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Two-Loop Analysis of the Pion Mass Dependence of the ρ Meson
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Analyzing the pion mass dependence of ππ scattering phase shifts beyond the low-energy region
requires the unitarization of the amplitudes from chiral perturbation theory. In the two-flavor theory,
unitarization via the inverse-amplitude method (IAM) can be justified from dispersion relations, which is
therefore expected to provide reliable predictions for the pion mass dependence of results from lattice QCD
calculations. In this work, we provide compact analytic expression for the two-loop partial-wave
amplitudes for J ¼ 0, 1, 2 required for the IAM at subleading order. To analyze the pion mass dependence
of recent lattice QCD results for the P wave, we develop a fit strategy that for the first time allows us to
perform stable two-loop IAM fits and assess the chiral convergence of the IAM approach. While the
comparison of subsequent orders suggests a breakdown scale not much below the ρ mass, a detailed
understanding of the systematic uncertainties of lattice QCD data is critical to obtain acceptable fits,
especially at larger pion masses.

DOI: 10.1103/PhysRevLett.126.102002

Introduction.—While recent years have shown signifi-
cant progress in understanding the QCD resonance spec-
trum from first principles in lattice QCD [1], most
calculations are still performed at unphysically large pion
masses, requiring an extrapolation to the physical point to
make connection with experiment. Such extrapolations can
be controlled using effective field theories, i.e., chiral
perturbation theory (ChPT) [2–4] for observables that
allow for a perturbative expansion. By definition, this
precludes a direct application to resonances such as the
ρ meson in the P wave of ππ scattering. In fact, spectro-
scopy results from lattice QCD are arguably most advanced
for the ρ meson [5–20], with even calculations at the
physical point now available [20], which makes this
channel the ideal example to study the details of the pion
mass dependence. In addition, the ππ P wave features
prominently in a host of phenomenological applications,
among them hadronic vacuum polarization [21–26],
nucleon form factors [27–30], and the radiative process
γπ → ππ [31,32]. For the latter, a thorough understanding
of the ππ P wave is prerequisite for an analysis of the
pion mass dependence of recent lattice results [33–35],

see Ref. [36], and similarly for decays into three-pion final
states [37].
On the technical level, the failure to produce resonant

states is related to the fact that unitarity is only restored
perturbatively in ChPT, so that any description of reso-
nances requires a unitarization procedure. A widely used
approach known as the inverse-amplitude method (IAM)
achieves this unitarization by studying the unitarity relation
for the inverse amplitude [38–46]. In particular, in the case
of SU(2) ChPT the IAM procedure can be derived starting
from a dispersion relation in which the discontinuity of the
left-hand cut is approximated by its chiral expansion
[41,42]. While Adler zeros induce a modification for the
S waves [47], the naive derivation of the IAM survives for
the P-wave amplitude: writing the partial wave for ππ
scattering tðsÞ as

tðsÞ ¼ t2ðsÞ þ t4ðsÞ þ t6ðsÞ; ð1Þ

with the subscripts indicating the chiral order, the unita-
rized amplitude at next-to-leading order (NLO) becomes
[39–41]

tNLOðsÞ ¼
½t2ðsÞ�2

t2ðsÞ − t4ðsÞ
; ð2Þ

while at next-to-next-to-leading order (NNLO) [42,45]
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tNNLOðsÞ ¼
½t2ðsÞ�2

t2ðsÞ − t4ðsÞ þ ½t4ðsÞ�2=t2ðsÞ − t6ðsÞ
: ð3Þ

To assess the chiral expansion of the unitarized amplitude
beyond the first term, one thus needs the partial-wave
amplitudes at two-loop order [48].
The IAM has been applied to study resonance properties

at unphysical pion masses at one- and two-loop order as
early as in Refs. [49–52], with numerous subsequent works
confronting the IAM predictions with lattice data [53–57].
However, apart from Refs. [51,52] such studies have been
restricted to one-loop order, so that it was not possible to
scrutinize the convergence properties of the expansion in
the pion mass.
The reason for this situation was twofold. First, while the

