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Abstract: Transient receptor potential melastatin 4 (TRPM4) is widely expressed in various organs
and associated with cardiovascular and immune diseases. Lately, the interest in studies on TRPM4
in cancer has increased. Thus far, TRPM4 has been investigated in diffuse large B-cell lymphoma,
prostate, colorectal, liver, breast, urinary bladder, cervical, and endometrial cancer. In several types
of cancer TRPM4 is overexpressed and contributes to cancer hallmark functions such as increased
proliferation and migration and cell cycle shift. Hence, TRPM4 is a potential prognostic cancer
marker and a promising anticancer drug target candidate. Currently, the underlying mechanism
by which TRPM4 contributes to cancer hallmark functions is under investigation. TRPM4 is a
Ca2+-activated monovalent cation channel, and its ion conductivity can decrease intracellular Ca2+

signaling. Furthermore, TRPM4 can interact with different partner proteins. However, the lack of
potent and specific TRPM4 inhibitors has delayed the investigations of TRPM4. In this review, we
summarize the potential mechanisms of action and discuss new small molecule TRPM4 inhibitors, as
well as the TRPM4 antibody, M4P. Additionally, we provide an overview of TRPM4 in human cancer
and discuss TRPM4 as a diagnostic marker and anticancer drug target.

Keywords: ion channel; cancer; drug target; proliferation; migration; calcium; prognostic marker

1. Introduction

Transient receptor potential (TRP) family is a large superfamily of widely expressed
ion channels, which mainly conduct cations, including Ca2+, Mg2+, and Na+. TRP channels
are responsible for a broad range of cellular functions, and many of these channels regulate
intracellular Ca2+ homeostasis and signaling. TRP channels are divided into six mammalian
subfamilies based on their structural homology, and each family differs in its mode of
activation [1].

Transient receptor potential melastatin 4 (TRPM4) belongs to the TRPM channel
subfamily. TRPM4 and TRPM5, the closest homologue of TRPM4, differ from the other
TRP family members because they do not conduct Ca2+ but only monovalent cations [2,3].
Intracellular Ca2+ directly activates TRPM4, which then conducts an influx of Na+ [4].
In 2017 and 2018, almost simultaneously, four independent groups published cryo-EM
structures of TRPM4, revealing both a nucleotide-binding domain (NBD) that binds ATP
and is located in the N-terminal and a Ca2+ binding site in the transmembrane domain [5–8].
The Ca2+-activated activity of TRPM4 can be modified by ATP, IP3, calmodulin, and protein
kinase C-dependent phosphorylation [9,10]. TRPM4 was shown to be voltage-dependent,
as membrane potential strongly modulates its activity [11]. Positive potential increases
TRPM4 conductivity. However, changes in membrane potential are not sufficient to activate
the channel.

TRPM4 is widely expressed in various organs, although its expression is the highest
in the prostate, colon, and heart [2,11]. TRPM4 is also expressed in immune cells (dendritic,
mast, and Th1 and Th2 cells) [12–14], as well as in the central nervous system [15]. Hence,
TRPM4′s broad expression patterns support its potential implications in the physiological
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functions of different cells, tissues, and organs. Indeed, TRPM4 has been linked to a range
of physiological processes, many involving fundamental cellular functions. Dysregulations
of TRPM4 by either altered expression levels or mutations have been linked to several
pathological conditions, including cardiac disorders [16–24], immune diseases [13,14,25,26],
and neurological disorders [27–29]. In addition, TRPM4 was suggested to be an interesting
pharmacological target for the treatment of mucus-related diseases, such as cystic fibrosis,
as it was recently shown to be involved in goblet cell mucin secretion [30]. TRPM4 has been
suggested to play a role in insulin secretion in pancreatic β-cells [31]. However, another
study using TRPM4 knockout mice reported no differences in glucose-induced insulin
release compared to wild-type mice [14]. Lately, growing interest has been directed toward
TRPM4 and its role in several types of cancer [32–41]. TRPM4 contributes to several cancer
hallmark functions, such as cell migration, proliferation, and the epithelial to mesenchymal
transition (EMT). In this paper, we review the emerging data about TRPM4′s involvement
in cancer hallmark functions, as well as the correlation of TRPM4 expression with patient
outcome. We summarize the possible mechanisms of action, such as altered intracellular
Ca2+ signaling, covalent modifications (glycosylation and phosphorylation), and protein
interaction partners and discuss recent advances with new TRPM4 blockers, including the
M4P antibody and small molecule inhibitors.

