5 Consensus Number of ERC20 Tokens

In this section, we study the synchronization power of the ERC20 token object by analyzing its consensus
number.
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5.1 Overview of the Results

The consensus number of an ERC20 token object can be expressed in terms of the maximum number of
processes that can transfer tokens from the same account. This number, denoted below by k, depends on
the account balances and allowances defined by the object’s state q = (β, α), and hence it can change
as the state is updated. In the rest of this section, we therefore analyze the consensus number of a token
object T for various state configurations.

Approach and challenges. Given the similarities between the ERC20 token object and the k-shared
asset transfer object, one may think they have the same consensus number. Intuitively, the approve
method in ERC20 tokens allows emulating shared accounts by letting every account owner authorize
other processes to transfer tokens from its own account. In fact, there are at least two peculiarities of
ERC20 tokens which depart from k-shared accounts. Firstly, a k-shared asset transfer supports at most k
owners per account, where k ≤ n is fixed upfront (because the owner map µ in k-AT is static). This is in
contrast with ERC20 tokens, where each account owner can dynamically add and remove spenders at any
time of the execution, and the number of valid spenders per account is subject to change as the protocol
is ongoing. In other words, an ERC20 token object could be loosely seen as a k-shared asset transfer
with k changing dynamically. Secondly, in k-AT the owners of a shared account remain owners for the
whole lifetime of the object, i.e., they all can transfer tokens from that account as long as the balance is
positive. In ERC20 tokens instead, an approved spender remains a valid spender until it consumes the
granted allowance or the account owner decides to revoke the spender’s allowance (this can be done by
resetting the allowance to the default value 0).

These crucial differences show a separation between the k-AT object and the ERC20 token object,
and suggest that the two objects meet different synchronization requirements. In particular, it is not
possible to apply known results and techniques for k-AT to the case of ERC20 tokens. Moreover, the
approval mechanism to add and remove spenders in ERC20 tokens has subtle implications on the object’s
synchronization power.

In the rest of this section, we confirm these observations formally and make precise statements about
the consensus number of the ERC20 token object. We now provide a rather informal summary of our
results, which we state in full detail and prove in Section 5.2. The statements below hold for every k ≤ n.

Lower bound. There exists a set Sk of states, which we name synchronization states, such that for
every q ∈ Sk it is possible to wait-free implement a consensus object among k processes using objects
of type Tq (Theorem 2). Formally:

CN (TSk
) ≥ k. (8)

To prove this lower bound, we show that a consensus object supporting k processes reduces to Tq,
with q ∈ Sk, by presenting a wait-free implementation of consensus for k processes from objects of
type Tq and atomic registers.

Upper bound. The set of states can be partitioned into [Q1, . . . , Qn], with Q = ∪nk=1Qk, so that for
every q ∈ Qk, at most k processes can reach consensus using token objects of type Tq (Theorem 3).
Formally:

CN (TQk
) ≤ k. (9)

Proving the upper bound turns out to be more involved. We proceed with an indirect argument, showing
that the hypothesis CN (TQk

) = k′ > k leads to a contradiction. Intuitively, the contradiction is reached
because no implementation of consensus for k′ processes from Tq, with q ∈ Qk, can be wait-free.

5.2 Technical Results and Proofs

Essentially, we show that an ERC20 token represents a dynamic k-shared AT object, where k depends on
the current object’s state. Specifically, k is the maximum number of valid spenders for the same account.
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For each k ≤ n, where n is the total number of accounts, there exists a class Sk of states, the class
of k-synchronization states, such that ∀q ∈ Sk, it holds CN (Tq) ≥ k. However, we cannot conclude that
CN (T ) =∞. We can only say that if a state q ∈ Sn is reached, then we can solve consensus among all
processes. That is, there exists a state q ∈ Sn ⊂ Q such that CN (Tq) = n. This is weaker than saying
that for every state, we can solve consensus among n processes. In particular, it is not possible to reach
such a state q ∈ Sn in a wait-free manner, as we prove later.

Let us first define the sets Sk of synchronization states formally, then we will provide relevant bounds
for the consensus number of an ERC20 token object in a synchronization state.