one-loop amplitudes can be given in analytic form, sim-
ilarly compact expressions were not available for the two-
loop amplitudes, thus complicating their implementation
considerably. Second, as shown in Refs. [51,52], the
increased number of low-energy constants (LECs) renders
the fits more volatile, so that lattice data need to reach a
sufficient quality to allow for meaningful two-loop fits. In
this Letter we address both points: we present compact
analytic expressions for the two-loop amplitudes that are
straightforward to implement and devise a strategy for
stable two-loop fits to current lattice data. While expres-
sions are provided for all partial waves up to J ¼ 2, we
concentrate on the application to the ππ P wave, including
the resonance parameters of the ρ meson and its pole
residue.
Partial waves in ChPT.—We express the partial waves

tIJðsÞ, where I and J stand for the isospin and angular
momentum, respectively, in terms of the pion decay
constant in the chiral limit F as well as the pion mass
Mπ (including quark mass corrections from the LEC lr3), to
render the dependence on the physical pion mass
explicit and exclude a spurious mass dependence arising
from the transition F → Fπ [58]. We will follow the
conventions of Refs. [3,61] for the one-loop LECs lri
and the two-loop LECs rri . First, the leading-order (LO)
results are [62]

t00ðsÞj2 ¼
2s −M2

π

32πF2
; t20ðsÞj2 ¼ −

s − 2M2
π

32πF2
;

t11ðsÞj2 ¼
s − 4M2

π

96πF2
; tI2ðsÞj2 ¼ 0: ð4Þ

At NLO, the partial-wave amplitudes can be written in the
form [58]

Re tIJðsÞj4 ¼
X2

i¼0

bIJi ðsÞ½LðsÞ�i þ
X3

i¼1

bIJli ðsÞlri ; ð5Þ

in terms of

LðsÞ ¼ log
1þ σðsÞ
1 − σðsÞ ; σðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

s

r
; ð6Þ

and coefficient functions bIJi ðsÞ, bIJli ðsÞ, which apart from
phase-space and angular-momentum factors are poly-
nomials in s. We find that the NNLO expressions can
be brought into a very similar form,

Re tIJðsÞj6 ¼
X4

i¼0

cIJi ðsÞ½LðsÞ�i þ
X3

i¼1

cIJli ðsÞlri

þ dIlðsÞ
�X

n¼�
Li3½σnðsÞ� − LðsÞLi2½σ−ðsÞ�

�

þ cIJ
l2
3

ðsÞðlr3Þ2 þ PIJðsÞ; ð7Þ

where σ�ðsÞ ¼ 2σðsÞ=½σðsÞ � 1�, and in addition to
powers of LðsÞ, also polylogarithms Lin appear. The
contributions from the NNLO LECs are collected in
PIJðsÞ and the imaginary parts determined by perturbative
unitarity:

Im t4ðsÞ ¼ σðsÞ½t2ðsÞ�2; Im t6ðsÞ ¼ 2σðsÞt2ðsÞRe t4ðsÞ:
ð8Þ

Fits to lattice data.—From here on, we focus on the P
wave of ππ scattering, with both isospin I and angular
momentum J equal to one. Its phase δðsÞ ¼ arg½t11ðsÞ� can
be computed using lattice QCD via Lüscher’s quantization
condition [1,63], which allows one to determine the phase
shift given ππ energy levels and vice versa. To illustrate the
fitting strategy as well as the conclusions regarding the pion
mass dependence of δ and the ρ parameters, we analyze
such energy levels as computed on the lattice by two
different groups. First, the one from Ref. [17], based on
gauge configurations generated by the CLS collaboration,
accompanied by a determination of the pion decay constant
[64]. There are six datasets (ensembles) at five different
pion masses in the range 200 to 284 MeV. Second, we
consider the energy levels from the Hadron Spectrum
Collaboration [12,65], using one of their ensembles with
Mπ ≈ 236 MeV and two withMπ ≈ 391 MeV. Both lattice
calculations involve Nf ¼ 2þ 1 flavor simulations, but in
either case the changes compared to the physical kaon
mass, which determine the corrections to the LECs in two-
flavor ChPT [66,67], are negligibly small compared to
other sources of uncertainty. In the following, we concen-
trate mainly on the fit to the CLS data; details of the fitting
procedure and the fits to the Hadron Spectrum data are
given in Ref. [58]. To reduce the impact of scale-setting
uncertainties, i.e., the error that arises when determining the
lattice spacing in physical units, we work in lattice units
wherever possible.
The fit proceeds as follows. At NLO, Eq. (2) is used to

