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A B S T R A C T   

The knowledge about potential flood damage is a key issue for disaster risk reduction. However, the scarcity of 
empirical data has limited flood damage modeling in several regions. As a result, studies in data-scarce regions 
have mostly been restricted to either building exposure assessment or identification of vulnerability indicators 
without a further linkage to probable damage. As expert-based approaches do not require empirical damage data, 
they have a high potential for flood damage modeling in data-scarce regions. In this study, we carried out a 
comparative assessment between an expert-based and a data-driven approach. The expert-based approach sys
tematically combines the vulnerability indicator method and synthetic what-if analysis based on the knowledge 
of regional experts. The data-driven approach integrates empirical flood damage data in the analysis applying a 
multivariate random forest model. Flood damage data, collected through interviews after two flood events in 
2017 and 2019 at separate locations in Nigeria, were used to evaluate the performance of both methods based on 
developed damage grades. Results from both methods showed i) a predictive accuracy of 30% and 38% for the 
expert-based and data-driven approaches respectively, ii) that distance to channel, wall material, building 
condition, and building quality are significant regional damage drivers, and iii) comparable model performance 
can be achieved even with a reduced number of variables. Furthermore, the study demonstrated how experts are 
likely to underestimate damage at low water depths and how a difference in conformity to building standards can 
add to challenges in flood damage prediction.   

1. Introduction 

Globally, flood disasters continue to give cause for growing concern. 
The increase in frequencies and severity of flood events likely driven by 
climate change [1] and changing exposure [2,3] has resulted in 
considerable human and economic losses [4]. The occurrence of flood 
events in vulnerable communities is even more critical due to low coping 
and adaptive capacities. Vulnerability relates to conditions that make 
communities prone or susceptible to disasters [5]. Large scale building 
damage caused by floods from Cyclones Idai and Kenneth in several 
regions in the southern part of Africa [6] further underlines the need to 
facilitate efforts for physical vulnerability assessment in vulnerable re
gions, which are mostly data-scarce [7]. For example, in the last decade, 
the observed increase in frequency and intensity of climate extremes in 

Africa [1,6] has consequently resulted in an increased number of fatal
ities and affected people [6]: a trend that is expected to continue given 
the impacts of climate change and the socio-economic development [1]. 
Flood hazards, in particular, accounted for over 64% of all 1164 hazard 
events recorded between 2000 and 2019 in Africa [6]. Despite huge 
losses to floods, studies on flood vulnerability for common building 
types typical in many African countries remain under-investigated. For 
example, while sandcrete block and clay buildings make up a high 
percentage of buildings in Africa [8], studies on their vulnerability to 
floods and damage patterns remain largely unknown [9]. Generally, 
studies within these regions have been limited to flood exposure 
assessment of the built environment (e.g. Refs. [10–13]) using globally 
available satellite date or identification of vulnerability indicators 
through literature reviews (e.g. Refs. [14,15]) without further relating 
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indicators with expected building damage. 
In Nigeria, floods have become a yearly event with huge human and 

economic losses [9]. In 2012, Nigeria experienced one of the worst 
flooding on record with 28 out of the 36 states being affected [16]. The 
2012 floods resulted in 364 fatalities, and over 3.8 million displaced 
people across the country [16]. An assessment of the 12 most-affected 
states from the 2012 flood showed that over 1.3 million houses were 
fully or partially destroyed with an estimated monetary value exceeding 
6.8 billion USD [16]. The 2012 Nigerian flooding further exposed the 
considerable physical vulnerability of buildings and a stronger need for 
increased efforts in risk reduction targeted on the built environment in 
Nigeria. Such disaster risk reduction efforts are required even more ur
gently given observed trends in extreme events resulting from climate 
change and the current increase in population in exposed regions within 
the country [6]. 