Enabled spenders. For every state q = (β, α) ∈ Q, let σq : A → 2Π denote the mapping associating
each account a to its enabled spenders according to q, i.e., the set of processes that are enabled to transfer
tokens from account a w.r.t. balances β and allowances α specified by state q. Formally,

σq(a) = {p ∈ Π : p = ω(a) ∨ α(a, p) > 0}. (10)

Note that we explicitly include the account owner ω(a) in the set of enabled spenders for account a.
We conventionally assume that an account with zero balance has only its owner as enabled spender, i.e.,
β(a) = 0 =⇒ σq(a) = {ω(a)}. Indeed, even if there may be some process p, other than the owner,
with positive allowance for account a, i.e., β(a) = 0 and α(a, p) > 0, this process would not be able to
transfer tokens from a unless the balance is increased.

State partition. Let Qk, with k ≤ n, be the set of states with exactly k valid spenders from the same
account, i.e.,

Qk = {q ∈ Q : max
a∈A
|σq(a)| = k}. (11)

Observe that the subsets Q1, . . . , Qn define a partition. Intuitively, we would like to say that each subset
is associated to a given level of synchronization, defining a hierarchy Q1 ≺ · · · ≺ Qn reflecting the
synchronization level, where Qk corresponds to consensus number k. Importantly, the level of synchro-
nization may change as the object’s state is updated. In fact, for every k and for all states q ∈ Qk, there
exists a valid transition (q, p, o, r, q′) ∈ ∆, such that

q ∈ Qk, p = ω(a), o = approve, r = TRUE, q′ ∈ Qk+1, (12)

in the sense that it is possible to reach some state in Qk+1 from q ∈ Qk. However, the only way to do so
is by letting the owner of a k-spender account a approve a new spender.

Synchronization states. Later in this section, we show how to implement consensus from an ERC20
token object. Intuitively, we leverage an account for which multiple spenders have been approved: we let
the spenders engage in a “race” where they compete for spending the account’s tokens, and the “winner”
of this competition gets to choose the decided value (in the consensus protocol). This idea crucially relies
on the fact that there is a unique winner. To guarantee this, we need to impose an additional requirement
on the balance and allowances of the account used in the implementation. We formally specify such
requirement by defining predicate U : A×Q → {TRUE, FALSE} (ensuring unique transfers) as follows.
Namely, given a state q = (β, α) and an account a, we define:

U(a, q) if and only if β(a) > 0 ∧
(|σq(a)| ≤ 2 ∨ ∀pi, pj ∈ σq(a) \ {ω(a)} : α(a, pi) + α(a, pj) > β(a)) . (13)

We introduce further notation to identify relevant states which will appear in our main results. For
every k as above, we define Sk ⊂ Qk to be the set of states q with exactly k valid spenders from the
same account a and such that predicate U holds for (a, q):

Sk = {q ∈ Q : ∃a ∈ A : |σq(a)| = k ∧ U(a, q)} (14)
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We refer to the states in Sk as k-synchronization states. Intuitively, q ∈ Sk are the states from which we
can solve consensus for k processes, i.e., using an object type Tq, but not for more than k processes.

Theorem 2. For every k ≤ n it holds CN (TSk
) ≥ k.

Proof. We show an implementation of a consensus object C for k processes, using an instance of a Tq
object, with q ∈ Sk, and k atomic registersR[1], . . . , R[k]. By the hypothesis q ∈ Sk, at least one account
has k enabled spenders (cf. (14)) and satisfies the requirements defined by predicate U (defined in (13))
with respect to state q = (β, α). Without loss of generality, let a1 ∈ A denote one such account, and let
σq(a1) = {p1, . . . , pk} with p1 = ω(a1). Let B = β(a1) and Aj = α(a1, pj), j ∈ {2, . . . , k}, denote
the balance of a1, resp., the allowances of processes p2, . . . , pk for account a1, w.r.t. state q = (β, α).
Finally, let ad be any account in {a2, . . . , ak}. The code for the implementation is shown in Algorithm 1,
and described below.