2. General Mechanisms of TRPM4

Upon activation, TRPM4 conducts Na+ ions into the cell. This influx of positive ions
depolarizes the plasma membrane and thereby decreases the driving force for Ca2+ entry
via store-operated Ca2+ entry (SOCE) and other Ca2+ entry pathways [42]. SOCE has been
linked to several fundamental cellular processes, including gene expression. Alterations in
SOCE Ca2+ signaling were shown to contribute to several cancer hallmark functions, e.g.,
decreased apoptosis and increased proliferation and migration [43–51]. In nonexcitable
cells, SOCE is the main Ca2+ entry pathway. A plethora of extracellular stimuli induce
intracellular IP3 production and, subsequently, endoplasmic reticulum (ER) Ca2+ store
depletion. The drop in ER luminal Ca2+ concentration sequentially activates the unfolding
of stromal interaction molecule 1 (STIM1) and, subsequently, activates the store-operated
Orai1 Ca2+ channels [52]. Anticancer drugs may involve changes in Ca2+ signaling [53,54];
moreover, membrane transport proteins contribute to chemoresistance in several types of
cancer [55]. Although TRPM4 is nonpermeable to Ca2+, Na+ influx via TRPM4 decreases
membrane potential and results in a decrease in intracellular Ca2+ signaling in many
different cells, including rat dental pulp stem cells, various immune cells, and cancer
cells [2,12–14,41,56,57]. However, an increase in SOCE by TRPM4 expression has also been
observed [35,58]. Clearly, a mechanism fundamentally altering intracellular Ca2+ signaling
broadly affects cellular functions and, if dysregulated, adds to cellular malfunctions. In
line with this, TRPM4 has been described to be involved in the Ca2+-dependent migration
of vascular endothelial cells [59], dendritic cells [13], mast cells [26], and T-cells [12], as
well as T-cells’ cytokine production [12,25]. In addition, TRPM4 was shown to colocalize
with focal adhesion proteins in mouse embryonic fibroblasts and to regulate focal adhesion
turnover, a process that is important for cell migration [60,61].

Cancer-derived alterations in crosstalk between Ca2+ and reactive oxygen species
(ROS) contribute to changes in Ca2+-dependent cancer hallmark functions, such as a de-
creased ability to induce apoptosis, increased proliferation, migration, and changes in mito-
chondrial metabolism [62]. ROS impair intracellular Ca2+ signaling, as Ca2+-transporting
membrane enzymes, lipids, and endoplasmic reticulum–mitochondria interfaces depend
on ROS [63]. ROS can decrease SOCE via a blockage of STIM1′s homologue ER Ca2+ sensor,
STIM2 [64]. In contrast to Orai1, its homologue Orai3 is not sensitive to ROS, and the
Orai1/Orai3 ratio determines if intracellular SOCE Ca2+ signaling depend on ROS [65–68].
Both STIM2 and Orai3 subunits are dysregulated in different types of cancer and contribute
to metastatic spread, proliferation, and reduced apoptosis [43,67–80]. TRPM4 directly
contributes to H2O2-dependent migration, possibly because H2O2 prevents the desensi-
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tization of TRPM4 [59,81]. However, ROS-dependent alterations of TRPM4 activity in
cancer cells have not yet been investigated and determining the contributions of TRPM4 to
ROS-dependent alterations of Ca2+ signaling in cancer will be a challenge in the future.

The glycosylation patterns of membrane proteins are altered in aging processes, cancer,
and immune diseases [82]. Changes in complex N-glycosylation can alter the functions
of membrane transport proteins, especially ion channels [83–88]. Phosphorylation can
switch ion channel functions on or off, and the concept of a regulatory mechanism that
couples changed phosphorylation patterns in cancer cells to the response or nonresponse of
ion channels has long been studied for various ion channels, including TRP channels [89].
TRPM4 is glycosylated at aspartate N992, and glycosylation can stabilize surface expression
and reduce TRPM4 currents [90,91]. In addition, other gain-of-function mutations impair
TRPM4 surface expression [92,93]. For TRPM4, two phosphorylation sites (Ser1145 and
Ser1152) have been identified, and phosphorylation can increase the Ca2+ sensitivity of
TRPM4 [9]. It has been demonstrated that casein kinase 1 phosphorylation of Ser839
controls the basolateral expression of TRPM4 in smooth muscle cells [94]. Future studies
will reveal if the altered glycosylation or phosphorylation patterns of TRPM4 in cancer
have pathophysiological implications.

