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Abstract

Consensus is arguably one of the most important notions in distributed computing. Among asyn-
chronous, randomized, and signature-free implementations, the protocols of Mostéfaoui et al. (PODC
2014 and JACM 2015) represent a landmark result, which has been extended later and taken up in
practical systems. The protocols achieve optimal resilience and takes, in expectation, only a constant
expected number of rounds of quadratic message complexity. Randomization is provided through a
common-coin primitive.

In traditional consensus protocols, all involved processes adhere to a global, symmetric failure
model, typically only defined by bounds on the number of faulty processes. Motivated by applications
to blockchains, however, more flexible trust assumptions have recently been considered. In particular,
with asymmetric trust, a process is free to choose which other processes it trusts and which ones
might collude against it.

This paper revisits the optimal asynchronous protocol of Mostéfaoui et al. and shows how to
realize it with asymmetric trust. The paper starts by pointing out in detail why some versions of
this protocol may violate liveness. Then it proposes a fix for the protocol that does not affect its
properties, but lets it regain the simplicity of its original version (PODC 2014). At the same time,
the paper shows how to realize randomized signature-free asynchronous Byzantine consensus with
asymmetric quorums. This results in an optimal consensus protocol with subjective, asymmetric trust
and constant expected running time. It is suitable for applications to blockchains, for instance.
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1 Introduction
Consensus represents a fundamental abstraction in distributed systems. It captures the problem of reaching agree-
ment among multiple processes on a common value, despite unreliable communication and the presence of faulty
processes. Most protocols for consensus operate under the assumption that the number of faulty processes is
limited. Moreover, all processes in the system share this common trust assumption. Traditionally, the trust as-
sumption has been symmetric in this sense: all processes adhere to the global assumption about the number
of faulty processes and properties of protocols are guaranteed for all correct processes, but not for the faulty
ones. Since the advent blockchains systems, however, more flexible trust models have been introduced. The Rip-
ple (www.ripple.com) and Stellar (www.stellar.org) blockchains have pioneered practical models that
let each process express its own set of trusted processes and assumptions can be more flexible than bounding only
the number of faulty processes.

Motivated by this desire to make trust assumptions more flexible, Cachin and Tackmann [5] introduced asym-
metric Byzantine quorum systems as a generalization of Byzantine quorum systems. Originally defined by Malkhi
and Reiter [15], Byzantine quorum systems capture one global, but arbitrarily complex trust relation through a
so-called fail-prone system. This permits protocols, in which not only the number of faults is bounded. Since
Byzantine quorum systems provide a widely used abstraction for realizing practial consensus protocols for dis-
tributed systems, asymmetric quorum systems open up the possibility to implement consensus with subjective
trust. However, no consensus algorithms with asymmetric trust have been formulated so far.
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In this paper, we present the first asynchronous Byzantine consensus protocol with asymmetric trust. It uses
randomization, provided by an asymmetric common-coin protocol, to circumvent the impossiblity of (purely)
asynchronous consensus. Our protocol takes up the randomized and signature-free implementation of consensus
by Mostéfaoui et al. [18, 19]. This represents a landmark result because it has been praised for its simplicity, was
the first to achieve optimal complexity, that is, expected quadratic cost in the number of processes, and does not
use digital signatures. The protocol has been extended later and taken up in practical systems, such as “Honey
Badger BFT” [17].

The protocol of Mostéfaoui et al., however, comes in multiple versions. The original one, published at PODC
2014 [18] and where it also won the best-paper award, suffers from a subtle and little-known liveness problem [22]:
an adversary can prevent progress among the correct processes by controlling the messages between them and by
sending them values in a specific order. The subsequent version (JACM 2015) [19] resolves this issue, but requires
many more communication steps and adds considerable complexity.

Our asymmetric asynchronous Byzantine consensus protocol is based on the simpler version (PODC 2014).
We first revisit this and show in detail how it is possible to violate liveness. We propose a method that overcomes the
problem, maintains the elegance of the protocol, and does not affect its appealing properties. Based on this insight,
we show how to realize asynchronous consensus with asymmetric trust, again with a protocol that maintains the
simplicity of the original approach of Mostéfaoui et al. [18].

Asymmetric quorum systems go back to the notion of asymmetric trust introduced by Damgård et al. [7].
Every process in the system subjectively selects its own fail-prone system. Depending on the choice that a correct
process makes about who it trusts and who not, and considering the processes that are actually faulty during an
execution, two different situations may arise. A correct process may either make a “wrong” trust assumption, for
example, by trusting too many processes that turn out to be faulty or by tolerating too few faults; such a process is
called naı̈ve. Alternatively, when the correct process makes the “right” trust assumption, it is called wise. Protocols
with asymmetric trust do not guarantee the same properties for naı̈ve processes as for wise ones.

As an additional contribution, we extend our knowledge about the relation between naı̈ve and wise processes in
protocols with asymmetric trust. We show that, under certain conditions, guarantees can only be given for a subset
of the wise processes that form a so-called guild. The existence of a guild is necessary for a protocol execution
with asymmetric trust to terminate.

The remainder of this work is structured as follows. In Section 2 we discuss related work. We present our
system model together with preliminaries on Byzantine quorums in Section 3. In Section 4 we recall the random-
ized consensus protocol as originally introduced by Mostéfaoui et al. [18], discuss the liveness issue [22], and
show a way to prevent it. In Section 5 we recall and extend the theory behind asymmetric quorums. We define
and implement asymmetric strong Byzantine consensus protocol in Section 6 by extending and improving on the
randomized consensus algorithm by Mostéfaoui et al. [18]. Moreover, we build a common coin based on secret
sharing that works in the asymmetric-trust model and it is used in our randomized protocol. Conclusions are drawn
in Section 7.

2 Related work
Mostéfaoui et al. [18] present a signature-free round-based asynchronous consensus algorithm for binary values. It
achieves optimal resilience and takes O(n2) constant-sized messages. The algorithm is randomized and random-
ization is achieved through a common coin as defined by Rabin [21]. Their algorithm has been taken up for the
construction of the HoneyBadgerBFT by Miller et al. [17].

Tholoniat and Gramoli [22] observe a liveness issue in the protocol by Mostéfaoui et al. [18] in which an
adversary is able to prevent progress among the correct processes by controlling messages between them and by
sending them values in a specific order.

In a later work, Mostéfaoui et al. [19] present a different version of their randomized consensus algorithm that
does not suffer from the liveness problem anymore. The resulting algorithm offers the same asymptotic complexity
in message and time as their previous algorithm [18] but it requires more communication steps.

Flexible trust structures have recently received a lot of attention [5, 7, 8, 13, 14, 16], primarily motivated by
consensus protocols for blockchains, as introduced by Ripple (www.ripple.com) and Stellar (www.stellar.
org). According to general idea behind these models, processes are free to express individual, subjective trust
choices about other processes, instead of adopting a common, global view of trust.

Damgård et al. [7] define the basics of asymmetric trust for secure computation protocols. This model is
strictly more powerful than the standard model with symmetric trust and abandons the traditional global failure
assumption in the system. Moreover, they present several variations of their asymmetric-trust model and sketch
synchronous protocols for broadcast, verifiable secret sharing, and general multi-party computation.
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Mazières [16] introduces a new model for consensus called federated Byzantine agreement (FBA) and uses it
to construct the Stellar consensus protocol [12]. In FBA, every process declares quorums slices – a collection of
trusted sets of processes sufficient to convince the particular process of agreement. These slices are subsets of a
quorum, which is a set of processes sufficient to reach agreement. More precisely, a quorum is defined as a set
of processes that contains one slice for each member, and all quorums constitute a federated Byzantine quorum
system (FBQS).

