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Abstract
The Ripple network is one of the most prominent blockchain platforms and its native XRP token
currently has one of the highest cryptocurrency market capitalizations. The Ripple consensus
protocol powers this network and is generally considered to a Byzantine fault-tolerant agreement
protocol, which can reach consensus in the presence of faulty or malicious nodes. In contrast to
traditional Byzantine agreement protocols, there is no global knowledge of all participating nodes in
Ripple consensus; instead, each node declares a list of other nodes that it trusts and from which it
considers votes.

Previous work has brought up concerns about the liveness and safety of the consensus protocol
under the general assumptions stated initially by Ripple, and there is currently no appropriate
understanding of its workings and its properties in the literature. This paper closes this gap and
makes two contributions. It first provides a detailed, abstract description of the protocol, which has
been derived from the source code. Second, the paper points out that the abstract protocol may
violate safety and liveness in several simple executions under relatively benign network assumptions.
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1 Introduction

Ripple is one of the oldest and most established blockchain networks; its XRP token is
ranked fourth in market capitalization in October 2020. The Ripple network is primarily
aimed at fast global payments, asset exchange, and settlement. Its distributed consensus
protocol is implemented by a peer-to-peer network of validator nodes that maintain a history
of all transactions on the network [24]. Unlike Nakamoto’s consensus protocol [21] in Bitcoin
or Ethereum, the Ripple consensus protocol does not rely on “mining,” but uses a voting
process based on the identities of its validator nodes to reach consensus. This makes Ripple
much more efficient than Bitcoin for processing transactions (up to 1500 transactions per
second) and lets it achieve very low transaction settlement times (4–5 seconds).

However, Ripple’s consensus protocol does not follow the established models and algo-
rithms for Byzantine agreement [22, 15] or Byzantine fault-tolerant (BFT) consensus [8].
Those systems start from a common set of nodes that are communicating with each other to
reach consensus and the corresponding protocols have been investigated for decades. Instead,
the Ripple consensus protocol introduces the idea of subjective validators, such that every
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10:2 Security Analysis of Ripple Consensus

node declares some trusted validators and effectively communicates only with those nodes for
reaching agreement on transactions. With this mechanism, the designers of Ripple aimed
at opening up membership in the set of validator nodes compared to BFT consensus. The
trusted validators of a node are defined by a Unique Node List (UNL), which plays an
important role in the formalization of the protocol. Every node maintains a static UNL in
its configuration file and considers only the opinions of nodes in its UNL during consensus.
Figure 1 shows an example network, where two UNLs are defined: UNL1 = {1, 2, 3, 4} and
UNL2 = {3, 4, 5, 6}; for instance, nodes 1, 2 and 3 may trust UNL1, and nodes 4, 5 and 6
may trust UNL2.

Consensus in Ripple aims at delivering the transactions submitted by clients to all
participating nodes in a common global order, despite faulty or malicious (Byzantine)
nodes [27]. This ensures that the sequence of transactions, which are grouped into so-
called ledgers and then processed by each node, is the same for all nodes. Hence, the
states of all correct nodes remain synchronized, according to the blueprint of state-machine
replication [26].

Cachin and Vukolić [7] have earlier pointed out that it is important to formally assess
the properties of blockchain consensus protocols. Unfortunately, many systems have been
designed and were deployed without following the agreed-on principles on protocol analysis
from the literature. Ripple is no exception to this, as we show in this work.

Specifically, we focus on two properties that every sound protocol must satisfy [1]: safety
and liveness. Safety means that nothing “bad” will ever happen, and liveness means that
something “good” eventually happens. Safety ensures that the network does not fork or
double-spend a token, for instance. A violation of liveness would mean that the network
stops making progress and halts processing transactions, which creates as much harm as
forking.

This work first presents a complete, abstract description of the Ripple consensus protocol
(Section 3). The model has been obtained directly from the source code. It is formulated
in the language spoken by designers of consensus protocols, in order to facilitate a better
understanding of the properties of Ripple consensus. No formal description of Ripple
consensus with comparable technical depth has been available so far (apart from the source
itself).

Figure 1 Example of a Ripple network configuration with six nodes and two UNLs, UNL1 =
{1, 2, 3, 4} and UNL2 = {3, 4, 5, 6}. Nodes 1, 2, and 3 (white) trust UNL1, and nodes 4, 5, and 6
(black) trust UNL2. Notice that nodes 3 and 4 have more influence than the rest of nodes since they
are in the intersection of both UNLs.
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Second, we exhibit examples of how safety and liveness may be violated in executions of
the Ripple consensus protocol (Sections 4 and 5). In particular, the network may fork under
the standard condition on UNL overlap stated by Ripple and in the presence of a constant
fraction of Byzantine nodes. The malicious nodes may simply send conflicting messages to
correct nodes and delay the reception of other messages among correct nodes. Furthermore,
the consensus protocol may lose liveness even if all nodes have the same UNL and there is
only one Byzantine node. If this would occur, the system has to be restarted manually.