Several interaction partners of TRPM4 have been reported, such as sulfonylurea recep-
tor (SUR1) [29,95,96], 14-3-3 [97], potassium channel tetramerization domain-containing
protein 5 (KCTD5) [39], small ubiquitin-related modifier (SUMO) [16,17], TRPC3 [98],
protein tyrosine phosphatase non-receptor type 6 (PTPN6) [99], and subunits Glu2A and
Glu2B of the N-methyl-D-aspartate receptor (NMDA) receptor [100]. KCTD5 has been
shown to correlate with particular classes of breast cancer [39]. In addition, PTPN6 is an
unfavorable marker of colorectal cancer (CRC) and has been shown to be involved in the
cell cycle regulation and suppression of oncogene β-catenin [101]. Both 14-3-3 and PTPN6
can possibly modify TRPM4 via phosphorylation.

Figure 1 summarizes the reported mechanisms of action and associated molecular ar-
chitecture of TRPM4 described in this section, including Ca2+ signaling, protein interaction
partners, ROS, glycosylation, and phosphorylation. While some of these are under intense
investigation (see also Section 4 on the functional role of TRPM4 in different types of cancer),
future studies are needed to decipher the underlying mechanisms of the pathophysiology
of TRPM4 in cancer.
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Figure 1. Activation of TRPM4 and the regulation of Ca2+ entry. An increase in intracellular Ca2+ concentration activates
TRPM4, which opens and conducts a large influx of Na+ ions. The positively charged Na+ ions then depolarize the plasma
membrane and thereby inhibit store-operated Ca2+ entry (SOCE) via the Orai1 channel. The dysregulation of intracellular
Ca2+ signaling is linked to several cancer hallmark functions, including increased proliferation, migration, invasion, and
the inability to induce apoptosis. TRPM4 has several interaction partners that, in part, have been shown to modulate its
functions, including SUR1 [102], 14-3-3 [102], KCTD5 [39], SUMO [16], TRPC3 [102], and subunits Glu2A and Glu2B, which
are subunits of the NMDA receptor [100]. In addition, TRPM4 can be glycosylated and phosphorylated.
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3. TRPM4 Expression in Cancer

TRPM4 expression levels have been investigated in a number of different cancers
(Figure 2) [32–34,38–41,101–106]. In most studies, TRPM4 protein expression levels were
reported to be increased in tumor samples compared to healthy tissue. However, in
urinary bladder cancer, no changes at the protein or mRNA level have been reported [105].
For colorectal cancer, TRPM4 mRNA expression has been reported to be either decreased
or unchanged in comparison to the control tissue [104,107]. Interestingly, most studies on
TRPM4 expression in cancer showed changes in the expression levels of TRPM4, but, so
far, no TRPM4 mutations have been reported to be associated with cancer. In contrast to
cancer, mutations of TRPM4 have also been reported in other pathologies, such as cardiac
conduction diseases [16,17,21,108].
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Figure 2. Summary of TRM4 expression levels in different cancer types compared to healthy control
tissue (=: expression levels not changed, arrow: increased expression levels) [109].

In prostate cancer (PCa), TRPM4 protein levels were reported to be increased in
cancerous prostate tissue compared to benign glands [103]. In addition, samples with
high-intensity TRPM4 staining and an H-score (histological score) equal to or above the
median were shown to correlate with an increased risk of biochemical recurrence [103].
In a smaller study of 20 patients, Holzmann et al. reported increased TRPM4 expression in
prostatic intraepithelial neoplasia (PIN), which involves tissue transitioning into cancerous
tissue, compared to normal prostate tissue [41]. Furthermore, a medium to strong staining
intensity of TRPM4 was detected in tissue with an increased Gleason score. However, no
significant correlation between clinical parameters or tumor stages was detected. In another
study, a significant increase in TRPM4 mRNA expression in tumor samples compared to the
controls and increased TRPM4 levels in the less differentiated and more aggressive tissue
samples categorized with a higher Gleason score (>7) were reported [34]. Moreover, in a
recent study of a tissue microarray from 210 prostate cancer patients, a correlation between
TRPM4 protein expression intensities (scores of 3 vs. 4, the second highest and highest
TRPM4 scores, respectively) and both local and metastatic progression was described [110].