Byzantine quorum systems have originally been formalized by Malkhi and Reiter [15] and exist in several
forms; they generalize the classical quorum systems aimed at tolerating crashes to algorithms with Byzantine
failures. Byzantine quorum systems assume one global shared fail-prone system.

A link between FBQS and Byzantine quorums system has been built by Garcı́a-Pérez and Gotsman [8], who
implement Byzantine reliable broadcast on an FBQS. They prove that a FBQS induces a Byzantine quorum system.

Asymmetric Byzantine quorum systems have been introduced by Cachin and Tackmann [5] and generalize
Byzantine quorum systems [15] to the model with asymmetric trust. This work also explores properties of asym-
metric Byzantine quorum systems and differences to the model with symmetric trust. In particular, Cachin and
Tackmann [5] distinguish between different classes of correct processes, depending on whether their failure as-
sumptions in an execution are correct. The standard properties of protocols are guaranteed only to so-called wise
processes, i.e., those that made the “right” trust choices. Protocols with asymmetric quorums are shown for Byzan-
tine consistent broadcast, reliable broadcast, and emulations of shared memory. In contrast to FBQS, asymmetric
quorum systems appear to be a natural extension of symmetric quorum systems.

Recently, Losa et al. [13] have formulated an abstraction of the consensus mechanism in the Stellar network
by introducing Personal Byzantine quorum systems (PBQS). In contrast to the other notions “quorums”, their
definition does not require a global intersection among quorums. This may lead to several separate consensus
clusters such that each one satisfies agreement and liveness on its own.

Another new approach for designing Byzantine fault-tolerant (BFT) consensus protocols has been introduced
by Malkhi et al. [14], namely Flexible BFT. This notion guarantees higher resilience by introducing a new alive-
but-corrupt fault type, which denotes processes that attack safety but not liveness. Malkhi et al. [14] also define
flexible Byzantine quorums that allow processes in the system to have different faults models.

3 System model and preliminaries

3.1 System model
Processes. We consider a system of n processes P = {p1, . . . , pn} that communicate with each other. The
processes interact by exchanging messages over reliable point-to-point links, specified below.

A protocol for P consists of a collection of programs with instructions for all processes. Protocols are pre-
sented in a modular way using the event-based notation of Cachin et al. [3].

Failures. A process that follows its protocol during an execution is called correct. On the other hand, a faulty
process may crash or deviate arbitrarily from its specification, e.g., when corrupted by an adversary; such pro-
cesses are also called Byzantine. We consider only Byzantine faults here and assume for simplicity that the faulty
processes fail right at the start of an execution.

Functionalities and modularity. A functionality is an abstraction of a distributed computation, either used
as a primitive available to the processes or defining a service that a protocol run by the processes will provide.
Functionalities may be composed in a modular way. Every functionality in the system is specified through its
interface, containing the events that it exposes applications that may call it, and through a number of properties
that define its behavior. There are two kinds of events in an interface: input events that the functionality receives
from other abstractions, typically from an application that invokes its services, and output events, through which
the functionality delivers information or signals a condition.

Multiple functionalities may be composed together modularly. In a modular protocol implementation, in
particular, every process executes the program instructions of the protocol implementations for all functionalities
in which it participates.

Links. We assume there is a low-level functionality for sending messages over point-to-point links between
each pair of processes. In a protocol, this functionality is accessed through the events of “sending a message” and
“receiving a message.” Point-to-point messages are authenticated and delivered reliably among correct processes.

3



Moreover, at certain points, we assume FIFO ordering on the reliable point-to-point links for every pair of
processes. This means that if a correct process has “sent” a message m1 and subsequently “sent” a message m2,
then every correct process does not “receive” m2 unless it has earlier also “received” m1. Protocols that guarantee
FIFO order on top of (unordered) reliable point-to-point links are well-known and simple to implement [3, 9]. We
remark that there is only one FIFO-ordered reliable point-to-point link functionality in the model; hence, FIFO
order holds among the messages exchanged by the implementations for all functionalities used by a protocol.

Time and randomization. In this work we consider an asynchronous system, where processes have no access
to any kind of physical clock, and there is no bound on processing or communication delays. The randomized
consensus algorithm delegates probabilistic choices to a common coin abstraction [21]; this is a functionality that
delivers the same sequence of random binary values to each process, where each binary value has the value 0 or 1
with probability 1

2 .

3.2 Byzantine quorum systems
Let us recall Byzantine quorums as originally introduced [15]. We refer to them as symmetric Byzantine quorums.

Definition 1 (Fail-prone system). Let P be a set of processes. A fail-prone system F is a collection of subsets of
P , none of which is contained in another, such that some F ∈ F with F ⊆ P is called a fail-prone set and contains
all processes that may at most fail together in some execution.

Definition 2 (Symmetric Byzantine quorum system). Let P be a set of processes and let F ⊆ 2P be a fail-prone
system. A symmetric Byzantine quorum system for F is a collection of sets of processes Q ⊆ 2P , where each
Q ∈ Q is called a quorum, such that
Consistency:

∀Q1, Q2 ∈ Q,∀F ∈ F : Q1 ∩Q2 6⊆ F.

Availability:
∀F ∈ F : ∃ Q ∈ Q : F ∩Q = ∅.

For example, under the common threshold failure model, the quorums are all sets of at least dn+f+1
2 e pro-

cesses, where f is the number of processes that may fail. In particular, if n = 3f + 1, quorums have 2f + 1 or
more processes.

Malkhi and Reiter [15] refer to the above definition as Byzantine dissemination quorum system. They also
define other variants of Byzantine quorum systems.

Notice that in our notion of a quorum system, one quorum can be contained in another.
We say that a set system T dominates another set system S if for each S ∈ S there is some T ∈ T such that

S ⊆ T . In this sense, a quorum system for F is minimal whenever it does not dominate any other quorum system
for F .

Definition 3 (Q3-condition [10, 15]). Let F be a fail-prone system. We say that F satisfies the Q3-condition,
abbreviated as Q3(F), if it holds

∀F1, F2, F3 ∈ F : P 6⊆ F1 ∪ F2 ∪ F3.

This is the generalization of the threshold condition n > 3f for Byzantine quorum systems. Let S = {P \
S|S ∈ S} be the bijective complement of a set S ⊆ 2P .

Lemma 1 (Quorum system existence [15]). Let F be a fail-prone system. A Byzantine quorum system for F
exists if and only if Q3(F). In particular, if Q3(F) holds, then F , the bijective complement of F , is a Byzantine
quorum system called canonical quorum system of F .

Note that the canonical quorum system is not always minimal. The canonical quorum system will play a role
in Section 6 for implementing a common-coin functionality with asymmetric quorums.

Given a symmetric Byzantine quorum systemQ, we define a kernel K as a set of processes that overlaps with
every quorum. A kernel generalizes the notion of a core set [11].

Definition 4 (Kernel system). A set K ⊆ P is a kernel of a quorum system Q whenever it holds

∀Q ∈ Q : K ∩Q 6= ∅.

This can be viewed as a consistency property.
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We also define the kernel systemK ofQ to be the set of all kernels ofQ. Given this, the minimal kernel system
is a kernel system for which every kernel K satisfies

∀K ′ ( K,∃ Q ∈ Q : K ′ ∩Q = ∅.

For example, under a threshold failure assumption where any f processes may fail, every set of
⌊
n−f+1

2

⌋
processes is a kernel. In particular, n = 3f + 1 if and only if every kernel has f + 1 processes.

Lemma 2. For every F ∈ F and for every quorum Q ∈ Q there exists a kernel K ∈ K such that K ⊆ Q.