Given these findings, we conclude that the consensus protocol of the Ripple network is
brittle and does not ensure consensus in the usual sense. It relies heavily on synchronized
clocks, timely message delivery, the presence of a fault-free network, and an a-priori agreement
on common trusted nodes. The role of the UNLs, their overlap, and the creation of global
consensus from subjective trust choices remain unclear. If Ripple instead had adopted a
standard BFT consensus protocol [5], as done by Tendermint [4], versions of Hyperledger
Fabric [2], Libra [16] or Concord [13], then the Ripple network would resist a much wider
range of corruptions, tolerate temporary loss of connectivity, and continue operating despite
loss of synchronization.

2 Related work

Despite Ripple’s prominence and its relatively high age among blockchain protocols – the
system was first released in 2012 – there are only few research papers investigating the
Ripple consensus protocol compared to the large number of papers on Bitcoin. The original
Ripple white paper of 2014 [27] describes the UNL model and illustrates some ideas behind
the protocol. It claims that under the assumption of requiring an 80%-quorum for declaring
consensus, the intersection between the UNLs of any two nodes u and v should be larger
than 20% of the size of the larger of their UNLs, i.e.,∣∣∣UNLu ∩UNLv

∣∣∣ ≥ 1
5 max

{∣∣UNLu

∣∣, ∣∣UNLv

∣∣}.
The only earlier protocol analysis in the scientific literature of which we are aware was

authored by Armknecht et al. in 2015 [3]. This work analyzes the Ripple consensus protocol
and outlines the security and privacy of the network compared to Bitcoin. The authors
prove that a 20%-overlap, as claimed in the white paper, cannot be sufficient for reaching
consensus and they increase the bound on the overlap to at least 40%, i.e.,

|UNLu ∩UNLv| >
2
5 max{|UNLu|, |UNLv|}

In a preprint of 2018, Chase and MacBrough [10] further strengthen the required UNL
overlap. They introduce a high-level model of the consensus protocol and describe some of
its properties, but many details appear unclear or are left out. This work concludes that the
overlap between UNLs should actually be larger than 90%. The paper also gives an example
with 102 nodes that shows how liveness can be violated, even if the UNLs overlap almost
completely (by 99%) and there are no faulty nodes. The authors conclude that manual
intervention would be needed to resurrect the protocol after this.

Christodoulou et al. [11] further investigate the decentralization of a Ripple network
by running simulations with different configurations. They observe how the convergence
time and the so-called “Network Health Indicator,” a synthetic measure computed by a
tool available from Ripple, change depending on the overlap between the nodes’ UNLs.
Their experiments suggest that a large UNL overlap is required only with more than 20% of
malicious nodes in the network. They also indicate a possibility for a dynamic determination
of an optimal UNL overlap.
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10:4 Security Analysis of Ripple Consensus

An analysis whose goal is similar to that of our work has been conducted by Mauri et
al. [19]. Based on the source code, they give a verbal description of the consensus protocol,
but do not analyze dynamic protocol properties. Our analysis, in contrast, provides a detailed,
formal description with pseudocode and achieves a much better understanding of how the
“preferred ledger” is chosen. Moreover, our work shows possible violations of safety and
liveness, whereas Mauri et al. address only on the safety of the consensus protocol through
sufficient conditions.

Other academic work mostly addresses network structure, transaction graph, and privacy
aspects of payments on the Ripple blockchain [18, 20], which is orthogonal to our focus.

3 A description of the Ripple consensus protocol

The main part of our analysis consists of a detailed presentation of the Ripple consensus
protocol in this section and formally in Algorithms 1–3. Before we describe this, we define
the task that the protocol intends to solve.

3.1 Specification
Informally, the goal of the Ripple consensus protocol is “to ensure that the same transactions
are processed and validated ledgers are consistent across the peer-to-peer XRP Ledger
network” [25]. More precisely, this protocol implements the task of synchronizing the nodes
so that they proceed through a common execution, by appending successive ledgers to an
initially empty history and where each ledger consists of a number of transactions. This is
the problem of replicating a service in a distributed system, which goes back to Lamport et
al.’s pioneering work on Byzantine agreement [22, 15]. The problem has a long history and a
good summary can be found in the book “30-year perspective on replication” [9].

For replicating an abstract service among a set of nodes, the service is formulated as a
deterministic state machine that executes transactions submitted by clients or, for simplicity,
by the nodes themselves. The consensus protocol disseminates the transactions among the
nodes, such that each node locally executes the same sequence of transactions on its copy
of the state. The task provided by this protocol is also called atomic broadcast, indicating
that the nodes actually disseminate the transactions. When each node locally executes the
same sequence of transactions, as directed by the protocol, and since each transaction is
deterministic, all nodes will maintain the same copy of the state [26].

More formally, atomic broadcast is characterized by two events dealing with transactions:
submission and execution, which may each occur multiple times. Every node may submit
a transaction tx by invoking submit(tx) and atomic broadcast applies tx to the application
state on the node through execute(tx). A protocol for atomic broadcast then ensures these
properties [14, 5]:

Validity: If a correct node p submits a transaction tx, then p eventually executes tx.
Agreement: If a transaction tx is executed by some correct node, then tx is eventually

executed by every correct node.
Integrity: No correct node executes a transaction more than once; moreover, if a correct

node executes a transaction tx and the submitter p of tx is correct, then tx was previously
submitted by p.