Physical vulnerability assessment methods, such as flood damage 
models (stage-damage curves, multivariate models) and vulnerability 
indicators, explore the relationship between flood damage and corre
sponding damage influencing variables [17]. As a result, physical 
vulnerability assessment provides an important basis for physical resil
ience assessment and mitigation planning [18], evaluating economic 
losses [19], and cost-benefit analysis, which supports resource alloca
tion for hazard protection [20,21]. In general, such efforts tailored to 
understanding and reducing vulnerability are considered important 
steps for disaster risk reduction [21]. Flood damage models either show 
the relationship between flood damage (or monetary loss) and water 
depth (referred to as stage-damage curves) or include other additional 
variables (referred to as multivariate models). While stage-damage 
curves use a continuous curve to relate water depth and damage state 
[22,23], multivariate models, which are commonly derived using 
empirical data, use different statistical approaches such as Bayesian 
network [24], regression and ensembles of bagged decision trees [25] or 
logistic regression [26]. Studies have shown that multivariate flood 
damage models have better prediction accuracy in terms of model 
transferability both spatially (between different regions) and tempo
rarily (between different flood events) [27], and better explain the 
variance in damage data [28] compared to stage-damage curves that use 
only water depths. While most flood damage models are developed 
using empirical loss data (see Refs. [29–32]), scarcity of such data, 
especially in developing countries, has hindered the application of 
multivariate models, consequently resulting limiting the application of 
appropriate risk reduction strategies in such regions [33,34]. Although, 
synthetic stage-damage curves, developed using expert what-if analysis 
(for example [35–37]) provide a provisional alternative to empirical 
data, uncertainties related to damage prediction persist, especially as a 
consequence of using a single variable to predict flood damage (for 
further details, see Refs. [22,25,27,28,38]). 

Recently, Englhardt et al. [34] presented one of the first studies that 
relate building vulnerability and absolute damage values for different 
building types within an urban and rural setting in Ethiopia. The study, 
which aims at large scale building damage assessment, uses a 15′′ X 15” 
grid resolution database of building inventory from imageCAT 
(http://www.imagecatinc.com/) to reclassify buildings into vulnera
bility classes before applying stage-damage curves to estimate absolute 
damage using hazard maps with different return periods. The study by 
Englhardt et al. [34] represents an important step for understanding 
building vulnerability and damage assessment for selected building 
types in Africa. However, a limitation of the study by Englhardt et al. 
[34] is that out of 23 studies considered as a basis for generating the 
stage-damage curve, only two were from regions with comparable 
building types similar to those in many African countries. Such regional 
differences in building characteristics have been pointed to limit model 
transferability [17,39]. 

A combination of physical vulnerability methods was recommended 
by several studies [17,22,40] to systematically balance data-scarcity and 
model uncertainty. Recently, a method tailored to flood damage 

prediction in data-scarce regions was proposed [7]. This method is fully 
expert-based and relies on the deduction that buildings within the same 
resistance (vulnerability) class will incur comparable damage when 
impacted by the same level of hazard [39,41,42]. The method classifies 
buildings using an index generated from the vulnerability indicator 
approach (see Ref. [43]) and then implements a what-if analysis adapted 
for specific building vulnerability classes. The integration of the 
vulnerability indicator method allows the consideration of multiple 
damage influencing variables similar to the multivariate approach. 
Damage is assessed using damage grades that represent repeatedly 
observed damage patterns within a region [39] since they: i) allow 
temporal and spatial comparison of impacts between different regions 
more easily [44], ii) improve transferability of flood damage models 
[45], and iii) are comparable for similar building types [39]. 

In this paper, we implement and evaluate the performance of i) an 
expert-based flood damage model [7], and ii) a multivariate data-driven 
model using random forests. This paper aims to: i) assess the prediction 
accuracy of a fully expert-based model, ii) comparatively assess the 
expert-based and data-driven method, and iii) gain insights on main 
regional damage drivers typical for Nigeria. Both the expert-based and 
data-driven methods are evaluated using flood damage data collected 
from two separate study regions and flood events in Nigeria. This study 
provides one of the first attempts at using flood damage data for typical 
building types in Nigeria. The study demonstrates the potential of using 
expert-based methods for flood damage prediction in data-scarce areas 
and provides recommendations for improved performance. 

2. Study regions and flood events 

Two study regions are used for this study. Both are located in the 
north-central (study region 1) and north-eastern (study region 2) parts of 
Nigeria (Fig. 1). Although the regions are about 500 km apart, they share 
similar climatic characteristics typical of a guinea savannah with 
distinct dry and wet season [46,47]. Both regions are predominated by 
low-lying areas and small river channels. A light gray canvas base map 
provided by ESRI [48] is used to show the location of inspected buildings 
and river channels in both study regions. 