Proof. Let Q be a quorum system for F and let F ∈ F . From the consistency property of a quorum system we
have that for all Q1, Q2 ∈ Q it holds Q1 ∩Q2 6⊆ F . Then, the set K = Q1 \ F ⊆ Q1 intersects all quorums in Q
and is a kernel of Q.

4 Revisiting signature-free asynchronous Byzantine consensus
In 2014, Mostéfaoui et al. [18] introduced a round-based asynchronous randomized consensus algorithm for binary
values. It had received considerable attention because it was the first protocol with optimal resilience, tolerating
up to f < n

3 Byzantine processes, that did not use digital signatures. Hence, this protocol needs only authenticated
channels and remains secure against a computationally unbounded adversary. Moreover, it takes O(n2) constant-
sized messages in expectation and has a particularly simple structure. This description excludes the necessary cost
for implementing randomization, for which the protocol relies on an abstract common-coin primitive, as defined
by Rabin [21].

This protocol, which we call the PODC-14 version [18] in the following, suffers from a subtle and little-
known problem. It may violate liveness, as has been explicitly mentioned by Tholoniat and Gramoli [22]. The
corresponding journal publication by Mostéfaoui et al. [19], to which we refer as the JACM-15 version, touches
briefly on the issue and goes on to present an extended protocol. This fixes the problem, but requires also many
more communication steps and adds considerable complexity.

In this section, we revisit the PODC-14 protocol, point out in detail how it may fail, and introduce a compact
way for fixing it. We discovered these issues while extending the algorithm to asymmetric quorums. In Section 6,
we present the corresponding fixed asymmetric randomized Byzantine consensus protocol and prove it secure. Our
protocol changes the PODC-14 version in a crucial way and thereby regains the simplicity of the original approach.

Before addressing randomized consensus, we recall the key abstraction introduced in the PODC-14 paper, a
protocol for broadcasting binary values.

4.1 Binary-value broadcast
The binary validated broadcast primitive has been introduced in the PODC-14 version [18] under the name binary-
value broadcast.1 In this primitive, every process may broadcast a bit b ∈ {0, 1} by invoking bv-broadcast(b). The
broadcast primitive outputs at least one value b and possibly also both binary values through a bv-deliver(b) event,
according to the following notion.

Definition 5 (Binary validated broadcast). A protocol for binary validated broadcast satisfies the following
properties:
Validity: If at least (f + 1) correct processes bv-broadcast the same value b ∈ {0, 1}, then every correct process

eventually bv-delivers b.

Integrity: A correct process bv-delivers a particular value b at most once and only if b has been bv-broadcast by
some correct process.

Agreement: If a correct process bv-delivers some value b, then every correct process eventually bv-delivers b.

Termination: Every correct process eventually bv-delivers some value b.

The implementation given by Mostéfaoui et al. [18] works as follows. When a correct process pi invokes
bv-broadcast(b) for b ∈ {0, 1}, it sends a VALUE message containing b to all processes. Afterwards, whenever a
correct process receives VALUE messages containing b from at least f +1 processes and has not itself sent a VALUE
message containing b, then it sends such message to every process. Finally, once a correct process receives VALUE
messages containing b from at least 2f + 1 processes, it delivers b through bv-deliver(b). Notice that a process
may bv-deliver up to two values. A formal description (in the more general asymmetric model) of this protocol
appears in Algorithm 3 in Section 6.

1Compared to their work, we adjusted some conditions to standard terminology and chose to call the primitive “binary
validated broadcast” to better emphasize its aspect of validating that a delivered value was broadcast by a correct process.
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4.2 Randomized consensus
We recall the notion of randomized Byzantine consensus here and its implementation by Mostéfaoui et al. [18].

In a consensus primitive, every correct process proposes a value v by invoking propose(v), which typically
triggers the start of the protocol among processes; it obtains as output a decided value v through a decide(v) event.
There are no assumptions made about the faulty processes.

Observe that when working with randomized consensus, one has to formulate the termination property proba-
bilistically. In round-based consensus algorithms, the termination property is formulated with respect to the round
number r that a process executes. It requires that the probability that a correct process decides after executing
infinitely many rounds approaches 1.

Definition 6 (Strong Byzantine consensus). A protocol for asynchronous strong Byzantine consensus satisfies:

Probabilistic termination: Every correct process decides with probability 1, in the sense that

lim
r→+∞

P[a correct process pi decides by round r] = 1.

Strong validity: A correct process only decides a value that has been proposed by some correct process.

Integrity: No correct process decides twice.

Agreement: No two correct processes decide differently.

The probabilistic termination and integrity properties together imply that every correct process decides exactly
once, while the agreement property ensures that the decided values are equal. Strong validity asks that if all correct
processes propose the same value v, then no correct process decides a value different from v. Otherwise, a correct
process may only decide a value that was proposed by some correct process [3]. In a binary consensus protocol, as
considered here, only 0 and 1 may be proposed. In this case, strong validity is equivalent to the more commonly
used property of weak validity.

The implementation of the randomized consensus algorithm Mostéfaoui et al. [18] delegates its probabilistic
choices to a common coin abstraction [3,21], a random source observable by all processes but unpredictable for an
adversary. A common coin is invoked at every process by triggering a release-coin event. We say that a process
releases a coin because its value is unpredictable before the first correct process invokes the coin. The value s ∈ B
of the coin with tag r is output through an event output-coin.

Definition 7 (Common coin). A protocol for common coin satisfies the following properties:
Termination: Every correct process eventually outputs a coin value.

Unpredictability: Unless at least one correct process has released the coin, no process has any information about
the coin output by a correct process.

Matching: With probability 1 every correct process outputs the same coin value.

No bias: The distribution of the coin is uniform over B.

Common-coin primitives may be realized directly by distributed protocols or with the help of a trusted entity
using secret sharing [21] or threshold cryptography [4].

In the remainder of this section, we recall the implementation of strong Byzantine consensus according to
Mostéfaoui et al. [18] in the PODC-14 version, shown in Algorithm 1. A correct process proposes a binary value
b by invoking rbc-propose(b); the consensus abstraction decides for b through an rbc-decide(b) event.

The algorithm proceeds in rounds. In each round, an instance of bv-broadcast is invoked. A correct process
pi executes bv-broadcast and waits for a value b to be bv-delivered, identified by a tag characterizing the current
round. When such a bit b is received, pi adds b to values and broadcasts b through an AUX message to all processes.
Whenever a process receives an AUX message containing b from pj , it stores b in a local set aux[j]. Once pi has
received a set B ⊆ values of values such that every b ∈ B has been delivered in AUX messages from at least n− f
processes, then pi releases the coin for the round. Subsequently, the process waits for the coin protocol to output a
binary value s through output-coin(s), tagged with the current round number.