Total order: For transactions tx and tx′, suppose p and q are two correct nodes that both
execute tx and tx′. Then p executes tx before tx′ if and only if q executes tx before tx′.



I. Amores-Sesar, C. Cachin, and J. Mićić 10:5

Our specification does not refer to the heterogeneous trust structure defined by the UNLs
and simply assumes all nodes should execute the same transactions. This corresponds to
the implicit assumption in Ripple’s code and documentation. We note that the question of
establishing global consistency in a distributed system with subjective trust structures is a
topic of current research, as addressed by asymmetric quorum systems [6] or in the context
of Stellar’s protocol [17], for example.

3.2 Overview
The following description was obtained directly from the source code. Its overall structure
retains many elements and function names found in the code, so that it may serve as a
guide to the source for others and to explain its working. If the goal had been to compare
Ripple consensus to the existing literature on synchronous Byzantine agreement protocols,
the formalization would differ considerably.

The protocol is highly synchronous and relies on a common notion of time. It is
structured into successive rounds of consensus, whereby each round agrees on a ledger (a set
of transactions to execute). Each round roughly takes a predefined amount of time and is
driven by a heartbeat timer, which triggers a state update once per second. This contrasts
with the Byzantine consensus protocols with partial synchrony [12], such as PBFT [8], which
can tolerate arbitrarily long periods of asynchrony and rely on clocks or timeouts only for
liveness. The Ripple protocol aims to agree on a transaction set within each synchronized
round. The round ends when all nodes collectively declare to have reached consensus on
a proposal for the round. The protocol is then said to close and later validate a ledger
containing the agreed-on transaction set. However, the transactions in the ledger are executed
only after another protocol step, once the ledger has become fully validated; this occurs in an
asynchronous process in the background. Transaction execution is only logically synchronized
with the consensus round.

A ledger consists of a batch of transactions that result from a consensus round and
contains a hash of the logically preceding ledger. Ledgers are stored persistently and roughly
play the role of blocks in other blockchain protocols. Each node locally maintains three
different ledgers: the current ledger, which is in the process of building during a consensus
round, the previous ledger, representing the most recently closed ledger and the valid ledger,
which is the last fully validated ledger in the network.

In more detail, a consensus round has three phases: open, establish, and accepted. The
usual phase transition goes from open to establish to accepted and then proceeds to the next
consensus round, which starts again from open. However, it is also possible that the phase
changes from establish to open, if a node detects that it has been forked from the others to a
wrong ledger and resumes processing after switching to the ledger agreed by the network.

Nodes may submit transactions at any time, concurrently to executing the consensus
rounds. They are disseminated among the nodes through a gossip layer that ensures only
weak consistency. All transactions that have been received from gossip are placed into a
buffer. Apparently, the original design assumed that the gossip layer ensures a notion of
consistency that prevents Byzantine nodes from equivocating, in the sense of correct nodes
never receive different messages from them. This assumption has been dropped later [10].

The protocol rounds and their phases are implemented by a state machine, which is
invoked every second, when the global heartbeat timer ticks. Messages from other nodes are
received asynchronously in the background and processed during the next timer interrupt.

OPODIS 2020



10:6 Security Analysis of Ripple Consensus

The timeout handler (L56) first checks if the local previous ledger is the same as the
preferred ledger of a sufficient majority of the nodes in the network. If not, the node has
been forked or lost synchronization with the rest of the network and must bring itself back to
the state agreed by the network. In this case, it starts a new consensus round from scratch.

When the node enters a new round of consensus, it sets the phase to open, resets round-
specific data structures, and simply waits for the buffer to fill up with submitted transactions.
Once the node has been in the open phase for more than half of the duration of the previous
consensus round, the node moves to the establish phase (L63–L64; function closeLedger). It
locally closes the ledger, which means to initialize its proposal for the consensus round and
to send this to the other nodes in its UNL.

During the establish phase, the nodes exchange their proposals for the transactions to
decide in this consensus round (using proposal messages). Obviously, these proposals
may contain different transaction sets. All transactions on which the proposals from other
nodes differ become disputed. Every node keeps track of how many other nodes in its UNL
have proposed a disputed transaction and represents this information as votes by the other
nodes. The node may remove a disputed transaction from its own proposal, or add one to its
proposal, based on the votes of the others and based on the time that has passed. Specifically,
the node increases the necessary threshold of votes for changing its own vote on a disputed
transaction depending on the duration of the establish phase with respect to the time taken
by the previous consensus round.

The node leaves the establish phase when it has found that there is a consensus on its
proposal (L69–L71; functions haveConsensus and onAccept). The node constructs the next
ledger (the “last closed ledger”) by “applying” the decided transactions. This ledger is signed
and broadcast to the other nodes in a validation message.

The node then moves to the accepted phase and immediately initializes a new consensus
round. Concurrently, the node receives validation messages from the nodes in its UNL. It
verifies them and counts how many other nodes in its UNL have issued the same validation.
When this number reaches 80% of the nodes in its UNL, the ledger becomes fully validated
and the node executes the transactions contained in it.