In two recent studies, TRPM4 was reported to be upregulated in breast cancer samples
at both the mRNA and protein levels [39,40]. TRPM4 mRNA was significantly upregulated
in breast cancer tissue compared to normal breast tissue [39]. Moreover, a correlation
was described between increased histology scores, including poorly differentiated and
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highly proliferative tissues from intermediate and high-graded breast cancer, and increased
TRPM4 expression. Furthermore, in this study, TRPM4 was reported to interact with
KCTD5 protein. Both TRPM4 and KCTD5 mRNA expression was shown to be increased in
triple negative samples, a more aggressive subtype of breast cancer that lacks specialized
treatment [111,112], as well as in ER+/PR+ samples. Additionally, in an independent
immunohistochemistry study analyzing 99 breast cancer samples, TRPM4 protein was
found to be significantly overexpressed in breast cancer tissue compared to normal breast
ducts. The breast cancer tissue displayed TRPM4-specific staining in the cytoplasm and
membrane of breast cells, whereas the surrounding stromal cells were negative for TRPM4.
Furthermore, increased TRPM4 staining intensity was significantly correlated with a worse
prognosis, as demonstrated by a higher lymph node status and a higher pathologic prog-
nostic stage [40].

TRPM4 protein expression was also investigated in diffuse large B cell lymphoma (DL-
BCL). TRPM4 was mainly detected in the membranes of DLBCL cells, while nonmalignant
B cells did not express TRPM4. TRPM4 protein expression was significantly correlated with
worse overall survival and worse progression-free survival. In addition, both the analysis
of publicly available microarray data and immunohistochemical analysis showed higher
TRPM4 expression in the activated B cell-like DLBCL (ABC-DLBCL) subtype, and this
increased expression was significantly correlated with worse overall survival in R-CHOP
chemotherapy-treated DLBCL samples [33].

Three studies investigated TRPM4 expression levels in colorectal cancer. In 2015, Sozu-
can et al. reported decreased mRNA expression when 93 CRC patient tissue samples were
analyzed [104]. Later, in a transcriptomic-based study comparing the mRNA expression
levels of the Ca2+ remodeling component between a normal colon cell line and a CRC cell
line, no changes in TRPM4 mRNA expression levels were detected [107]. More recently,
in an immunohistological study involving a 379 CRC patient tissue microarray, a distinct
pattern of TRPM4 was described [32]. TRPM4 protein was reported to be highly expressed
in tumor buds, and high expression of TRPM4 was correlated with a higher number of
tumor buds and an increased percentage of the infiltrative tumor border configuration.
These small clusters of up to five cancer cells, called tumor buds, and an infiltrative tumor
border configuration were correlated with lymphatic vessel invasion and lymph node
metastasis in CRC [113–115], thereby linking TRPM4 expression to worse patient outcomes.
The discrepancy between these three studies could be due to the type of samples or differ-
ent sample sizes that were analyzed. One study analyzed cell lines, whereas the two other
analyzed tissue samples. In addition, mRNA expression analysis of a homogenized sample
can show a different image of the data, while tissue slices stained for protein expression
provide a more heterogeneous display of the expression patterns in different subsections of
the tissue.

In a study comparing the mRNA and protein expression levels of different TRPM
family members in urinary bladder cancer (40 cancer tissue + 7 control samples), no
differences in TRPM4 expression, compared to healthy controls, were detected [105]. In the
same study, TRPM4 protein was only detected in the epithelial cells of the bladder in both
the cancer and control groups.

A gene expression study of cervical cancer cases reported TRPM4 to be overexpressed
in cervical cancer specimens compared to normal cervical epithelium [38]. TRPM4 expres-
sion was also analyzed in endometrial cancer with a public data-based expression analysis.
Here, TRPM4 and two other genes (LMNB1 and KIAA1644) were identified as protective
prognostic genes. In combination with six other genes (PHLDA2, GGH, ESPL1, FAM184A,
LMNB1, and KIAA1644), TRPM4 performed well as a diagnostic prediction signature for
endometrial cancer [106]. Moreover, a recent expression study of 491 endometrial cancer
patients revealed that decreased TRPM4 mRNA expression is significantly correlated with
a poor prognosis and reduced overall survival [116].
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Lastly, TRPM4 mRNA was previously described in the human liver cancer cell lines,
HepG2 and Huh-7 [117]. However, to date, the putative role of TRPM4 in liver cancer
pathophysiology has not been investigated.