Process pi then checks if there is a single value b in B. If so, and if b = s, then it decides for value b. The
process then proceeds to the next round with proposal b. If there is more than one value in B, then pi changes its
proposal to s. In any case, the process starts another round and invokes a new instance of bv-broadcast with its
proposal. Notice that the protocol appears to execute rounds forever.
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Algorithm 1 Randomized binary consensus according to Mostéfaoui et al. [18] (code for pi).
1: State
2: round← 0: current round
3: values← {}: set of bv-delivered binary values for the round
4: aux← [{}]n: stores sets of values that have been received in AUX messages in the round
5:
6: upon event rbc-propose(b) do
7: invoke bv-broadcast(b) with tag round
8:
9: upon bv-deliver(b) with tag r such that r = round do
10: values← values ∪ {b}
11: send message [AUX, round, b] to all pj ∈ P
12:
13: upon receiving a message [AUX, r, b] from pj such that r = round do
14: aux[j]← aux[j] ∪ {b}
15:
16: upon exists B ⊆ values such that B 6= {} and |{pj ∈ P |B = aux[j]}| ≥ n− f do
17: release-coin with tag round
18: wait for output-coin(s) with tag round
19: round← round + 1
20: if exists b such that |B| = 1 ∧B = {b} then
21: if b = s then
22: output rbc-decide(b)
23: invoke bv-broadcast(b) with tag round // propose b for the next round
24: else
25: invoke bv-broadcast(s) with tag round // propose coin value s for the next round
26: values← [⊥]n

27: aux← [{}]n

4.3 A liveness problem
Tholoniat and Gramoli [22] mention a liveness issue with the randomized algorithm in the PODC-14 version [18],
as presented in the previous section. They sketch a problem that may prevent progress by the correct processes
when the messages between them are received in a specific order. In the JACM-15 version, Mostéfaoui et al. [19]
appear to be aware of the issue and present a different, more complex consensus protocol.

We give a detailed description of the problem in Algorithm 1. Recall the implementation of binary-value
broadcast, which disseminates bits in VALUE messages. According to our model, the processes communicate by
exchanging messages through an asynchronous reliable point-to-point network. Messages may be reordered, as in
the PODC-14 version.

Let us consider a system with n = 4 processes and f = 1 Byzantine process. Let p1, p2 and p3 be correct
processes with input values 0, 1, 1, respectively, and let p4 be a Byzantine process with control over the network.
Process p4 aims to cause p1 and p3 to release the coin with B = {0, 1}, so that they subsequently propose the
coin value for the next round. If messages are scheduled depending on knowledge of the round’s coin value s, it
is possible, then, that p2 releases the coin with B = {¬s}. Subsequently, p2 proposes also ¬s for the next round,
and this may continue forever. We now work out the details, as illustrated in Figures 1–2.

First, p4 may cause p1 to receive 2f + 1 [VALUE, 1] messages, from p2, p3 and p4, and to bv-deliver 1 sent at
the start of the round. Then, p4 sends [VALUE, 0] to p3, so that p3 receives value 0 twice (from p1 and p4) and also
broadcasts a [VALUE, 0] message itself. Process p4 also sends 0 to p1, hence, p1 receives 0 from p3, p4, and itself
and therefore bv-delivers 0. Furthermore, p4 causes p3 to bv-deliver 0 by making it receive [VALUE, 0] messages
from p1, p4, and itself. Hence, p3 bv-delivers 0. Finally, process p3 receives three [VALUE, 1] messages (from
itself, p2, and p4) and bv-delivers also 1.

Recall that a process may broadcast more than one AUX message. In particular, it broadcasts an AUX message
containing a bit b whenever it has bv-delivered b. Thus, p1 broadcasts first [AUX, 1] and subsequently [AUX, 0],
whereas p3 first broadcasts [AUX, 0] and then [AUX, 1]. Process p4 then sends to p1 and p3 AUX messages contain-
ing 1 and 0. After delivering all six AUX messages, both p1 and p3 finally obtain B = {0, 1} in line 16 and see
that |B| 6= 1 in line 20. Processes p1, p3 and p4 invoke the common coin.

The Byzantine process p4 may learn the coin value as soon as p1 or p3 have released the common coin,
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p1

p3

p2

p4

VALUE, 0
0

1

1

VALUE, 1

VALUE, 1

AUX, 1

p2,p3,p4:
VALUE, 1

AUX, 0

p1,p3,p4:
VALUE, 0

VALUE, 0

p1,p4:
VALUE, 0

AUX, 0

p3: VALUE, 0

AUX, 1

p2,p3,p4:
VALUE, 1

p1,p3,p4: 
AUX, 1; AUX, 0

p1,p3,p4: 
AUX, 1; AUX, 0

release-coin

release-coin

B={0,1}

B={0,1}

Figure 1. The execution of Algorithm 1, where processes p1 and p3 execute line 16 with B = {0, 1}.

p1

p3

p2

p4

0

1

1

p2,p3,p4:
VALUE, 1

p1,p2,p4:
AUX, 1

B={1}

AUX, 1output-coin(0)

output-coin(0)

bv-broadcast(0)

bv-broadcast(0)

release-coin

output-coin(0)

bv-broadcast(1)

Figure 2. Continuing the execution for the case s = 0: Process p2 executes line 16 with B = {1}.
Processes p1 and p3 have already proposed the coin value s = 0 for the next round, but p2 proposes
¬s = 1.

according to unpredictability. Let s the coin output. We distinguish two cases:

Case s = 0: Process p2 receives now three [VALUE, 1] messages, from p3, p4 and itself, as shown in Figure 2. It
bv-delivers 1 and broadcasts an [AUX, 1] message. Subsequently, p2 delivers three AUX messages containing
1, from p1, p4 and itself, but no [AUX, 0] message. It follows that p2 obtains B = {1} and proposes 1 for
the next round in line 23. On the other hand, p1 and p3 adopt 0 as their new proposal for the next round,
according to line 25. This means that no progress was made within this round. The three correct processes
start the next round again with differing values, again two of them propose one bit and the remaining one
proposes the opposite.

Case s = 1: Process p4 sends [VALUE, 0] to p2, so that it delivers two VALUE messages containing 0 (from p1
and p4) and thus also broadcast [VALUE, 0] (this execution is not shown). Recall that p3 has already sent
[VALUE, 0] before. Thus, p2 receives n−f [VALUE, 0] messages, bv-delivers 0, and also broadcasts an AUX
message containing 0. Subsequently, p2 may receive n − f messages [AUX, 0], from p3, p4, and itself. It
follows that p2 executes line 16 with B = {0} and chooses 0 as its proposal for the next round (in line 23).
On the other hand, also here, p1 and p3 adopt the coin value s = 1 and propose 1 for the next round in
line 25. Hence, no progress has been made in this round, as the three correct processes enter the next round
with differing values.

The execution may continue like this forever, producing an infinite execution with no termination.
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4.4 Fixing the problem
We show how the problem can be prevented with two small changes to the original protocol. We do this by
recalling the example just presented. A formal proof is given in Section 6, using the more general model of
asymmetric quorums.

Observe that in the problematic execution, the network reorders messages between correct processes. Our first
change, therefore, is to assume FIFO ordering on the reliable point-to-point links. This may be implemented over
authenticated links, by adding sequence numbers to messages and maintaining a buffer at the receiver [3]. Consider
p2 in the example and the messages it receives from the other correct processes, p1 and p3. W.l.o.g. any protocol
implementing a common coin requires an additional message exchange, where a correct process sends at least
one message to every other process, say, a COIN message with arbitrary content (to be specific, see Algorithm 2,
Section 6).

When p2 waits for the output of the coin, it needs to receive, again w.l.o.g., a COIN message from n − f
processes. Since the other two correct processes (p1 and p3) have sent two VALUE messages and AUX messages
each before releasing the coin, then p2 receives these messages from at least one of them before receiving enough
COIN messages, according to the overlap among Byzantine quorums.

This means that p2 cannot satisfy the condition in line 16 with |B| = 1. Thus the adversary may no longer
exploit its knowledge of the coin value to prevent termination. (Mostéfaoui et al. [19] (JACM-15) remark in
retrospect about the PODC-14 version that a “fair scheduler” is needed. However, this comes without any proof
and thus remains open, especially because the JACM-15 version introduces a much more complex version of the
protocol.)