3.3 Details

Functions. For simplicity, there are some functions that are not fully explained in the
pseudocode. These functions are:

startTimer(timer, duration) starts timer, which expires after the time passed as duration.
clock.now() returns the current time.
Hash() creates a unique identifier (often denoted ID) of a data structure by converting
the data to a canonical representation and applying a cryptographic hash function.
A 4 B denotes the symmetric set difference.
boolToInt(b) converts a logical value b to an integer and returns b? 0:1.
signi(L) creates a cryptographic digital signature for ledger L by node i.
verifyi(L, σ) checks if the digital signature on L from node i is valid.
siblings(M) returns the set of nodes, different from M , that have the same parent as M .

Remarks on the pseudocode. Next to every function name, a comment points to a specific
file and line in the source code which contains its implementation. The Ripple source contains
a large number of files and most of the consensus protocol implementation is actually spread



I. Amores-Sesar, C. Cachin, and J. Mićić 10:7

over multiple header (.h) files, which complicates the analysis of the code. The references in
this work are based on version 1.4.01 of rippled [23].

Phase open. Function beginConsensus starts a consensus round for the next ledger (L50).
Each ledger (L11) contains a hash (ID) that serves as its identifier, a sequence number (seq),
a hash of the parent ledger (parentID), and a transaction set (txns), denoting the transactions
applied by the ledger.

The node records the time when the open phase started (openTime, L54), so that it can
later calculate how long the open phase has taken. This is important because the duration of
the open phase determines when to close the ledger locally. If the time that has passed since
openTime is longer or equal to half of the previous round time (prevRoundTime), consensus
moves to phase establish by calling the function closeLedger (L64). Meanwhile all nodes
submit transactions with the gossip layer (L46) and each node stores the transaction received
via gossip messages in its transaction set S (L48). We model transactions as bit strings. In
some places, and as in the source code, we use a short, unique transaction identifier (of type
int) for each transaction tx ∈ {0, 1}∗, computed by a function TxID(tx). A transaction set is
a set of binary strings here, but the source code maintains a transaction set using a hash
map, containing the transaction data indexed by their identifiers.

Phase establish. When the node moves from open to establish, it calls closeLedger that
creates an initial proposal (stored in result.proposal), containing all transactions received
from the gossip layer (L79) that have not been executed yet. A proposal structure (L16)
contains the hash of the previous ledger (prevLedgerID), a sequence number (seq), the actual
set (txns) of proposed transactions (in the source code named position), an identifier of the
node (node) that created this proposal, and a timestamp (time) when this proposal is created
(L79).

The node then broadcasts the new proposal as a proposal message (L81) to all nodes
in its UNL. When they receive it, they will store its contents in their currPeerProposals
collection of proposals (L85), if the message originates from a node their respective UNL.
The closeLedger function also sets result.roundTime to the current time (L80). This serves
to measure the duration of the establish phase and will be used later to determine how far
the consensus process has converged.

Based on the proposals from other nodes, each node computes a set of disputed transactions
(L88). A disputed transaction (DisputedTx, L5) contains the transaction itself (tx), a binary
vote (ourVote) by the node on whether this transaction should be included in the ledger, the
number of “yes” and “no” votes from other nodes on the transaction (yays and nays), taken
from their proposal messages, and the list of votes on this transaction from the other nodes
(votes).

A transaction becomes disputed when it is proposed by the node itself and some other
node does not propose it, or vice versa. The node determines these by comparing its own
transaction set with the transaction sets of all other nodes (L89). Every disputed transaction
is recorded (as a DisputedTx structure) in the collection result.disputes (L90–L97).

During the establish phase, the node constantly updates its votes on all disputed transac-
tions (L68; L99; L117) for responding to further proposal messages that have been received.
A vote may change based on the number of nodes in favor of the transaction, the convergence

1 The latest release (16. November 2020) is version 1.6.0. Compared to version 1.4.0, the current release
has no significant changes concerning the consensus protocol.
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ratio (converge) and a threshold. Convergence measures the expected progress in one single
consensus round and is computed from the duration of the establish phase, the duration of
the previous round, and an assumed maximal consensus-round time (L67). The value for the
threshold is predefined. The further the consensus converges, the higher is the threshold that
the number of opposing votes needs to reach so that the node changes its own vote (L126).
Whenever the node’s proposal is updated, the node broadcasts its new proposal to the other
nodes (L113) and the disputed transactions are recomputed (L115).

Afterwards, the node checks if consensus on its proposed transaction set result.txns is
reached, by calling the function haveConsensus (L69). The node counts agreements (L130)
and disagreements (L131) with result.txns. If the fraction of agreeing nodes is at least 80%
with respect to the UNL (L132), then consensus is reached. The node proceeds to the
accepted phase by calling the function onAccept (L71).

Phase accepted. The function onAccept (L133) “applies” the agreed-on transaction set
and thereby creates the next ledger (called the “last closed ledger” in the source code; L134).
This ledger is then signed (L136) and broadcast to the other nodes as a validation message
(L137). This marks the end of the accepted phase and a new consensus round is initiated by
the node (L140).