Algorithm 1 Wait-free implementation of a consensus objectC among k processes in {p1, . . . , pk} using
an ERC20 object Tq, with q ∈ Sk, associated to an account set A = {a1, . . . , an}.
1: State
2: R[j]← ⊥, j ∈ {1, . . . , k}
3: An ERC20 object T initialized such that:
4: T.balances[a1] = B
5: T.allowances[a1][pj ] = Aj , j ∈ {2, . . . , k}
6: operation propose(v) // Code for process pi
7: R[i].write(v)
8: if pi = p1 then
9: T.Transfer(ad, B) // Transfer full balance
10: else T.transferFrom(a1, ad, Ai)
11: for j ∈ {2, . . . , k} do
12: if T.allowances(a1, pj) = 0 then
13: return R[j].read()
14: return R[1].read()

Briefly, each process pi writes its proposed value v in a register R[i]. Then process p1 attempts
to transfer its whole balance B to account ad, and process pi 6= p1 invokes operation T.transferFrom
as an attempt to transfer its whole allowance Ai from a1 to ad. Since only one of the transfer and
transferFrom invocations succeeds (as we prove shortly), we can safely decide the value proposed by the
process which triggered the successful transfer. The intuition is that only the invocation of transfer by p1

or the first completing invocation of transferFrom by some process pi∗ , for i∗ ∈ {2, . . . , k}, succeeds.
Upon completion of that operation, no other process will be able to issue its own transfer because the
balance of a1 will be too low (this is guaranteed by the predicate U defined in (13)). Moreover, while
the allowance of process pi∗ will be 0, the rest of the processes will still have positive allowances. Since
the allowances can be read by all processes, every process can determine who won the competition and
decide the value proposed by the winner. Therefore, once an operation propose completes by returning
decision value v∗, every other process that invokes propose also decides v∗. More precisely, we select
the “winner” process pi∗ as the one which succeeds in spending its allowance by transferring Ai∗ tokens
from a1 to ad. If none of the processes is found to have zero allowance, then p1 must have been the first
that called propose, and thus consumed the whole balance and caused any other calls to propose to fail.

We now show that the proposed implementation satisfies the termination, validity, and agreement
properties of a consensus object (cf. Section 3). Regarding the termination property, observe that all
instructions of operation C.propose do terminate: writing the proposed value to R[i] terminates because
of the use of an atomic register; the call to transferFrom terminates because it only involves reading from
and writing to registers; the for loop is bounded by the number of processes k, and each iteration involves
reading the allowance of a process pj and potentially reading from the corresponding register R[j] (ter-
mination follows by the properties of register R). The validity property holds because the decided value
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is read from one of the registers R[i] written by process pi, for i ∈ {1, . . . , k}, and the proposal of each
process pi is written before the read operation on that register is invoked (this is enforced by the if condi-
tion, cf. line 12). Hence, the decided value must be the proposal of some process pj , for j ∈ {1, . . . , k}.
As for the consistency property, as we already mentioned, only the first invocation of operation transfer
or transferFrom may succeed. In the former case, no invocation to transferFrom can ever succeed, hence
no allowance can be set to 0, hence all processes will return the value proposed by p1. In the latter case,
the allowance of one of the processes pi∗ , for i∗ ∈ {2, . . . , k} will be decreased from Ai∗ to 0, and the if
condition (cf. line 12) ensures that only the register written by a process with an allowance of 0 may be
read.

The previous theorem provides a lower bound for the consensus number of a token object Tq with
initial state q ∈ Sk. Therefore, so far we can deduce the following inequalities (where the right-most
inequality trivially holds):

k
(Thm.2)

≤ CN (TSk
) ≤ ∞ (15)

The upper bound in (15) is a loose one. We proceed with establishing a tight upper bound for the
consensus number of T . Similarly to the case of the lower bound, we will need to condition our statement
on the object’s state.

Observe that starting from the initial state q0 as defined in the original ERC20 specification—i.e., no
process is authorized to issue transfers from accounts they do not own, and all but the contract deployer
have zero balances (cf. Algorithm 3, Appendix A)—it is possible to reach a state q ∈ Sk as long as
tokens are transferred across accounts, and the owner of an account a with positive balance approves
other k − 1 spenders with sufficient allowances. Therefore, reaching a state in Sk is conditioned on
all these k − 1 approve operations succeeding, and ultimately on the account owner pa not failing until
then. Due to the above condition, a wait-free implementation of consensus from Tq0 is unachievable.
More generally, starting from any state q ∈ Qk, it is not possible to wait-free implement consensus
among k′ > k processes, as we prove in the following theorem.