Our second change is to allow the set B to dynamically change while the coin protocol executes. In this way,
process p2 may find a suitable B according to the received AUX messages while concurrently running the coin
protocol. Eventually, p2 will have output the coin and its set B will contain the same values as the sets B of p1 and
p3. Observe that this dynamicity is necessary; process p2 could start to release the coin after receiving n− f AUX
messages containing only the value 1. However, following our example, due to the assumed FIFO order, it will
receive from another correct process also an AUX message containing the value 0, before the COIN message. If we
do not ask for the dynamicity of the set B, process p2, after outputting the coin, will still have |B| = 1. Mostéfaoui
et al. in the PODC-14 version (Figure 2, line 5 [18]) seem to rule this out.

In Section 6, we implement these changes in a generalization of the PODC-14 version, show that the liveness
problem presented in this section does no longer applies (Lemma 8), and give a formal proof for the correctness
of our protocol (Theorem 9). The generalization works in the asymmetric-trust model, as defined in the following
section.

5 Asymmetric trust
In this section, we first review and extend the model of asymmetric trust, as introduced by Damgård et al. [7] and
by Cachin and Tackmann [5]. We first recall asymmetric quorums. Then we focus on a maximal guild, which is
needed for ensuring liveness and consistency in protocols, and we prove that the maximal guild is unique. We also
characterize it in relation to wise processes, which are those correct processes whose a failure assumption turns out
to be right.

In the asymmetric-trust model, every process is free to make its own trust assumption, expressing it through a
subjective fail-prone system.

Definition 8 (Asymmetric fail-prone system). An asymmetric fail-prone system F = [F1, . . . ,Fn] consists of an
array of fail-prone systems, where Fi ⊆ 2P denotes the trust assumption of pi.

One often assumes that ∀F ∈ Fi : pi /∈ F for practical reasons, but this is not necessary. For a system
A ⊆ 2P , let A∗ = {A′|A′ ⊆ A,A ∈ A} denote the collection of all subsets of the sets in A.

Definition 9 (Asymmetric Byzantine quorum system). Let F = [F1, . . . ,Fn] be an asymmetric fail-prone sys-
tem. An asymmetric Byzantine quorum system for F is an array of collections of sets Q = [Q1, . . . ,Qn], where
Qi ⊆ 2P for i ∈ [1, n]. The setQi ⊆ 2P is called the quorum system of pi and any set Qi ∈ Qi is called a quorum
(set) for pi whenever the following conditions hold:
Consistency: ∀i, j ∈ [1, n]

∀Qi ∈ Qi,∀Qj ∈ Qj ,∀Fij ∈ Fi
∗ ∩ Fj

∗ : Qi ∩Qj 6⊆ Fij .

Availability: ∀i ∈ [1, n]
∀Fi ∈ Fi : ∃ Qi ∈ Qi : Fi ∩Qi = ∅.

9



In other words, the intersection of two quorums for any two processes contains at least one process for which
neither process assumes that it may fail. Furthermore, for all fail-prone sets of every process, there exists a disjoint
quorum for this process.

The following property generalizes the Q3-condition from Definition 3 to the asymmetric-trust model.

Definition 10 (B3-condition [5, 7]). Let F be an asymmetric fail-prone system. We say that F satisfies the B3-
condition, abbreviated as B3(F), whenever it holds for all i, j ∈ [1, n] that

∀Fi ∈ Fi,∀Fj ∈ Fj ,∀Fij ∈ Fi
∗ ∩ Fj

∗ : P 6⊆ Fi ∪ Fj ∪ Fij .

An asymmetric fail-prone system satisfying the B3-condition is sufficient for the existence of a corresponding
asymmetric quorum system [5].

Theorem 3. An asymmetric fail-prone system F satisfies B3(F) if and only if there exists an asymmetric quorum
system for F.

For implementing consensus, we also need the notion of an asymmetric kernel system.

Definition 11 (Asymmetric kernel system). Let Q = [Q1, . . . ,Qn] be an asymmetric quorum system. An asym-
metric kernel system K is an array of collections of sets [K1, . . . ,Kn] such that each Ki is a kernel system of Qi.
We call a set Ki ∈ Ki a kernel for pi.

In traditional Byzantine quorum systems, under a symmetric-trust assumption, every process in the system
adheres to a global fail-prone system F and the set F of faults or corruptions occurring in a protocol execution is
in F . Given this common trust assumption, properties of a protocol are guaranteed at each correct process, while
they are not guaranteed for faulty ones. With asymmetric quorums, there is a distinction among correct processes
with respect to F , namely the correct processes that consider F in their trust assumption and those who do not.
Given a protocol execution, the processes are classified in three different types:
Faulty: A process pi ∈ F is faulty.

Naı̈ve: A correct process pi for which F 6∈ Fi
∗ is called naı̈ve.

Wise: A correct process pi for which F ∈ Fi
∗ is called wise.

Recall that all processes are wise under a symmetric-trust assumption. Protocols for asymmetric quorums
cannot guarantee the same properties for naı̈ve processes as for wise ones.

A useful notion for ensuring liveness and consistency for protocols is that of a guild. This is a set of wise
processes that contains at least one quorum for each member.

Definition 12 (Guild). Given a fail-prone system F, an asymmetric quorum system Q for F, and a protocol execu-
tion with faulty processes F , a guild G for F satisfies two properties:
Wisdom: G consists of wise processes,

∀pi ∈ G : F ∈ Fi
∗.

Closure: G contains a quorum for each of its members,

∀pi ∈ G,∃ Qi ∈ Qi : Qi ⊆ G.

The following lemma shows that every two guilds intersect.

Lemma 4. In any execution with a guild G, there cannot exist two disjoint guilds.

Proof. Let P be a set of processes, G be a guild and F be the set of actually faulty processes. Furthermore, suppose
that there is another guild G′, with G ∩ G′ = ∅. Let pi ∈ G and pj ∈ G′ be two processes and consider a quorum
Qi ⊆ G for pi and a quorum Qj ⊆ G′ for pj . From the definition of an asymmetric quorum system it must hold
Qi ∩ Qj * F , with Qi ∩ Qj 6= ∅ and F ∈ Fi

∗ ∩ Fj
∗. It follows that there exists a wise process pk ∈ Qi ∩ Qj

with pk ∈ G and pk ∈ G′. Notice also that G and G′ both contain a quorum for pk.

Observe that the union of two guilds is again a guild. It follows that every execution with a guild contains
a unique maximal guild Gmax. Analogously to the other asymmetric notions, for a given asymmetric fail-prone
system, we call the list of canonical quorum systems of all processes an asymmetric canonical quorum system.

The following lemma shows that if a guild exists, then there cannot be a quorum for any process pj containing
only faulty processes.
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Lemma 5. Let Gmax be the maximal guild for a given execution and let Q be the canonical asymmetric quorum
system. Then, there cannot be a quorum Qj ∈ Qj for any process pj consisting only of faulty processes.

Proof. Given an execution with F as set of faulty processes, suppose there is a guild Gmax. This means that for
every process pi ∈ Gmax, a quorum Qi ⊆ Gmax exists such that Qi ∩ F = ∅. It follows that for every pi ∈ Gmax,
there is a set Fi ∈ Fi such that F ⊆ Fi. Recall that since Q is a quorum system, B3(F) holds. From Definition 10,
we have that for all i, j ∈ [1, n], ∀Fi ∈ Fi,∀Fj ∈ Fj ,∀Fij ∈ Fi

∗ ∩ Fj
∗ : P 6⊆ Fi ∪ Fj ∪ Fij .

Towards a contradiction, assume that there is a process pj such that there exists a quorum Qj ∈ Qj for pj with
Qj = F . This implies that there exists Fj ∈ Fj such that Fj = P \ F .