Meanwhile, in the background, the node receives validation messages from other nodes
in its UNL and tries to verify them (L141). This verification checks the signature and if the
sequence number of the received ledger is the same as the sequence number of the own ledger.
All validations that satisfy both conditions and contain the node’s own agreed-on ledger
are counted (L145); this comparison uses the cryptographic hash of the ledger structure in
the source code. Again, if 80% of nodes have validated the same ledger and if the sequence
number of that ledger is larger than that of the last fully validated ledger (L146), the ledger
becomes fully validated (L147). The node then executes the transactions in the ledger (L150).
In other words, the consensus decision has become final.

Preferred ledger. A node participating in consensus regularly computes the preferred ledger,
which denotes the current ledger on which the network has decided. Due to possible faults
and network delays, the node’s prevLedger may have diverged from the preferred ledger,
which is determined by calling the function getPreferred(validLedger) (L151). Should the
network have adopted a different ledger than the prevLedger of the node, the node switches
to this ledger and restarts the consensus round with the new ledger.

Notice that the validated ledgers from all correct nodes form a tree, rooted in the initial
ledger (genesisLedger). Each node stores all valid ledgers that it receives in a tree-structured
variable tree. Whenever the node receives a validation message containing a ledger L′, it
adds L′ to tree (L143). In order to compute the preferred ledger, we define the following
functions, which are derived from the ledgers in tree and in the received validation messages:

tip-support(L) for a ledger L is the number of validators in the UNL that have validated L.
In other words,

tip-support(L) =
∣∣{ j ∈ UNL | validations[j] = L}

∣∣.
support(L) for a given ledger L is the sum of the tip support of L and all its descendants
in tree, i.e.,

support(L) = tip-support(L) +
∑

L′ is a child of L in tree
tip-support(L′).
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Algorithm 1 Ripple consensus protocol for node i (continues on next pages).
1: Type
2: Enum Phase = {open, establish, accepted}
3: Tx = {0, 1}∗ // a transaction
4: TxSet = 2Tx

5: DisputedTx( // DisputedTx.h:50
6: Tx tx, // disputed transaction
7: bool ourVote, // binary vote on whether transaction should be included
8: int yays, // number of yes votes from others
9: int nays, // number of no votes from others
10: HashMap[int → bool] votes) // collection of votes indexed by node
11: Ledger( // Ledger.h:77
12: Hash ID, // identifier
13: int seq, // sequence number of this ledger
14: Hash parentID, // identifier of ledger’s parent
15: TxSet txns) // set of transactions applied by ledger
16: Proposal( // ConsensusProposal.h:52
17: Hash prevLedgerID, // hash of the previous ledger, on which this proposal builds
18: int seq, // sequence number
19: TxSet txns, // proposed transaction set, called position at ConsensusProposal.h:73
20: int node, // node that proposes this
21: milliseconds time) // time when proposal is created
22: ConsensusResult( // ConsensusTypes.h:201
23: TxSet txns, // set of transactions consensus agrees on
24: Proposal proposal, // proposal containing transaction set
25: HashMap[int → DisputedTx] disputes, // collection of disputed transactions
26: milliseconds roundTime) // duration of the establish phase

27: State
28: Phase phase // phase of the consensus round for agreeing on one ledger
29: Tree tree // tree representation of received valid ledgers
30: Ledger L // current working ledger
31: Ledger prevLedger // last agreed-on (“closed”) ledger according to the network
32: Ledger validLedger // ledger that was most recently fully validated by the node
33: TxSet S // transactions submitted by clients that have not yet been executed
34: ConsensusResult result // data relevant for the outcome of consensus on a single ledger
35: HashMap[int → Proposal] currPeerProposals // collection of proposals indexed by node
36: HashMap[int → Ledger] validations // collection of validations indexed by node
37: milliseconds prevRoundTime// time taken by the previous consensus round, initialized to 15s
38: float converge ∈ [0, 1] // ratio of round time to prevRoundTime
39: UNL ⊆ {1, . . . ,M} // validator nodes trusted by node i, taken from the configuration file
40: milliseconds openTime // time when the last open phase started

41: function initialization()
42: prevLedger← genesisLedger // genesisLedger is the first ledger in the history of the network
43: S ← {}
44: beginConsensus() // start the first round of consensus
45: startTimer(heartbeat, 1s) // NetworkOPs.cpp:673

46: upon submission of a transaction tx do
47: send message [submit, tx] with the gossip layer

48: upon receiving a message [submit, tx] from the gossip layer do
49: S← S ∪ {tx}

50: function beginConsensus() // start a new round of consensus, Consensus.h:663
51: phase← open // Consensus.h:669
52: result← ({},⊥, [ ], 0) // Consensus.h:674
53: converge← 0 // Consensus.h:675
54: openTime← clock.now() // remember the time when this consensus round started
55: currPeerProposals← [ ] // reset the proposals for this consensus round