compute the phase δ, which is subsequently inserted into
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Lüscher’s quantization condition to determine the energy
levels. Their distance to the energies as computed on the
lattice is then minimized. Simultaneously, the pion decay
constant is fit, using the ChPT expression truncated at
NLO. In an NNLO fit, the same procedure is applied, with
Eq. (3) instead of Eq. (2), and the pion decay constant
truncated at NNLO. This means that at NLO only the LECs
lr2 − 2lr1 and l

r
4 appear, while the NNLO expressions depend

on lr1−4 as well as ra;b;c and rrF.
The minimization of the χ2 with respect to the fit

parameters—most importantly the LECs—requires a suf-
ficiently powerful algorithm. To find the global minimum,
we first employ the differential evolution algorithm [68],
whose results are subsequently refined via a modification
of Powell’s method [69]. The former algorithm allows one
to tackle the multidimensional, nonlinear optimization
problem at hand in both a robust and efficient manner,
if its parameters are adjusted carefully. Together with
the improved lattice data the choice and tuning of this
algorithm are crucial to obtain sound fits that are stable
even when ensembles at only a few different pion masses
are available, e.g., the two masses used by the Hadron
Spectrum Collaboration.
There are three sources of error that need to be

considered for a reliable uncertainty estimate: first, the
statistical error of the lattice data; second, the error of the
lattice spacing, which enters the ChPT expressions indi-
rectly via the renormalization scale μ [58]; third, the error
that arises as a result of the truncation of the chiral
expansion (1), which we are able to study in detail by a
comparison of the IAM at one- and two-loop order. The
chiral expansion proceeds in s=M2

ρ as well as α ¼ M2
π=M2

ρ,
with the breakdown scale expected to be set by the ρ mass
since it is the lowest-lying resonance in the partial wave of
interest. The energy dependence is resummed by the
unitarization via the IAM, leaving the expansion in the
pion mass as the most critical variable. Following Ref. [70],
we estimate the truncation error of an observable X as

ΔXNLO ¼ αXNLO;

ΔXNNLO ¼ max fα2XNLO; αjXNLO − XNNLOjg: ð9Þ

Results.—To fix the LECs it is necessary to control both
the s dependence and the mass dependence. Hence, we fit all

CLS ensembles from Ref. [17] simultaneously, once work-
ing to NLO and once working to NNLO, excluding only the
ensemble N401 from the fit, since its pion decay constant has
not been determined in Ref. [64]. To render the NNLO fit
stable, it is necessary to put a constraint on the LEC lr3. This
parameter governs the relation between the pion mass Mπ

and its valueM at LO in ChPT, information on which is not
included in our fit. Thus we add a penalty term to the
χ2 that favors values of lr3 around its reference value
0.8ð3.8Þ × 10−3 [71]. The LECs obtained at NLO are given
in Table I, and the NNLO ones in Table II.
Since the amplitudes as given in Eqs. (2) and (3) have the

appropriate analytic structure, they can be continued
analytically to the second Riemann sheet, where the pole
associated with the ρ resonance is located. Extracting
the mass Mρ and width Γρ from the pole position sp via
sp ¼ ðMρ − iΓρ=2Þ2 and the coupling g of ρ to ππ from the
residue r via g2 ¼ 48πr=ð4M2

π − spÞ yields the values
shown in Table III. Also shown are the goodness of the
fit as well as the obtained value of F, the pion decay
constant in the chiral limit. The corresponding phase is
depicted in Fig. 1. Here and in the following, the physical

TABLE I. NLO LECs obtained from a fit to the CLS ensembles
(evaluated at μ ¼ 0.77 GeV). The first error is the statistical one,
while the second arises due to the error of the lattice spacing. For
comparison, in the second column the values expected from ChPT
analyses are given, while the third column contains the values
extracted from Nf ¼ 2þ 1 lattice QCD computations [72–77].