Let Fi be the fail-prone system of pi ∈ Gmax such that F ⊆ Fi and let Fj = P \ F as just defined. Then,
Fi∪Fj∪Fij = P . This follows from the fact that Fi contains F and Fj = P\F . This contradicts the B3-condition
for F.

Lemma 6. Let Gmax be the maximal guild for a given execution and let pi be any correct process. Then, every
quorum for pi contains at least one process from the maximal guild.

Proof. The proof naturally derives from the consistency property of an asymmetric quorum system. Consider any
correct process pi and one of its quorums, Qi ∈ Qi. For any process pj ∈ Gmax, let Qj be a quorum of pj such that
Qj ⊆ Gmax, which exists because Gmax is a guild. Then, the quorum consistency property implies that Qi∩Qj 6= ∅.
Thus, Qi contains a (correct) process in the maximal guild.

Finally, we show with an example that it is possible for a wise process to be outside the maximal guild.

Example 1. Let us consider a seven-process asymmetric quorum system QC , defined through its fail-prone sys-
tem FC . The notation Θn

k (S) for a set S with n elements denotes the threshold combination operator and enumer-
ates all subsets of S of cardinality k. The diagram below shows fail-prone sets as shaded areas and the notation
n
k in front of a fail-prone set stands for k out of the n processes in the set. The operator ∗ for two sets satisfies
A ∗ B = {A ∪B : A ∈ A, B ∈ B}.

FC :

F1 = Θ3
2({p2, p4, p5}) ∗ {p6} ∗ {p7}

F2 = Θ3
2({p3, p4, p5}) ∗ {p6} ∗ {p7}

F3 = Θ3
2({p1, p4, p5}) ∗ {p6} ∗ {p7}

F4 = Θ4
1({p1, p2, p3, p5}) ∗ {p6} ∗ {p7}

F5 = Θ4
1({p1, p2, p3, p4}) ∗ {p6} ∗ {p7}

F6 = Θ3
3({p1, p3, p7})

F7 = Θ3
3({p3, p4, p5})

3
2

3
2

3
2

4
1

4
1

F1

F2

F3

F4

F6

p2 p3 p4 p6p1 p5

F5

4
1

p7

F7
3
3

One can verify that B3(FC) holds; hence, let QC be the canonical quorum system of FC . With F = {p4, p5},
for instance, processes p1, p2, p3 and p7 are wise, p6 is naı̈ve, and the maximal guild is Gmax = {p1, p2, p3}. It
follows that process p7 is wise but outside the guild Gmax, because quorum Q7 ∈ Q7 contains the naı̈ve process p6.

QC :

Q1 = {{p1, p3, p5}, {p1, p3, p4}, {p1, p2, p3}}
Q2 = {{p1, p2, p5}, {p1, p2, p4}, {p1, p2, p3}}
Q3 = {{p2, p3, p5}, {p2, p3, p4}, {p1, p2, p3}}
Q4 = {{p1, p2, p3, p4}, {p1, p2, p4, p5}, {p1, p3, p4, p5}, {p2, p3, p4, p5}}
Q5 = {{p1, p2, p3, p5}, {p1, p2, p4, p5}, {p1, p3, p4, p5}, {p2, p3, p4, p5}}
Q6 = {{p2, p4, p5, p6}}
Q7 = {{p1, p2, p6, p7}}
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6 Asymmetric randomized Byzantine consensus
In this section we define asymmetric Byzantine consensus. Then we implement it by a randomized algorithm,
which is based on the protocol of Mostéfaoui et al. [18] as introduced in Section 4. Our implementation also fixes
the problem described there.

Our notion of Byzantine consensus uses strong validity in the asymmetric model. Furthermore, it restricts
the safety properties of consensus from all correct ones to wise processes. For implementing asynchronous con-
sensus, we use a system enriched with randomization. In the asymmetric model, the corresponding probabilistic
termination property is guaranteed only for processes in the maximal guild Gmax.

Definition 13 (Asymmetric strong Byzantine consensus). A protocol for asynchronous asymmetric strong Byzan-
tine consensus satisfies:

Probabilistic termination: In all executions with a guild, every process in the maximal guild decides with prob-
ability 1, in the sense that

lim
r→+∞

(P[pi ∈ Gmax decides by round r]) = 1.

Strong validity: In all executions with a guild, a wise process only decides a value that has been proposed by
some processes in the maximal guild.

Integrity: No correct process decides twice.

Agreement: No two wise processes decide differently.

Common coin. Our randomized consensus algorithm delegates its probabilistic choices to a common coin
abstraction [3, 21]. We define this in the asymmetric-trust model.

Definition 14 (Asymmetric common coin). A protocol for asymmetric common coin satisfies the following prop-
erties:
Termination: In all executions with a guild, every process in the maximal guild eventually outputs a coin value.

Unpredictability: Unless at least one correct process has released the coin, no process has any information about
the coin output by a wise process.

Matching: In all executions with a guild, with probability 1 every process in the maximal guild outputs the same
coin value.

No bias: The distribution of the coin is uniform over B.

An asymmetric common coin has an output domain B. Here we consider binary consensus and B = {0, 1}.
The termination property guarantees that every process in the maximal guild eventually output a coin value that
is ensured to be the same for each of them by the matching property. The unpredictability property ensures that
the coin value is kept secret until a correct process releases the coin. Finally, the no bias property specifies the
probability distribution of the coin output. The bias and matching properties may be weakened using well-known
methods.

Implementing an asymmetric common coin. Our implementation of asymmetric common coin relies on
the scheme of Benaloh and Leichter [1] and is shown in Algorithm 2. Furthermore, following the approach started
by Rabin [21], we assume that coins are predistributed by an ideal dealer using secret sharing, in a way that for
every round r there is exactly one coin with value s ∈ {0, 1}. Specifically, given an asymmetric quorum system Q,
the dealer creates random shares si1 , . . . , sim−1 for one random coin value s ∈ {0, 1} per round and for each
Qi = {pi1 , . . . , pim} ∈ Qi of Q with |Qi| = m. Then the dealer sets sim = s +

∑m−1
j=1 sij mod 2 and gives

the shares to every process in Qi. This ensures that any quorum can reconstruct the secret by computing the sum
modulo 2 of the shares. This procedure is done for each quorum in every quorum system of Q. Furthermore,
the dealer authenticates the shares, preventing Byzantine processes to send inconsistent bits to other processes in
the quorum (omitted from Algorithm 2). Correctness of this protocol follows easily. Given a quorum of correct
processes, every wise process can thus reconstruct the secret and all of them will output the same coin value. On
the other hand, in every execution with a guild, Byzantine processes cannot recover the secret without receiving at
least one share from a correct process by Lemma 5.

This implementation is expensive because the number of shares for one particular coin held by a process pi
is equal to the number of quorums in which pi is contained. In practical systems, one may also implement an
asymmetric coin “from scratch” according to the direction taken by Canetti and Rabin [6] or recently by Patra et
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Algorithm 2 Asymmetric common coin for round round (code for pi)
1: State
2: coin[k]← [⊥]n: for k ∈ [1, |Qi|], coin[k][j] holds the share received from pj for quorum Qi,k of pi
3:
4: upon event release-coin do
5: for all pj ∈ P do // send all shares to all process pj
6: for all Qj,k ∈ Qj do
7: if pi ∈ Qj,k then
8: send message [COIN, si, Qj,k, r] to pj // si is share of pi for quorum Qj,k of pj
9:

10: upon receiving a message [COIN, sj , Qi,k, r] from pj such that r = round ∧Qi,k ∈ Qi ∧ pj ∈ Qi,k do
11: if coin[k][j] = ⊥ then
12: coin[k][j]← sj
13:
14: upon exists k such that Q∗i = {pj ∈ P| coin[k][j] 6= ⊥} ∈ Qi do // a quorum for pi
15: s←

∑
pj∈Q∗

i
coin[k][j]

16: output output-coin(s)

al. [20]. Alternatively, distributed cryptographic implementations appear to be possible, for example, as introduced
by Cachin et al. [4].