4. Functional Role of TRPM4 in Different Types of Cancer
4.1. Prostate Cancer

Prostate cancer is, thus far, the most studied type of cancer with regard to TRPM4
expression and function. In 2014, TRPM4 was described to be a cancer driver gene in
androgen-independent PCa [118]. One year later, Holzmann et al. reported TRPM4 to
be responsible for Ca2+-activated nonselective (CAN) current in PCa, as the large Na+

currents developed upon Ca2+ activation were decreased in PC3, LNCaP, and DU145
PCa cells, as well as primary human prostate epithelial cells (hPEC) with siRNA-based
TRPM4 knockdown [41]. Moreover, fluorescence-based Fura-2 Ca2+ imaging experiments
from two independent groups revealed changes in the Ca2+ entry pathways via SOCE
in TRPM4 knockdown cells. While one study reported elevated levels of Ca2+ entry
in TRPM4 siRNA-transfected DU145 and hPEC cells with no changes in PC3 cells [41],
another study demonstrated decreased intracellular Ca2+ entry in PC3 TRPM4 knockdown
cells [35]. The inconsistency between these two studies could be due to their different
knockdown techniques. Whereas the first study was based on transient knockdown
experiments, the second study used stable knockout cells, possible yielding compensatory
effects due to the knockout. Nevertheless, the fact that TRPM4 is involved in the regulation
of intracellular Ca2+ signaling in cancer cells is highly interesting, as Ca2+ oscillations
and maintaining a cytosolic Ca2+ gradient in migratory cells were shown to contribute to
cancer cell migration [119]. Indeed, several independent studies have shown that TRPM4
contributes to the migration and invasion of the PCa cell line PC3 [34,37,41]. Furthermore,
Sagredo et al. showed that TRPM4 expression in PC3 cells can alter EMT [34], an important
process for cancer cell migration and invasion. The downregulation of TRPM4 caused a
shift in E-cadherin and N-cadherin expression levels and reduced the expression of Snail1,
a well-known transcription factor of EMT markers. Migration was additionally shown to
be decreased in DU145 TRPM4 knockout cells [110]. However, the potential involvement
of Ca2+ in this mechanism still needs to be investigated. TRPM4 was also reported to be
involved in the proliferation of DU145 [110] and PC3 [35] cells, whereby the latter was
shown to be regulated by the activity of GSK-3β and β-catenin [35]. The downregulation of
TRPM4 led to decreased nuclear β-catenin levels, leading to a decrease in its transcriptional
activity. This decrease in TRPM4 expression further decreased the total β-catenin protein
levels and activated GSK-3β, a negative regulator of Snail1, through phosphorylation [120].
Moreover, TRPM4 was recently described to be negatively regulated by microRNA-150
(miR150). The downregulation of TRPM4 or upregulation of miR150 resulted in decreased
proliferation, the inactivation of β-catenin, a shift in the cell cycle, and the suppression of
EMT of PC3 cells [37]. More recently, a role in cell adhesion was described for DU145 cells,
where TRPM4 knockout led to decreased cell adhesion and rounder cells [110].

4.2. Colorectal Cancer

A recent study described the role of TRPM4 in the cancer hallmark functions of col-
orectal cancer. TRPM4 was shown to conduct large Na+ currents in the HCT116 colorectal
cell line and to act as the main source of CAN current in these cells [32]. The same study
also showed a tendency for decreased viability and proliferation, as well a shift in the cell
cycle, of stable TRPM4 knockout cells. In addition, TRPM4 was suggested to contribute to
decreased migration and invasion. Finally, TRPM4 ion conductivity was demonstrated to
be essential for viability and cell cycle shift, suggesting that TRPM4 is a potential anticancer
drug target for CRC.
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4.3. Cervical Cancer