Theorem 3. For every k ≤ n it holds CN (TQk
) ≤ k.

Proof. We proceed by contradiction and assume a wait-free implementation of consensus for k′ pro-
cesses using objects of type TQk

and atomic registers, where k′ > k, hence we show that for any such
implementation there exists an infinite sequential execution that leaves it in a bivalent state.

Let us first recall some relevant terminology. A protocol state is bivalent if, starting from that state,
there exists some execution in which the processes decide 0 and some execution in which they decide 1.
A protocol state is called critical if it is bivalent and any subsequent state, reached by having a pro-
cess invoke any of the object’s methods, is univalent. Every wait-free consensus protocol has a critical
state [18]. In the following, we denote one such state by qc. Further, the invocation which brings the
protocol from a critical state to a univalent state is called a decision step.

Without loss of generality, let p1, p2 ∈ Π be processes such that the decision step for p1, denoted
by o1, brings the protocol into a 0-valent state, and the decision step for p2, denoted by o2, brings it into
a 1-valent state. The rest of the proof is case analysis of the methods which p1 and p2 execute in these
decision steps.

Let us first assume that the decision step for p1 is to invoke any operation on an atomic register,
while the decision step for p2 is to invoke any operation on a TQk

object. Starting from qc, the sequential
execution of o1 followed by o2 brings the protocol into a 0-valent state q1, since p1 took a step first.
Instead, the sequential execution of o2 followed by o1 brings the protocol into a 1-valent state q2, since
p2 took a step first. However, the states q1 and q2 are identical, because the two operations o1 and o2

commute, a contradiction.
Let us now assume that at least one of the invocations, say o1, is on a read-only method. Consider

the sequential execution starting from qc, where p1 executes o1, then p2 executes o2, resulting in state q1,
and then p2 runs alone and terminates. In this execution, p2 must decide 0, because p1 took a step first.
Consider now the execution starting from qc, where p2 executes o2, resulting in state q2, and then p2 runs
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alone and terminates. In this execution, p2 decides 1. However, the states q1 and q2 differ only in the
internal values of p1, since the latter invoked a read-only method, hence they are indistinguishable for p2.
Yet, p1 decides a different value starting from q1, respectively, q2, a contradiction.

According to the commutativity and read-only arguments just described, the decision steps of p1

and p2 must operate on the same object and invoke a method that modifies the state of that object [18]. In
the following, we examine all possible combinations for the decision steps, and whenever they commute,
or are read-only, we refer to the arguments above to imply a contradiction.

Observe that the methods totalSupply, balanceOf, and allowance of the ERC20 token object are read-
only, hence we do not examine them further. Moreover, if both o1 and o2 are approve invocations, or if
one of them is an approve invocation and the other is a transfer invocation, then o1 and o2 commute and
a contradiction is reached as shown above. We proceed by analyzing the remaining, non-trivial cases.
Case 1: both o1 and o2 are invocations to the transfer method. Since transfer withdraws tokens from the
account of the calling process, o1 and o2 commute except for the case when o1 = transfer(a2, x), that is,
a transfer of x tokens to the account of p2, and the balance of p2 is not sufficient to execute the transfer o2

before o1, that is, o2 returns FALSE if executed before o1. Observe that in this case, o2 is equivalent to a
read-only operation, therefore a contradiction is reached as described earlier. (For instance, consider the
following two executions: in the first one, p2 executes o1 and then runs alone, deciding 0; in the second
one, operation o2 is executed first, followed by o1, hence p1 runs alone and decides 1.)
Case 2: both o1 and o2 are invocations to the transferFrom method. These invocations commute, except
for the case when they both use the same source account as and the balance of as is only sufficient for
one of the two transfers, and both processes are enabled to spend from as (without the latter condition
the invocation would be equivalent to a read-only operation). Let us focus on this case. Since our
implementation solves consensus among k′ processes, and at most k processes are enabled spenders for
the same account, where k′ > k, there must be (at least) a process pw that is not an enabled spender for
account as—and by definition, pw cannot be process ps = ω(as). Assume wlog that the decision step o3

taken by pw brings the protocol in a 1-valent state (otherwise swap p1 for p2 in the following argument).
Under this configuration, we will reach a contradiction for any possible method involved in o3.