6.1 Asymmetric binary validated broadcast
We generalize the binary validated broadcast as introduced in Section 4 to the asymmetric-trust model. All safety
properties are restricted to wise processes, and a guild is required for liveness. Recall that every process may
broadcast a binary value b ∈ {0, 1} by invoking abv-broadcast(b). The broadcast primitive outputs at least one
value b and possibly also both binary values through an bv-deliver(b) event, according to the following notion.

Definition 15 (Asymmetric binary validated broadcast). A protocol for asymmetric binary validated broadcast
satisfies the following properties:
Validity: In all executions with a guild, let Ki be a kernel for a process pi in the maximal guild. If every process

in Ki is correct and has abv-broadcast the same value b ∈ {0, 1}, then every wise process eventually
abv-delivers b.

Integrity: In all executions with a guild, if a wise process abv-delivers some b, then b has been abv-broadcast by
some process in the maximal guild.

Agreement: If a wise process abv-delivers some value b, then every wise process eventually abv-delivers b.

Termination: Every wise process eventually abv-delivers some value.

Notice that it guarantees properties only for processes that are wise or even in the maximal guild. Liveness
properties also assume there exists a guild.

Algorithm 3 works in the same way as the binary validated broadcast by Mostéfaoui et al. [18] (Section 4), but
differs in the use of asymmetric quorums. The condition of receiving VALUE messages containing b from at least
f + 1 processes is replaced by receiving such messages from a kernel Ki for process pi. Furthermore, a quorum
Qi for pi is needed instead of 2f + 1 messages for abv-delivering a bit.

Theorem 7. Algorithm 3 implements asymmetric binary validated broadcast.

Proof. To prove the validity property, let us consider a kernel Ki of correct processes for a process pi in the
maximal guild Gmax. Observe that from the consistency property of asymmetric quorum systems, there cannot
be two quorums Qi ∈ Qi and Qj ∈ Qj for pi and pj , respectively, such that every correct process in Qi has
abv-broadcast b and every correct process in Qj has abv-broadcast b′ 6= b. Let us assume w.l.o.g. that every quorum
Qi for a process pi ∈ Gmax contains some correct processes that have abv-broadcast b. Then, the set K containing
only the correct processes that have abv-broadcast b intersects every Qi for pi and is a kernel for pi. According to
the protocol, pi therefore sends [VALUE, b] unless sentvalue[b] = TRUE. However, if sentvalue[b] = TRUE, pi has
already sent [VALUE, b]. Hence, every process in Gmax eventually sends [VALUE, b]. All these processes together
therefore are a kernel for every correct process by Lemma 6. Let pc be a correct process; process pc therefore

13



Algorithm 3 Asymmetric binary validated broadcast (code for pi)
1: State
2: sentvalue← [FALSE]2: sentvalue[b] indicates whether pi has sent [VALUE, b]
3: values← [∅]n: list of sets of received binary values
4:
5: upon event abv-broadcast(b) do
6: sentvalue[b]← TRUE
7: send message [VALUE, b] to all pj ∈ P
8:
9: upon receiving a message [VALUE, b] from pj do

10: if b 6∈ values[j] then
11: values[j]← values[j] ∪ {b}
12:
13: upon exists b ∈ {0, 1} such that {pj ∈ P| b ∈ values[j]} ∈ Ki and ¬sentvalue[b] do // a kernel for pi
14: sentvalue[b]← TRUE
15: send message [VALUE, b] to all pj ∈ P
16:
17: upon exists b ∈ {0, 1} such that {pj ∈ P| b ∈ values[j]} ∈ Qi do // a quorum for pi
18: output abv-deliver(b)

sends [VALUE, b] unless sentvalue[b] = TRUE. Then, every wise process receives a quorum for itself of values b
and abv-delivers b. Observe that validity property requires a kernel for a process in the maximal guild, otherwise
one cannot obtain the same guarantees. Recall Example 1, for instance: {p7} is a kernel for the wise process p7
but not for any other wise process. If one would relax the requirement and permit that Ki is a kernel for a wise
process outside the maximal guild, validity could not be ensured.

For the integrity property, let us assume an execution with a maximal guild Gmax. Suppose first that only
Byzantine processes abv-broadcast b. Then, the set consisting of only these processes cannot be a kernel for any
wise process. It follows that line 13 of Algorithm 3 cannot be satisfied. If only naı̈ve processes abv-broadcast b, by
the definition of a quorum system and by the assumed existence of a maximal guild, there is at least one quorum
for every process in Gmax that does not contain any naı̈ve processes (e.g., as in Example 1). All naı̈ve processes
together cannot be a kernel for processes in Gmax. Again, line 13 of Algorithm 3 cannot be satisfied. Finally, let us
assume that a wise process pi outside the maximal guild abv-broadcasts b. Then, pi cannot be a kernel for every
wise process: it is not part of the quorums inside Gmax. It follows that if a wise process abv-delivers some b, then b
has been abv-broadcast by some processes in the maximal guild.

To show agreement, suppose that a wise process pi has abv-delivered b. Then it has obtained [VALUE, b]
messages from the processes in some quorum Qi ∈ Qi and before from a kernel Ki for itself. Each correct
process in Ki has sent [VALUE, b] message to all other processes. Consider any other wise process pj . Since pi
and pj are both wise, we have F ∈ Fi

∗ and F ∈ Fj
∗, which implies F ∈ Fi

∗ ∩ Fj
∗. It follows that Ki is

also a kernel for pj . Thus, pj sends a [VALUE, b] message to every process. This implies that all wise processes
eventually receive a quorum for themselves of [VALUE, b] messages and abv-deliver b.

For the termination property, notice that in any execution, every correct process abv-broadcasts some binary
values. Termination then follows from the validity property.

6.2 Asymmetric randomized consensus
In the following primitive, a correct process may propose a binary value b by invoking arbc-propose(b); the con-
sensus abstraction decides for b through an arbc-decide(b) event.

Algorithm 4 differs from Algorithm 1 in some aspects. Recall that both algorithms use a system where mes-
sages are authenticated and delivered reliably. Importantly, we assume for Algorithm 4 that all messages among
correct processes are also delivered in FIFO order, even when they do not originate from the same protocol module.

Moreover, Algorithm 4 allows the set B to change while reconstructing the common coin (line 33). This step
is necessary in order to prevent the problem described in Section 4. We prove this statement in Lemma 8.