OPODIS 2020



10:10 Security Analysis of Ripple Consensus

Algorithm 2 Ripple consensus protocol for node i (continued).
56: upon timeout(heartbeat) do // Consensus.h:818
57: L′ ← getPreferred(validLedger)
58: if L′ 6= prevLedger then
59: prevLedger← L′
60: beginConsensus(prevLedger)
61: if phase = open then // wait until the closing ledger can be determined locally
62: if (clock.now()− openTime) ≥ prevRoundTime

2 then // Consensus.cpp:75
63: phase← establish
64: closeLedger() // initialize consensus value in result
65: else if phase = establish then // agree on the contents of the ledger to close
66: result.roundTime← clock.now()− result.roundTime
67: converge← result.roundTime

max{prevRoundTime,5s}
68: updateOurProposals() // update consensus value in result
69: if haveConsensus() then
70: phase← accepted
71: onAccept() // note this immediately sets phase = open inside beginConsensus()
72: else if phase = accepted then // Consensus.h:821
73: // do nothing
74: startTimer(heartbeat, 1s)

75: // transition from open to establish phase
76: function closeLedger() // Consensus.h:1309
77: L← (⊥, prevLedger.seq + 1,⊥, {})
78: result.txns← S // propose the current set of submitted transactions
79: result.proposal← (Hash(prevLedger), 0, result.txns, i, clock.now())
80: result.roundTime← clock.now()
81: broadcast message [proposal, result.proposal]
82: result.disputes← [ ] // disputes for transactions not proposed by all nodes in the UNL
83: for j ∈ UNL such that currPeerProposals[j] 6= ⊥ do
84: createDisputes(currPeerProposals[j].txns) // compared to result.txns, Consensus.h:1334

85: upon receiving a message [proposal, prop] such that prop = (nl, ·, ·, j, ·) and
86: j ∈ UNL and nl = Hash(prevLedger) do
87: currPeerProposals[j]← prop // Consensus.h:781

88: function createDisputes(TxSet set) // Consensus.h:1623
89: for tx ∈ result.txns 4 set do // all transactions that differ between result.txns and set
90: dt←

(
tx, (tx ∈ result.txns), 0, 0, [ ]

)
// dt is a disputed transaction

91: for k ∈ UNL such that currPeerProposals[k] 6= ⊥ do
92: if tx ∈ currPeerProposals[k].txns then
93: dt.votes[k]← 1 // record node’s vote for the disputed transaction
94: dt.yays← dt.yays + 1
95: else
96: dt.votes[k]← 0 // record node’s vote against the disputed transaction
97: dt.nays← dt.nays + 1
98: result.disputes[TxID(tx)]← dt // phase establish

99: function updateOurProposals() // Consensus.h:1361
100: for j ∈ UNL such that (clock.now()− currPeerProposals[j].time) > 20s do
101: currPeerProposals[j]← ⊥ // remove stale proposals
102: T ← result.txns // current set of transactions, to update from disputed ones
103: for dt ∈ result.disputes do // dt is a disputed transaction
104: if updateVote(dt) then // if vote on dt changes, update the dispute set
105: dt.ourVote← ¬dt.ourVote
106: if dt.ourVote then // should the transaction be included? DisputedTx.h:77
107: T ← T ∪ {dt.tx} // dt.ourVote is initially set in createDisputes(TxSet set)
108: else
109: T ← T \ {dt.tx}
110: if T 6= result.txns then // if txns changed, then update result and tell the other nodes
111: result.txns← T
112: result.proposal← (Hash(prevLedger), result.proposal.seq + 1, result.txns, i)
113: broadcast message [proposal, result.proposal]
114: result.disputes← [ ] // recompute disputes after updating result.txns
115: for j ∈ UNL such that currPeerProposals[j] 6= ⊥ do // Consensus.h:1679
116: createDisputes(currPeerProposals[j].txns)
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Algorithm 3 Ripple consensus protocol for node i (continued).
117:function updateVote(DisputedTx dt) // DisputedTx.h:197
118: if converge < 0.5 then // set threshold based on duration of the establish phase
119: threshold← 0.5
120: else if converge < 0.85 then
121: threshold← 0.65
122: else if converge < 2 then
123: threshold← 0.7
124: else
125: threshold← 0.95
126: newVote←

(
dt.yays+boolToInt(dt.ourVote)

dt.yays+dt.nays+1 > threshold
)

127: return
(
newVote 6= dt.ourVote

)
// the vote changes

128:function haveConsensus() // Consensus.h:1545
129: // count number of agreements and disagreements with our proposal
130: agree← |{j|currPeerProposals[j] = result.proposal}|
131: disagree← |{j|currPeerProposals[j] 6= ⊥ ∧ currPeerProposals[j] 6= result.proposal}|
132: return

( agree+1
agree+disagree+1 ≥ 0.8

)
// 0.8 is defined in ConsensusParams.h, Consensus.cpp:104

// phase accepted

133:function onAccept() // RCLConsensus.cpp:408
134: L← (prevLedger, result.txns) // L is the last closed ledger, RCLConsensus.cpp:708
135: validations[i]← L
136: σ ← signi(L) // validate the ledger, RCLConsensus.cpp:743
137: broadcast message [validation, i, σ,L]
138: prevLedger← L // store the last closed ledger
139: prevRoundTime← result.roundTime
140: beginConsensus() // advance to the next round of consensus, NetworkOPs.cpp:1584