Study region 1 is located between Suleja and Tafa in Niger State, 
Nigeria (Fig. 1 A). Located about 30 km north-west of the capital Abuja, 
the population in Suleja and Tafa is around 215,000 and 83,000 
respectively [49]. The area has several river reaches passing through the 
settlement. Although some studies identified the region as 
non-vulnerable to floods based on terrain analysis (see Refs. [12,50]), 
recently, high-magnitude events occurred. Heavy rainfall was reported 
on 8 and June 9, 2017 resulting in severe flooding of settlements located 
in the area. The floodplains of all five river reaches were flooded (see 
Fig. 1). Several hundred people were affected and 18 fatalities claimed 
as well as substantial damage to hundreds of residential buildings and 
infrastructural facilities were reported. Losses from the flood event were 
mostly attributed to buildings constructed very close to the river chan
nels and blockage of drainages as a result of transported material [13]. 
Google Earth satellite images from June 2016 (prior to the flood event) 
[51] show that the area is dominated by dense settlements and sparse 
grassland vegetation. 

Study region 2 is located in Wuro-Jebbe in Yola-north, Adamawa 
State, Nigeria (Fig. 1 B). The population of Yola-north is 198,000 [49]. 
Wuro-Jebbe is about 4 km from River Benue, which is the second major 
rivers in Nigeria (see inset map, Fig. 1). The region is characterized by 
scattered grassland vegetation and a single river channel that passes 
through the settlements and flows downstream into river Benue (Fig. 1 
B). High-intensity rainfall on August 1, 2019 resulted in the flooding of 
many regions in Yola-north [52]. Available reports compiled for all 
affected areas showed that 15 persons were reported to have died from 
the flood and 5000 persons were displaced [52]. Within the selected 
study region (Wurro-Jebbe), hundreds of houses were reported to have 
been damaged as a result of the flood. Locals in Wurro-Jebbe reported 
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that the rainfall lasted for about 5 h (between 12:00 and 17:00) and 
resulted in high flow velocities. Google Earth satellite image [51], taken 
in April 2019, shows that buildings are relatively sparse and very likely a 
more recent settlement compared to study region 1. 

3. Methods 

This study uses a combination of flood damage data from field in
terviews, expert interviews, and statistical analysis to gain insights into 
regional drivers and how they contribute to model performance. In this 
section, an overview on damage drivers and damage grades are first 
provided. Thereafter, data collection, pre-processing and analysis are 
further elaborated. Fig. 2 shows a detailed flow chart consisting of all 
components of the procedure adopted for model development. 

3.1. Damage drivers 

A general categorization of damage drivers into i) impact (or action), 
and ii) resistance variables, as proposed by several studies (see Refs. 
[53–55]) was adopted as shown in Table 1. A combination of literature 
review and expert knowledge was used to deduce damage drivers for the 
case study regions. The definition of all variables in Table 1 is presented 

in the Appendix. Action variables are related to flood hazard charac
teristics such as flood depth. Resistance variables relate to building and 
exposure characteristics that influence the degree of hazard impact on a 
building. In this study, we further categorized resistance variables into 
susceptibility, local protection, and exposure variables [7] (Table 1). 
Susceptibility relates to the inherent structural characteristics of a 
building without considering the measure for flood protection. Local 
protection variables refer to features of a building that directly or 
indirectly served to reduce the impacts of the flood. Local protection 
includes additional building features that are not necessarily required 
for the functionality (or stability) of a building but helps to reduce flood 
impact [56]. Exposure variables relate to the characteristics of the nat
ural or built environment that can reduce or exacerbate the impact of 
floods on a building. 

3.2. Damage grades 

All observed damage patterns were systematically classified using an 
ordinal interval into a six-class damage grade based on an increasing 
level of severity (Table 2). The damage grades were adapted after 
Schwarz and Maiwald [57] with some modifications tailored for 
regional building characteristics. A pictorial representation of each 