Fit Ref. [71] Ref. [72]

ðlr2 − 2lr1Þ × 103 12.62ð25Þð0Þ 9.9(1.3) 19(17)
lr4 × 103 −2.6ð1.1Þð0.2Þ 6.2(1.3) 3.8(2.8)

TABLE II. The same as Table I, but at NNLO. For the NNLO
LECs we show the estimates from resonance saturation for
comparison [78,79], although the uncertainties especially in
ra;b are substantial and difficult to quantify.

Fit Ref. [71] Refs. [78,79]

lr1 × 103 −6.1ð1.8Þð0.1Þ −4.03ð63Þ
lr2 × 103 2.58ð90Þð7Þ 1.87ð21Þ
lr3 × 103 0.776ð65Þð4Þ 0.8ð3.8Þ
lr4 × 103 −33ð13Þð0Þ 6.2ð1.3Þ
ra × 106 28ð12Þð1Þ 13
rb × 106 −4.8ð2.6Þð0.2Þ −9.0
rc × 106 2.1ð1.3Þð0.1Þ 1.1
rrF × 103 2.7ð1.2Þð0Þ 0

TABLE III. Results of NLO and NNLO fits to the CLS data,
including the goodness of the fit, the properties of the ρ resonance
at the physical point, as well as the decay constant in the chiral
limit. The first error is the statistical one, the second stems from
the lattice spacing, the third is the truncation error estimated via
Eq. (9). The Bayesian information criterion (BIC) is defined in
terms of the number of fit parameters jF j and the number of data
points N as BIC ¼ χ2 þ jF j logN.

NLO NNLO

χ2=d:o:f. 216=ð122 − 9Þ ¼ 1.91 165=ð123 − 15Þ ¼ 1.53
BIC 259 237
Mρ=MeV 761.4(5.1)(0.3)(24.7) 750(12)(1)(1)
Γρ=MeV 150.9(4.4)(0.1)(4.9) 129(12)(1)(1)
Re g 5.994(54)(0)(194) 5.71(23)(2)(1)
−Im g 0.731(21)(0)(24) 0.46(14)(2)(1)
F=MeV 88.27(0.23)(0.04)(2.86) 93.7(2.3)(0.1)(0.2)

PHYSICAL REVIEW LETTERS 126, 102002 (2021)

102002-3



point is simply defined by the Particle Data Group (PDG)
value of the charged pion mass, Mπ ¼ 139.57MeV [80],
and F is computed using the PDG value of Fπ as input.
Because of the unitarization via the IAM, the LECs are

expected to deviate to some extent from the ChPT reference
values [41–44]. Accordingly, all LECs agree well with
expectations, apart from a large discrepancy in lr4 both at
NLO and NNLO. To understand its origin, we performed
an NLO fit to the pion decay constant alone (at NNLO
the fit becomes underconstrained), leading to lr4 ¼
1.3ð1.0Þ × 10−3, in agreement with the Flavour Lattice
Averaging Group, but already in tension with phenomenol-
ogy. The remainder of the pull displayed in Table I originates
from the ππ data. This pull becomes exacerbated at NNLO,
but as indicated by the large uncertainties the sensitivity to lr4
is limited. Indeed, we observe only a moderate increase of
the χ2 if literature values of lr4 are enforced, as well as a large
change to lr4 ¼ −16 × 10−3 when employing a different
strategy for the scale setting [17]. We conclude that there is

FIG. 1. The phase at physical pion mass as extrapolated from
global fits to the CLS data; see Fig. 2 for color scheme. For
comparison, in black the result of the dispersive analysis [22].
The extrapolation is performed at fixed E ¼ ffiffiffi

s
p

, but a trajectory
defined by fixed momentum instead would yield identical results.