shRNA-mediated TRPM4 downregulation was shown to lead to decreased cell pro-
liferation in the cervical-cancer-derived cell line HeLa [36]. In addition to decreased
proliferation, changes in cell cycle distribution were observed. Cells with reduced TRPM4
expression displayed, like with CRC [32] and PCa [37] cells, a higher number of cells in the
G1 phase along with a decreased percentage of cells in the S phase compared to the control
transfected cells. In addition, cyclin D1 and survivin expression levels were decreased
upon TRPM4 knockdown. Cyclin D1 is known to promote the transition from the G1 phase
to the S phase and could potentially explain the observed decrease in proliferation after
TRPM4 knockdown. Moreover, in line with the PCa study, TRPM4 knockdown in HeLa
cells led to a reduction in total β-catenin expression via GSK-3β-dependent degradation.
An immunofluorescence analysis also indicated the predominantly cytoplasmic expression
of β-catenin and only low nuclear expression [121].

4.4. Endometrial Cancer

The role of TRPM4 in the cancer hallmark functions of endometrial cancer was re-
cently studied. Contrary to the results described for many other cancer types, silencing of
TRPM4 increased the cell viability and migration rate of AN3CA endometrial cancer cell
line. The depletion of cells from TRPM4 leads to increased EMT progression, determined
according to changes in EMT marker expressions (increased N-cadherin and vimentin
expression along with decreased E-cadherin and cytokeratin expression in siTRPM4). More-
over, TRPM4 expression was found to be associated with the p53 and PI3K/AKT/mTOR
signaling pathways, as the downregulation of TRPM4 leads to increased phosphorylation
of PI3K, AKT, and mTOR, as well as decreased p53 expression levels [116].

4.5. Breast Cancer

The migration effect observed from KCTD5 is mediated through TRPM4 [39]. KCTD5
is a putative adaptor for Cullin3-E3 ubiquitin ligase and could contribute to TRPM4
turnover via ubiquitinoylation. In addition, KCTD5 regulates migration by altering Ca2+

signaling, possibly via TRPM4 or other ion channels and Rac1 activity [122,123]. Moreover,
in a gene set enrichment analysis of three breast cancer gene expression profiling data sets,
TRPM4 expression was shown to be associated with EMT gene sets and estrogen response
gene sets [40].

4.6. Other Cancers

In acute myeloid leukemia (AML) patients and AML cell lines, expression of TRPM4
is significantly increased. In addition, the knockdown of TRPM4 inhibited proliferation
and cell cycle progression through the AKT/GLI1/Cyclin D1 pathways [124]. For liver
cancer, urinary bladder cancer, and DLBCL, to date, only expression studies have been
performed. However, the role of TRPM4 in these cancers should be investigated at the
cellular and molecular levels.

5. Potential as a Drug Target

Following overexpression in many tumor types and the multiple links to cancer
hallmark functions, TRPM4 has been suggested to be a new potential anticancer drug
target. Not only its expression pattern and links to different types of cancer but also the
fact that TRPM4 is mostly expressed on the cell surface make TRPM4 an interesting target.
Membrane proteins, such as ion channels and receptors, can be targeted by larger molecules,
such as antibody-based drugs. However, antibodies are mostly unable to pass through
the cell membrane. Small molecular inhibitors, on the other hand, can diffuse through the
plasma membrane and thus interact with the intracellular binding sites of channels and
receptors. Therefore, membrane proteins can be targeted by both antibodies and inhibitors.
For studies in primary cells and animal models, potent and selective inhibitors are needed,
but the lack of selective and potent inhibitors has made it difficult to evaluate TRPM4 as an
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anticancer drug target. The two most commonly used inhibitors for TRPM4, flufenamic
acid and 9-phenanthrol, both show low potency and a lack of selectivity. Flufenamic acid
was originally used as an anti-inflammatory drug before being considered as a cation
channel inhibitor. However, flufenamic acid was later shown to have many off-targets
among other ion channels [125], and 9-phenanthrol was shown to inhibit the Ca2+-activated
Cl- channel TMEM16A [126] and also activate the KCa 3.1 channels [127]. Moreover, it has
also been reported that a third commonly used TRPM4 inhibitor, Glibenclamide, has an
inhibitory effect on K+ channels [128,129].

Additionally, TRPM4′s broad expression is an important factor to consider. Since
TRPM4 is widely expressed, it would be necessary to target any related drug therapy to a
specific organ or type of cells to avoid unwanted systematic side effects. One possibility
for such targeting would be to use caged blockers that are “opened and released” by
organ-specific enzymes; one could also target TRPM4 with bispecific antibodies. The dual-
targeting of TRPM4 in combination with any of its interaction partner proteins or tumor-
specific membrane proteins with bispecific-antibodies carrying toxins could diminish the
risk of unwanted side effects in other tissues of the body.