Let us begin with the case where o3 is a transferFrom invocation with as as source account, as shown
in Figure 1a. As process pw is not enabled for account as, operation o3 returns FALSE without modifying
the state, thus it is equivalent to a read-only operation. Let us now consider the following two executions:
process p1 executes o1, reaching state q1, and then runs alone, thus deciding 0; process pw executes o3,
then process p1 executes o1 reaching state q3, then process p1 runs alone, thus deciding 1. We have a
contradiction, because states q1 and q3 are indistinguishable to process p1.

Moreover, if operation o3 is a transferFrom invocation with source account at, with t 6= s, then
operations o1 and o3 commute, and a contradiction is reached with a similar argument as above. A
similar argument can be applied to all other possible methods, by observing that o3 is either read-only
(totalSupply, balanceOf, allowance), or it commutes with o1 (approve, transfer), because pw 6= ps.
Case 3: operations o1 and o2 are a transfer, respectively, a transferFrom invocation, or vice versa. This
case is analogous to the previous one. Indeed, if the transferFrom invocation has a source account other
than a1, then the two invocations commute, while if it has a1 as source account, the same reasoning as
in the previous case, making use of process pw, applies.
Case 4: operation o1 is an approve invocation and o2 is a transferFrom invocation. Let us examine
the case where o1 approves process p2 and o2 uses a1 as source account—in all other cases, the two
invocations commute. We distinguish two cases.

In the first case, assume that p2 is not already an enabled spender for account a1. Then operation o2,
if executed before o1, returns FALSE and hence it does not affect the state of TQk

. Therefore, o2 is
equivalent to a read-only operation and a contradiction is reached with the exact same executions as in
Case 1 (see above).

In the second case, assume that p2 is already an enabled spender for account a1. Then, as depicted
in Figure 1b, the states q1 and q2, reached by the sequential execution of o1 and then o2, respectively,
by the sequential execution of o2 and then o1, are not identical (hence we cannot deduce an immediate
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(a) Case 2: both operations o1 and o2 are invocations to
the transferFrom method.

(b) Case 4: operation o1 is an approve invocation and o2
is a transferFrom invocation.

Figure 1. Possible state transitions from the critical state qc.

contradiction). However, in such case there must be a process pw that is not an enabled spender for a1

and, thus, every possible method invocation o3 is either read-only or commutes with o1 and o2. Suppose
the decision step taken by pw brings the protocol in a 1-valent state (the reasoning for a 0-valent case
is analogous). Then the sequential execution of operations o1, o2, and then o3 results in a state q3 from
which p1 decides 0. In contrast, the sequential execution of o3 followed by o1 and then o2 results in a
state q4 from which p1 decides 1. By observing that q3 = q4, we reach a contradiction.

Putting it all together, we have:

k
(Thm.2)

≤ CN (TSk
) and CN (TQk

)
(Thm.3)

≤ k. (16)

Observing that Sk ⊆ Qk =⇒ CN (TSk
) ≤ CN (TQk

), we can deduce exact synchronization requirements
for Tq when q is a synchronization state, i.e., q ∈ Sk:

k ≤ CN (TSk
) ≤ CN (TQk

) ≤ k =⇒ CN (TSk
) = k. (17)

Notice that successful completion of specific approve operations is necessary to reach a synchroniza-
tion state q from which we can wait-free implement consensus for arbitrarily many processes. Concretely,
reaching a state q′ ∈ Qk′ starting from any state q ∈ Qk, with k′ > k, requires the owner of some account
with k enabled spenders to approve other k′−k−1 spenders. If such approve operations—which change
the number of enabled spenders for the same account—were not enabled, then the resulting token object
would be no stronger than the k-shared asset transfer object. To make this argument formal, we define
an auxiliary token object T |Qk

by restricting the ERC20 token Tq, with q ∈ Qk, so that only transitions
within Qk are permitted. In other words, T |Qk

is a restricted version of T which does not allow any
transition to a state q′ ∈ Q \ Qk. The resulting token object reduces to k-shared asset transfer, as we
show next.