Finally, our protocol may disseminate DECIDE messages in parallel to ensure termination. When pi receives
a DECIDE message from a kernel of processes for itself containing the same value b, then it broadcasts a DECIDE
message itself containing b to every processes, unless it has already done so. Once pi receives a DECIDE message
from a quorum of processes for itself with the same value b, it arbc-decides(b) and halts. This “amplification” step
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Algorithm 4 Asymmetric randomized binary consensus (code for pi).
1: State
2: round← 0: current round
3: values← {}: set of abv-delivered binary values for the round
4: aux← [{}]n: stores sets of values that have been received in AUX messages in the round
5: decided← []n: stores binary values that have been reported as decided by other processes
6: sentdecide← FALSE: indicates whether pi has sent a DECIDE message
7:
8: upon event arbc-propose(b) do
9: invoke abv-broadcast(b) with tag round
10:
11: upon abv-deliver(b) with tag r such that r = round do
12: values← values ∪ {b}
13: send message [AUX, round, b] to all pj ∈ P
14:
15: upon receiving a message [AUX, r, b] from pj such that r = round do
16: aux[j]← aux[j] ∪ {b}
17:
18: upon receiving a message [DECIDE, b] from pj such that decided[j] = ⊥ do
19: decided[j] = b
20:
21: upon exists b 6= ⊥ such that {pj ∈ P | decided[j] = b} ∈ Ki do // a kernel for pi
22: if ¬sentdecide then
23: send message [DECIDE, b] to all pj ∈ P
24: sentdecide← TRUE
25:
26: upon exists b 6= ⊥ such that {pj ∈ P | decided[j] = b} ∈ Qi do // a quorum for pi
27: arbc-decide(b)
28: halt
29:
30: upon exist {pj ∈ P | aux[j] ⊆ values} ∈ Qi do // a quorum for pi
31: release-coin with tag round
32:
33: upon event output-coin(s) with tag round and exists B 6= {} such that ∀ pj ∈ Qi, B = aux[j] do
34: round← round + 1
35: if exists b such that |B| = 1 ∧B = {b} then
36: if b = s ∧ ¬sentdecide then
37: send message [DECIDE, b] to all pj ∈ P
38: sentdecide← TRUE
39: invoke abv-broadcast(b) with tag round // propose b for the next round
40: else
41: invoke abv-broadcast(s) with tag round // propose coin value s for the next round
42: values← [⊥]n

43: aux← [{}]n
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is reminiscent of Bracha’s reliable broadcast protocol [2]. Hence, the protocol does not execute rounds forever, in
contrast to the original formulation of Mostéfaoui et al. [18] (Algorithm 1).

The following result shows that the problem described in Section 4 no longer occurs in our protocol.

Lemma 8. If a wise process pi outputs the coin with B = {0, 1}, then every other wise process that outputs the
coin has also B = {0, 1}.

Proof. Let us assume that a wise process pi outputs the coin with B = {0, 1}. This means that pi has received
COIN messages from a quorum QCOIN

i for itself and has B = aux[j] = {0, 1} for all pj ∈ Qi. Consider another
wise process pj that also outputs the coin. It follows that pj has received COIN messages from a quorum QCOIN

j

for itself as well. Observe that pi and pj , before receiving the COIN messages from every process in QCOIN
i and

QCOIN
j , respectively, receive all AUX messages that the correct processes in these quorums have sent before the

COIN messages. This follows from the assumption of FIFO reliable point-to-point links. Quorum consistency
implies that QCOIN

i and QCOIN
j have some correct processes in common. So, pi and pj receive some AUX messages

from the same correct process before they may output the coin. This means that if pi has B = {0, 1} after the
output-coin event, then every quorum Qj for pj will contain a process pk such that aux[k] = {0, 1} for pj . Every
wise process therefore must have B = {0, 1} before it can proceed.

The problem shown in Section 4 arose from messages between correct processes that were reordered in such
a way that knowledge of the common coin value s was able to influence another correct process and cause it to
deliver ¬s alone. Lemma 8 above implies that our Algorithm 4 prevents this because all wise processes arrive at
the same set B when they output the coin.

Theorem 9. Algorithm 4 implements asymmetric strong Byzantine consensus.

Proof. To prove the strong validity property, assume that a wise process pi has decided a value b in round r. This
means that pi has received [DECIDE, b] messages from a quorum Qi for itself. Furthermore, this also means that
B = {b} and b is the same as the coin value in round r. Then, pi has received b from a quorum Qi for itself. Every
process in Qi has received a [AUX, r, b] message and b ∈ values has been abv-delivered from abv-broadcast
instance. From the integrity property of abv-broadcast instance, b has been abv-broadcast by a process in the
maximal guild and, specifically, values contains only values abv-broadcast by processes in the maximal guild. It
follows that b has been proposed by some processes in the maximal guild.

For the agreement property, suppose that a wise process has received [AUX, r, b] messages from a quorum Qi

for itself. Consider any other wise process pj that has received a quorum Qj for itself of [AUX, r, b̄] messages. If
at the end of round r there is only one value in B, then from consistency property of quorum systems, it follows
b = b̄. Furthermore, if b = s then pi and pj broadcast a [DECIDE, b] message to every process and decide for b
after receiving a quorum of [DECIDE, b] messages for themselves, otherwise they both abv-broadcast(b) and they
continue to abv-broadcast(b) until b = s. If B contains more than one value, then pi and pj proceed to the next
round and invoke a new instance of abv-broadcast with s. Therefore, at the beginning of the next round, the
proposed values of all wise processes are equal. The property easily follows.

The integrity property is easily derived from the algorithm.
The probabilistic termination property follows from two observations. First, from the termination and the

agreement properties of abv-broadcast it follows that every wise process abv-delivers the same binary value from
the abv-broadcast instance and this value has been abv-broadcast by some processes in the maximal guild. Second,
we show that with probability 1, there exists a round at the end of which all processes in Gmax have the same
proposal b. If at the end of round r, every process in Gmax has proposed the coin value (line 41, Algorithm 4),
then all of them start the next round with the same value. Similarly, if every process in Gmax has executed line 39
(Algorithm 4) they adopt the value b and start the next round with the same value.

However, it could be the case that some wise processes in the maximal guild proposes b and another one
proposes the coin output s. Observe that the properties of the common coin abstraction guarantee that the coin value
is random and independently chosen. So, the random value s is equal to the proposal value b with probability 1

2 .
The probability that there exists a round r′ in which the coin equals the value b proposed by all processes in Gmax
during round r′ approaches 1 when r goes to infinity.

Let r thus be some round in which every process in Gmax abv-broadcasts the same bit b; then, none of them will
ever change their proposal again. This is due to the fact that every wise process invokes an abv-broadcast instance
with the same proposal b. According to the validity and agreement properties of asymmetric binary validated
broadcast, every process in the maximal guild then delivers the same, unique value b. Hence, the proposal of every
process in the maximal guild is set to b and never changes. Finally, the properties of common coin guarantee that
with probability 1 the processes eventually reach a round in which the coin outputs b. Therefore, with probability
1 every process in the maximal guild sends a DECIDE message with value b to every process. This implies that
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it exists a quorum Qi ⊆ Gmax for a process pi ∈ Gmax such that every process in Qi has sent a DECIDE message
with value b to every process. Moreover, the set Ki = Qi \ F is a kernel for pi and for every other wise process
pj . If pj ∈ Gmax receives a DECIDE message with value b from a kernel for itself, it sends a DECIDE message with
value b to every process unless it has already done so. It follows that every process in the maximal guild receives
DECIDE messages with the value b from a quorum for itself and arbc-decides for b.

7 Conclusion
As we show in this work, consensus protocols with asymmetric trust can be obtained by starting from existing, well-
known protocols with symmetric trust. But we have no assurance that this is also the case for further traditional
algorithms. Understanding subjective trust and implementing the corresponding protocols remains an interesting
open problem, especially with respect to cryptographic constructions.

Moreover, while it has been shown that the existence of asymmetric quorums is characterized by the B3-
condition, it remains open how such a structure might arise spontaneously in a dynamic system, where processes
join and leave without knowledge of each other. One particular issue to consider is a Byzantine process that de-
clares a fail-prone system with the sole aim of sabotaging the B3-condition. Achieving a complete characterization
of asymmetric quorum systems and the corresponding protocols would allow to have systems with open and dy-
namic membership, in which the participants do not need to know each other from the start but still benefit from
strong consistency guarantees.
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