FIG. 2. The pion mass dependence of the decay constant, the coupling, as well as the real and imaginary part of the ρ pole as determined
via fits to the CLS data, with error bands corresponding to (in order of decreasing color saturation) the data error (statistical plus spacing),
the truncation error, and the total one. The dashed lines mark the physical pion mass. The decay constant is given in units of F to reduce the
impact of the scale setting. Since the NLO and NNLO fits yield different values of F, their physical points in these units differ. Also shown
as black ranges are reference values, the ρ characteristics taken from Ref. [82], and the decay constant from Refs. [72–77,80].
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a tension between the pion decay constant in the chiral limit
and ρ parameters, which at least in part may be related to
scale-setting uncertainties [58].
In general, we note that the χ2=d:o:f: improves signifi-

cantly when going from NLO to NNLO, although a
statistically fully acceptable fit would require a more detailed
understanding of lattice artifacts. Moreover, in the terms
defined in Ref. [81], ΔBIC ¼ 22 provides very strong
evidence for the NNLO over the NLO IAM. Comparing
the obtained ρ characteristics with the ones from Roy-
like equations [82]—namely, Mρ ¼ 763.7þ1.7

−1.5 MeV, Γρ ¼
146.4þ2.0

−2.2 MeV, and g ¼ 5.98þ0.04
−0.07 þ ið−0.56Þþ0.10

−0.07—shows
that both the NLO and NNLO results are compatible with
these already within statistical errors, with a 1.4σ discrepancy
in the width at NNLO and a 2.2σ tension in Im g at NLO.
However, only the NLO value of F is compatible with the
literature value F ¼ 86.89ð58Þ MeV, which is obtained by
combining the PDG value of Fπ [80] with the Flavour Lattice
Averaging Group Nf ¼ 2þ 1 average of Fπ=F [72–77].
Our main results are shown in Figs. 1 and 2, for the pion

mass dependence of the phase shift, the decay constant, and
the ρ resonance parameters. Most notably, the two-loop
analysis allows us to improve the precision considerably
when going beyond the physical point, once the truncation
becomes the dominant source of error. Second, with error
bands produced assuming a breakdown scale of Mρ, the
NLO and NNLO bands mostly overlap, which indicates
that the true breakdown scale of the theory may lie below
the ρ mass, but not by much.
Overall, the coupling shows a very mild mass dependence

[49,51], as does the ρ mass. Toward the end of the fit range,
the central value of the two-loop curve seems to decrease, in
disagreement with the phenomenological expectation from
both the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin
relation [83,84] and the expected ordinary qq̄ nature of
the ρ meson [85]. This may again, in addition to the χ2

and the tension in lr4, point to the impact of lattice artifacts,
which the two-loop IAM becomes flexible enough to mimic.
Similar conclusions can be drawn from the fits to the data

by the Hadron Spectrum Collaboration [58]. They also
show a significant improvement of the χ2 when going from
NLO to NNLO and a pion mass dependence that mimics
the one depicted in Fig. 2, with the difference that Mρ

does not decrease at high pion masses, providing further
evidence that this decrease may arise due to lattice artifacts.
Notably, for the Hadron Spectrum data the ρ properties at
the physical point are closer to the literature values at NLO
than at NNLO.
Conclusions.—In this work we have presented compact

analytic expressions for the two-loop partial-wave ampli-
tudes for ππ scattering up to D waves, with a first
application to an analysis of lattice data for the P-wave
amplitude and the ρ parameters. We have shown that two-
loop fits do improve the fit quality and, by comparing NLO
and NNLO results, found that the breakdown scale of the

chiral expansion should not lie much below the expected
scale set by the ρ mass. However, we also concluded that
the current datasets cannot be described in a statistically
satisfactory way, with a more detailed understanding of the
lattice data required.
In the future, anticipated improvements in the precision of

lattice QCD calculations will increase the need to match that
precision in the analysis. In this work, we have demonstrated
how to achieve two-loop precision in practice, using the
example of thePwave, but once lattice calculations mature a
similar analysis can be performed for other partial waves
including the pion mass dependence of the f0ð500Þ. Even
once datasets at the physical point become available, the
IAM will thus provide a tool for a high-precision analysis of
lattice data.
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