141:upon receiving a message [validation, j, σ,L′] such that // LedgerMaster.cpp:858
142: L′.seq = L.seq and verifyj(L′, σ) do
143: add L′ to tree
144: validations[j]← L′ // store received validation
145: valCount← |{k ∈ UNL|validations[k] = L}| // count the number of validations
146: if valCount ≥ 0.8 · |UNL| and L.seq > validLedger.seq then
147: validLedger← L // ledger becomes fully validated
148: S← S \ {L.txns}
149: for tx ∈ L.txns do // in some deterministic order
150: execute(tx)

151:function getPreferred(Ledger L) // LedgerTrie.h:677
152: if L is a leaf node in tree then
153: return L
154: else
155: M ← arg max{support(N) | N is a child of L in the tree}
156: if uncommitted(M) ≥ support(M) then
157: return L
158: else if max{support(N) | N ∈ siblings(M)}+ uncommitted(M) < support(M) then
159: return getPreferred(M)
160: else
161: return L

OPODIS 2020
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uncommitted(L) for a ledger L denotes the number of validators whose last validated
ledger has a sequence number that is strictly smaller than the sequence number of L.
More formally,

uncommitted(L) =
∣∣{j ∈ UNL | validations[j].seq < L.seq}

∣∣.
With these definitions, we now explain how getPreferred(Ledger L) proceeds (L151–L161).

If L has no children in tree, it returns L itself. Otherwise, the function considers the child of
L that has the highest support among all children (M). If the support of M is still smaller
than the number of validators that are yet uncommitted at this ledger-sequence number,
then L is still the preferred ledger (L157). Otherwise, if the support of M is guaranteed to
exceed the support of any of its siblings N , even when the uncommitted validators would
also support N , then the function recursively calls getPreferred on M , which outputs the
preferred ledger for M and returns this as the preferred ledger for L. Otherwise, L itself is
returned as the preferred ledger. Observe that in the case when M has no siblings conditions
in L156 and L158 are equivalent. Then is enough to check if support of M is greater than
uncommitted od M .

4 Violation of safety

In this section, we address the safety of the Ripple consensus protocol. We describe a simple
scenario that violates consensus in an execution with seven nodes, of which one is Byzantine.
Actually, one can generalize this to executions with more nodes.

To show that the Ripple consensus protocol violates safety and may let two correct nodes
execute different transactions, we use the following scenario with seven nodes. Figure 2
gives a graphical representation of our scenario. Nodes are named by numbers. We let
UNL1 = {1, 2, 3, 4, 5} and UNL2 = {3, 4, 5, 6, 7}, as illustrated by the two hatched areas in
the figure. Nodes 1, 2, and 3 (white) trust UNL1, nodes 5, 6, and 7 (black) trust UNL2, and
they are all correct; node 4 (gray) is Byzantine. With this setup, we achieve 60% overlap
between the UNLs of any two nodes.

Figure 2 Example setup for showing a safety violation in the Ripple consensus protocol. The
setup consists of seven nodes, one of them Byzantine, and two UNLs. Nodes 1, 2, and 3 (white)
adopt UNL1, vertically hatched, and nodes 5, 6, and 7 adopt UNL2, horizontally hatched. Node 4
(gray) is Byzantine.
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The key idea is that the Byzantine node (4) changes its behavior depending on the
group of nodes to which it communicates. It will cause nodes 1, 2, and 3 (white) to propose
some transaction tx and nodes 5, 6, and 7 (black) to propose a transaction tx′ for the next
ledger. No other transaction exists. The Byzantine node (4) follows the protocol as if it had
proposed tx when interacting with the white nodes and behaves as if it had proposed tx′
when interacting with the black nodes. Assuming that all nodes start the consensus roughly
at the same time and they do not switch the preferred ledger, the protocol does the following:

The Byzantine node 4 submits tx and tx′ using gossip and causes [submit, tx] to be
received by nodes 1, 2, and 3 and [submit, tx′] to be received by nodes 5, 6, and 7 from
the gossip layer. During the repeated heartbeat timer executions in the open phase, all
correct nodes have the same value of prevLedger and send no further messages.
Suppose at a common execution of the heartbeat timer execution (L56) all correct
nodes proceed to the establish phase and call closeLedger. They broadcast the message
[proposal,S], with S containing tx or tx′, respectively (L81). Node 4 sends a proposal
message containing tx to nodes 1, 2, and 3 and one containing tx′ to nodes 5-7. Furthermore,
every correct node executes createDisputes with the transaction set txns received in each
proposal message, which creates result.disputes (L88). For nodes 1, 2, and 3, transaction
tx′ is disputed and for nodes 5, 6, and 7, transaction tx is disputed.
During establish phase, all nodes update their vote for each disputed transaction (L117).
Nodes 1, 2, and 3 consider tx′ but do not change their no vote on tx′ because only 20% of
nodes in their UNL (namely, node 5) vote yes on tx′; this is less than required threshold
of 50% or more (L126). The same holds for nodes 5, 6, and 7 with respect to transaction
tx. Hence, result.txns remains unchanged and no correct node sends another proposal
message.
Eventually, function haveConsensus returns true for each correct node because the
required 4/5 = 80% of its UNL has issued the same proposal as the node itself (L128).
Every correct node moves to the accepted phase.
During onAccept, nodes 1, 2, and 3 send a validation message with ledger L =
(prevLedger, {tx}), whereas nodes 5, 6, and 7 send a validation message containing
L′ = (prevLedger, {tx′}) (L137). Node 4 sends a validation message containing tx to
nodes 1, 2, and 3 and a different one, containing tx′, to nodes 5, 6, and 7.
Every correct node subsequently receives five validation messages, from all nodes in its
UNL, and finds that 80% among them contain the same ledger (L141). Observe that no
node changes its preferred ledger after calling getPreferred. This implies that nodes 1, 2,
and 3 fully validate L and execute tx, whereas nodes 5, 6, and 7 fully validate L′ and
execute tx′. Hence, the agreement condition of consensus is violated.