Recently, a TRPM4-specific antibody named M4P was described to inhibit TRPM4′s
current by binding close to the channel pore [130]. M4P was shown to downregulate
TRPM4 surface expression in rat models of stroke, and to inhibit hypoxia-induced cell
swelling and reduce reperfusion injury in stroke recanalization. Moreover, M4P has
anti-oncotic effects in neurons, astrocytes, and vascular endothelial cells under hypoxic
conditions [131]. In addition, three new small molecular inhibitors of TRPM4—CBA
((4-chloro-2-(2-chlorophenoxy) acetamido)benzoic acid, also called compound 5), NBA
(2-(1-naphthyloxyacetamido)-4-chloro-benzoic acid), and LBA (4-chloro-2-(2-(4-chloro-2-
methylphenoxy)propanamide) benzoic acid))—were recently described [132,133]. CBA
showed a solid inhibitory effect, both on HEK293 cells overexpressing TRPM4 and on PCa
LNCaP cells endogenously expressing TRPM4, when analyzed with electrophysiological
methods. CBA presented 10-fold stronger inhibition compared to 9-phenanthrol [133] and
demonstrated selectivity over other TRP family members (TRPV1, TRPV3, TRPV6, TRPM5,
TRPM7, and TRPM8). The effect of CBA and its two derivatives, NBA and LBA, was
evaluated on endogenous TRPM4 in PCa LNCaP cells. CBA presented a low IC50 value of
1.1 ± 0.3 µM [133], an LBA of 0.74 ± 2.0 µM [110], and an NBA IC50 of 0.16 ± 2.4 µM [110]
in LNCaP cells. In addition, these blockers were evaluated for their effect on proliferation
and migration in the androgen-independent PCa cell line, DU145. Nevertheless, due to the
incomplete blockage of TRPM4 currents (65% to 88% at 50 µM) in these cells, the effects
on cellular functions were limited [110]. Recently, these TRPM4 inhibitors were optimized
and investigated for their structural activity relationship (SAR). As a consequence, at least
two new inhibitors, compound 8 and compound 9, were identified and will be investigated
further [132]. Future studies will reveal if any of these TRPM4 blockers or the M4P antibody
impact cancer hallmark functions of other types of cancer.

6. Conclusions and Perspectives

TRPM4 is a potential diagnostic marker for cancer progression, as a correlation be-
tween TRPM4 expression and worse diagnostic outcomes has been reported for breast
cancer [39], DLBCL [33], and PCa [34,103]. In addition, TRPM4 was suggested as a protec-
tive diagnostic marker for endometrial cancer [106]. Moreover, TRPM4 has been linked to
proliferation, migration, invasion, and EMT progression. However, despite numerous inter-
esting studies on TRPM4′s expression and involvement in cancer, we are only beginning to
understand TRPM4′s role in the pathophysiology of cancer. No studies on TRPM4 in cancer
mouse models have been published. Further studies using xenograft mouse models and
TRPM4-KO cells or specific TRPM4 inhibitor treatments could give a better overview of the
role of TRPM4 in tumor development, tumor growth, and metastasis spread. In addition,
these experiments could potentially give a better overview of the role of TRPM4 in the



Biomolecules 2021, 11, 229 9 of 14

tumor microenvironment and its interactions with immune responses, cytokines, growth
factors, etc.

Aside from the potential use of TRPM4 as an anticancer drug target, as discussed
above, the question of whether ion conductivity is needed for cancer development and
progression remains partially unanswered. Would it be enough to block TRPM4′s current
to alter cancer progression, or would it be preferable to use TRPM4 as a tumor-specific
target for the delivery of toxins? In the colorectal cancer cell line HCT116, ion conductivity
was shown to be important for cell cycle and viability regulation [32]. However, further
studies must be performed to determine if this is the case for all cancer types and whether
the same mechanisms of TRPM4 action regulate other cancer hallmark functions.

Taken together, these studies shed light on the potential of TRPM4 as an anticancer
target and tool for diagnostic purposes. Nevertheless, more studies are needed to expand
our knowledge of the mechanisms behind TRPM4′s involvement in cancer development
and progression.
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