Theorem 4. For every k ≤ n, there exists a wait-free implementation of a token object T |Qk
from objects

of type k-AT and atomic registers. In particular, CN (T |Qk
) ≤ CN (k-AT ) = k.
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Proof. We present a wait-free implementation of object T |Qk
from a k-shared asset transfer object k-AT

(cf. Definition 1), which is known to have consensus number k [16], and atomic registers. The result is
implied by the inequality CN (T |Qk

) ≤ CN (k-AT ), which follows from Theorem 1.
Intuitively, for q ∈ Qk, we envision every account a that has k enabled spenders w.r.t. q as a k-shared

account, so that we can emulate the methods of object T by invoking the methods of k-AT and using
atomic registers. Indeed, the token object T is similar to k-shared asset transfer, the crucial difference
being that each account owner can approve new spenders for their account and, therefore, can in principle
realize k′-shared accounts with k′ > k. However, the latter operations are disabled for the “restricted”
object T |Qk

, hence all operations can be simulated by the methods of k-AT and with registers.
We provide an explicit implementation in Algorithm 2. The balances k-AT.β and the owner map

k-AT.µ are initialized in lines 3 and 4, respectively, according to the state q. For each account a ∈ A, the
algorithm makes use of n atomic registers Ra[j], for 1 ≤ j ≤ n, to keep track of the allowance that the
owner of a has assigned to process pj . These registers are initialized in line 6 according to the allowance
of each account in state q.

Recall that the owner map k-AT.µ of an asset transfer object is static, i.e., it is defined upon creation
of the object. Hence, in order to keep track of dynamically evolving allowances for T |Qk

, we make
use of multiple instances of a k-AT object: whenever the set of enabled spenders for a given account
changes (and as long as the account has no more than k enabled spenders), we create a new instance of
the k-AT object, with the same balances as the previous instance and an owner map reflecting the updated
allowances. In the pseudocode, this is expressed by updating k-AT.µ in lines 21–23.

To see why the implementation is correct, observe that no process can transfer more tokens than it
has; this is ensured by making use of the k-AT object. Moreover, for every account a we keep track of
the allowances using registers Ra[j], for j ∈ {1, . . . , n}, and the corresponding balances are managed
by the k-AT object.

Notice that by definition of T |Qk
, all approve operations are restricted to transitions within Qk.

Therefore, all valid configurations of account balances and allowances will enable at most k spenders
for the same account. This allows treating such accounts as k-shared, and ultimately enables a correct
simulation with the methods of the asset transfer object. The implementation is wait-free because we do
not make use of any for loop, every method is constructed without the need to wait for other processes
to complete their operations and the k-AT object is wait-free.

ERC20 token vs k-shared asset transfer. Informally, Theorem 2 and Theorem 4 jointly confirm the
intuition that the ERC20 token object is more complex than, yet uncomparable with, the k-shared asset
transfer object. On the one hand, the ERC20 token object is similar to k-shared asset transfer, in the sense
that k-shared accounts can be emulated, to a certain extent, having an account owner approving suffi-
ciently many spenders. On the other hand, for ERC20 tokens any synchronization level can be reached,
in principle, by enabling sufficiently many spenders for the same account, suggesting that ERC20 tokens
are strictly more powerful, in terms of synchronization level, than k-AT. Indeed, while the owners of a
shared account must be fixed upfront when the contract is deployed, the enabled spenders for an ERC20
account can change dynamically, as the account owner wishes. Similarly, the amount of tokens that each
enabled spender is allowed to transfer from that account is flexibly chosen, and can be modified at any
time, by the account owner. This is in sharp contrast with k-shared asset transfer objects, as the latter has
a static consensus number. Nevertheless, increasing the synchronization power in ERC20 tokens cannot
be done in a wait-free manner.