5 Violation of liveness

Here we show how the Ripple consensus protocol may violate liveness even when all nodes
have the same UNL and only one node is Byzantine. One can bring the protocol to a state,
in which it cannot produce a correct ledger and where it stops making progress.

Consider a system with 2n correct nodes and one single Byzantine node. All nodes are
assumed to trust each other, i.e., there is one common UNL containing all 2n + 1 nodes.
Observe that in this system, the fraction of Byzantines nodes can be made arbitrary small
by increasing n.

As illustrated in Figure 3, node n+ 1, which is Byzantine, exhibits a split-brain behavior
and follows the protocol for an input transaction tx when interacting with nodes 1, . . . , n, and
operates with a different input transaction tx′ when interacting with nodes n+ 2, . . . , 2n+
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Figure 3 Setup in which liveness is violated in the Ripple network. The network consists of
2n+ 1 nodes with one single UNL and 1 Byzantine (black). The n first nodes propose transaction tx
while the last n propose transaction tx′. The Byzantine proposes transaction tx to the n first nodes
and transaction tx′ to the last n.

1. This implies that the first half of the correct nodes, denoted 1, . . . , n, will propose a
transaction tx and the other half, nodes n+2, . . . , 2n+1, will propose transaction tx′. Similar
to the execution shown in Section 4, the nodes start the consensus protocol roughly at the
same time and they do not switch the preferred ledger, they proceed like this:

Byzantine node n+ 1 sends two messages, [submit, tx] and [submit, tx′], using the gossip
layer and causes tx to be received by the first n correct nodes and tx′ to be received by
the last n correct nodes.
After some time has passed, the correct nodes start to close the ledger and move to the
establish phase. Every correct node sends a proposal message, containing only the
submitted transaction of which it knows (L81), namely tx for the first n correct nodes
and tx′ for the last n correct nodes.
During establish phase, the correct nodes receive the proposal messages from all nodes
(including the Byzantine node) and store them in currPeerProposals (L85). Since they
all use the same UNL, all obtain the same proposal messages from the correct nodes.
Each node creates disputes (L88) and updates them while more proposal messages
arrive. Since the proposed transaction sets differ, each node creates a dispute for tx and
for tx′.
While the proposal messages are being processed, votes are counted in updateVotes
(L117), using the yays and nays of each disputed transaction. For a correct node in
{1, . . . , n}, notice that the first n nodes and the Byzantine node vote no for tx′ and the
last n nodes vote yes. Thus, the fraction of nodes voting yes for tx′ is less than required
threshold (50%), and so the first n nodes continue to vote no for tx′. Similarly, nodes
n+ 2 to 2n+ 1 never update their vote on tx and always vote no for tx.
The haveConsensus function called periodically during the establish phase checks if at
least 80% of the nodes in the UNL agree on the the proposal of the node itself (L128).
From the perspective of each one of the first n correct nodes, n other nodes agree and
n nodes disagree with its proposal, which contains tx. That is not enough support
for achieving consensus and the function will return false. The same holds from the
perspective of the last n correct nodes, which also continuously return false.
Finally, the correct nodes will continue trying to update votes and get enough support, but
without being able to generate a correct ledger. No correct node proceeds to validating
the ledger. In other words, liveness of the protocol is not guaranteed.
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6 Conclusion

Ripple is one of the oldest public blockchain platforms. For a long time, its native XRP
token has been the third-most valuable in terms of its total market capitalization. The
Ripple network is implemented as a peer-to-peer network of validator nodes, which should
reach consensus even in the presence of faulty or malicious nodes. Its consensus protocol is
generally considered to be a Byzantine fault-tolerant protocol, but without global knowledge
of all participating nodes and where a node only communicates with other nodes it knows
from its UNL. Previous work regarding the Ripple consensus protocol has already brought up
some concerns about its liveness and safety. In order to better analyze the protocol, this work
has presented an independent, abstract description derived directly from the implementation.
Furthermore, this work has identified relatively simple cases, in which the protocol may
violate safety and/or liveness and which have devastating effects on the health of the network.
Our analysis illustrates the need for very close synchronization, tight interconnection, and
fault-free operations among the participating validators in the Ripple network.
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