6 Extension to Other Token Standards

In this section, we discuss how to extend our results to other token standards on Ethereum beyond ERC20.
As of the time of writing, several token implementations have been proposed within the Ethereum project,
ERC20 being the major reference among all. Some of these proposals are in a testing phase while others
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Algorithm 2 Wait-free implementation of a token object T |Qk
, with initial state q = (β, α) ∈ Qk, from

k-shared asset transfer objects k-AT . Code for process pi.
1: State
2: for a ∈ A do
3: k-AT.β[a]← β(a) // Balance of account a in state q
4: k-AT.µ[a]← σq(a) // The enabled spenders of account a in state q
5: for pj ∈ Π do
6: Ra[j]← α(a, pj) // Allowance of account a to process pj in state q

7: operation transferFrom(as, ad, value) // Transfer value from source as to destination ad
8: if Ras

[i] < value then
9: return FALSE

10: Ras [i] −= value
11: k-AT.transfer(as, ad, value)

12: operation transfer(ad, value) // Transfer value from source ai to destination ad
13: return k-AT.transfer(api , ad, value)

14: operation balanceOf(a) // Read balance of a
15: return k-AT.balanceOf(a)

16: operation approve(pj , value) // Approve spender pj for account ai
17: if |{pa} ∪ {pj ∈ Π : Ra[j] > 0}| = k then
18: return FALSE // Ensure we stay in Qk

19: oldValue← Rai
[j]

20: Rai
[j]← value

21: if oldValue = 0 and value > 0 then
22: for a ∈ A do
23: k-AT.µ[a]← {pa} ∪ {pj ∈ Π : Ra[j] > 0}
24: return TRUE

25: operation allowance(a, pj) // Read allowance of pj for account a
26: return Ra[j]

27: operation totalSupply()
28: return

∑
a∈A k-AT.β[a]
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have already reached a final phase and have been adopted [1]. We overview the proposals that have
reached the final stage.

The ERC777 token standard aims to solve some problems related to ERC20, while maintaining
backward compatibility [8]. It defines new features, some of which are similar to those of ERC20, to
interact with the tokens. In particular, it defines operators to transfer tokens on behalf of another address,
similarly to the mechanism enabled by the allowances in ERC20, and hooks, to simplify the sending
process and to offer a single way for sending tokens to any recipient. One of the main differences
compared to ERC20 is the mechanism of allowing processes to manage tokens on behalf of others.
In ERC20, the approve method lets an account owner p define an amount of tokens that the approved
process p′ is allowed to spend on behalf of p. In contrast, an operator p′ in ERC777 is allowed to spend
all the tokens owned by the approving process p. Nevertheless, it is immediate to extend our results to
ERC777. Specifically, both Algorithms 1 and 2 can be adapted by replacing the approved spenders with
the corresponding operators.

The ERC721 standard is inspired by ERC20, however, it provides an interface for non-fungible to-
kens [10]. In contrast to standard tokens, all non-fungible tokens are unique. In ERC721, every token
is uniquely determined by an identifier tokenId and can be individually transferred using a transferFrom
method. Similarly to ERC20, an account owner p can approve other processes to spend tokens on its
behalf by invoking the approve method, specifying the process p′ to be approved and a token identi-
fier tokenId. We do not discuss the other methods specified by ERC721, as they fall outside the scope of
this work. Although ERC721 defines tokens of different nature compared to ERC20 tokens, we notice
that our techniques and results can also be applied, with some adjustment, to this standard. Concretely,
Algorithm 1 can be adapted so that it uses a specific token, determined by its identifier tokenId, which
all the participating processes are approved to spend; the winner of this race can then be determined by
invoking ownerOf with token identifier tokenId. Modifying Algorithm 2 to match the ERC721 specifi-
cation requires more care. More generally, implementing an ERC721 token object from k-AT appears
challenging, if not impossible, as each ERC721 token is transferred individually rather than collectively,
as is the case with fungible tokens. Instead of relying on k-AT , however, a series of k-consensus in-
stances could be used, with each instance associated to an ERC721 token, so that k-consensus can be
invoked each time a token is spent.

ERC1155 defines a smart-contract interface for managing multiple token types. In particular, it
specifies methods that enable the execution of a number of transactions, possibly on different token
types, or involving various source and target accounts, within a single method-call. While it is plausible
that ERC1155 tokens inherit the synchronization requirements of ERC20 tokens, establishing formal
requirements would need an in-depth analysis, based on combinations of accounts, which goes beyond
the scope of this work.

Finally, the Payable Token standard ERC1363 follows the approve and transferFrom paradigm of
ERC20 tokens, but adds a layer of indirection. Specifically, it allows processes to specify arbitrary
code, which is executed upon receiving a token through transfer, transferFrom, or upon completion of
an approve operation. The possibility of executing an arbitrary contracts precludes establishing exact
synchronization requirements a priori, as this can be arbitrary.

7 Conclusion and future directions

Prior work shows that the asset transfer object, providing the basic functionality of a cryptocurrency, has
consensus number 1 [16]. This means that implementing a “plain” cryptocurrency such as Bitcoin [21]
does not require synchronization among processes, and hence the consensus layer of Bitcoin could be
replaced by a fully asynchronous dissemination protocol, which does not order transactions. This impor-
tant result however does not apply to blockchains with richer smart-contract support such as Ethereum.
In fact, enabling the execution of arbitrary smart contracts requires agreement among all blockchain
nodes. Nevertheless, it remains open whether specific smart contracts need consensus or not, and more
generally, which level of synchronization they require.
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In this work, we analyze the synchronization requirements of one such smart contract—the ERC20
token standard of Ethereum—through the lens of wait-free implementations, establishing the consensus
number of an associated shared-memory token object. Our results show that an ERC20 token contract
may require different levels of synchronization, depending on its state configurations. In other words, the
ERC20 token object has a dynamic consensus number: when initialized according to the standard [28],
its consensus number is 1; however, as soon as an account owner approves other spenders for its account,
the consensus number of the object may increase. In fact, there exist executions that modify the state so
that the consensus number becomes k, for every k with 1 ≤ k ≤ n.

Our results imply that while executing arbitrary smart contracts requires consensus among all pro-
cesses, synchronizing a dedicated subset of participants is sufficient for realistic applications such as
token contracts. In the case of ERC20 tokens, consensus indeed only needs to be reached among the
largest set σq(a) of enabled spenders for the same account a; importantly, the exact synchronization
requirements can be readily deduced from the current object’s state q by reading the current balances
and allowances. This insight opens up the possibility to deploy realistic smart contracts, such as ERC20
tokens, on more scalable and performant protocols than consensus-based blockchains. Namely, the con-
sistency mechanism could be flexibly adapted, during execution, to require higher or lower coordination
among nodes depending on the current state of the smart contract, so that only the minimal synchroniza-
tion requirements are matched.

We suggest as an interesting open problem to develop distributed protocols meeting the dynamic
synchronization requirements of ERC20 tokens. Such protocols could replace the consensus layer of
traditional blockchain platforms with a more efficient broadcast method, as shown earlier for asset trans-
fer [6]. This would generally work under asynchrony and yet provide an atomic broadcast functionality
among every account owner and its enabled spenders.
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A ERC20 Token Standard

Algorithm 3 Sequential specification of ERC20 functionalities.
1: state
2: const d, the process that deployed the contract, used only in the initialization of balances
3: const string name
4: const string symbol
5: const int decimals
6: const int totalSupply
7: balances [] ⊆ A× N, initially balances[d] = totalSupply, balances[i] = 0 for i 6= d
8: allowances [][] ⊆ A× P × N, initially ∅
9:
10: operation totalSupply()
11: return totalSupply
12:
13: operation balanceOf(owner)
14: return balances[owner]
15:
16: operation transfer(to, value) // Code for process pi
17: if balances[pi] < value then
18: return FALSE
19: else
20: balances[pi] −= value
21: balances[to] += value
22: return TRUE
23:
24: operation transferFrom(from, to, value) // Code for process pi
25: if allowances[from][pi] < value then
26: return FALSE
27: else if balances[from] < value then
28: return FALSE
29: else
30: allowances[from][pi] −= value
31: balances[from] −= value
32: balances[to] += value
33: return TRUE
34:
35: operation approve(spender, value) // Code for process pi
36: allowances[pi][spender]← value
37: return TRUE
38:
39: operation allowance(owner, spender)
40: return allowances[owner][spender]
41:
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