Fig. 1. (A, B) Inset maps showing the location of Nigeria, (C) Study region 1, and (D) study region 2. A base map (global light gray canvas satellite image) provided 
by ESRI [48] is used to show the location of inspected buildings and river channels. 
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damage pattern, compiled using literature review and assessment of 
flood damage data from past events, is presented in Table 2. Damage 
grade class 1 represents moisture defects or non-structural (only on 
finishes or plaster) cracks resulting from short or moderate contact with 
water. Moisture defects are associated with dampness and a weakening 
of surface material (finishes) (Table 2). Damage grade class 2 indicates 
de-bonding or peeling-off (falling away) of building finishes (Table 2) 
resulting from an extensive weakening of the surface material which can 
be caused by prolonged inundation. While damage grade class 3 rep
resents light structural cracks, damage grade class 4 represents severe 
cracks on the building (Table 2). Both damage grade class 3 and 4 are 
structural cracks, hence, extend beyond the finishes and occur on the 
main building material. Damage grade classes 3 and 4 can occur verti
cally (resulting from movement of the soil), or horizontally, resulting 
from differential water pressure. In addition to severe structural cracks, 
damage grade class 4 includes damage to the ground flood material, 
which can occur due to compaction problems from the foundation or soil 
layer underneath (Table 2). Damage grade class 5 represents a partial 
collapse of the building usually resulting from overstress or increased 

weakness of the building. Usually, damage classified as 5 includes a 
collapse of less than or about one-third of the entire building (Table 2). 
Damage grade class 6 represents the collapse of the entire building or 
more than two-thirds of the structure. 

3.3. Data collection 

Field data collection consisted of a house-to-house interview using 
structured questionnaires. Before the data collection, preliminary as
sessments of the study regions and flood events using media reports, 
photos, and videos from different sources was carried out. Information 
gathered from preliminary assessments were used to locate and map 
affected areas using Google Earth satellite images. A sampling of 
buildings for interviews was limited to i) houses affected by the floods, 
and ii) availability of household owners (or a community representa
tive) to provide the required information. Questionnaires were devel
oped such that interview questions covered i) building and exposure 
characteristics, ii) flood characteristics, and iii) damage sustained and/ 
or repairs done after the flood (see supplementary 1 (S1), questionnaire 

Fig. 2. Flow chart of model development.  
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Table 1 
Summary of damage influencing parameters.  

Category Sub-category Variable Sub-variable Abbreviation 

Action variables  Flood depth wat_hei 
Resistance variables Susceptibility variables (s) Construction material Wall material wall_mat 

Wall thickness wall_thic 
Building condition buil_con 
Building quality buil_qua 
Height of opening hei_open 
Building footprint buil_footprint 

Local protection variables (l) Wall Finishes/cover Wall plaster material wallplas_mat 
Extent wall plaster wallplas_ext 

Fencing Fencing material fenc_mat 
Extent of fencing fenc_ext 

Ground floor elevation grofloor_ele 
Exposure 
Variables (e) 

Distance to channel  dis_chan 
Functional drainage  drainage 
Natural barriers  nat_barr 
Sheltering  shelt  

Table 2 
Damage grades for buildings in Nigeria (modified after Schwarz and Maiwald [57]).  

Class Description Example 

6 Collapse 
Complete collapse of the entire building or more than 2/3 of the building  

5 Very Heavy 
Partial collapse of building element  

4 Heavy 
Heavy structural cracks on building elements (walls, floors, beams, Columns) 
Settlement of ground floor material  

3 Moderate 
Slight to moderate cracks on building elements (walls, floors, beams, Columns)  

2 Slight 
De-bonding and (or) peeling-off of building finishes  

1 Negligible 
Water contact 
Moisture defects 
Surface cracks on floor or wall finishes  
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1). Flood depths were either measured directly (where flood marks exist) 
or based on personal recollections from residents. A Garmin etrex 2000 
handheld GPS device was used to track spatial location (longitude, 
latitude, and elevation above sea level) to allow for georeferencing of 
each inspected building (Fig. 1). Exposure variables such as distance to 
the river channel and sheltering were extracted (or supported) by in
formation from Google Earth satellite maps. In study region 1, data 
collection was carried out between 1 March – May 31, 2018 (three 
months), i.e eight months after the flood event. In study region 2, the 
data collection started three months after the flood event and was 
conducted between 7 December – January 15, 2019 (approx. 1 month). 

Observations from the field show that both study regions share a 
comparable building, floodplain, and channel characteristics. Buildings 
in both regions are predominantly one-story constructed from either 
sandcrete block, clay, or a mixture of both sandcrete and clay material. 
The river channels in both regions are semi-natural and shallow with 
channel bed elevation mostly between 0.5 m and 1.5 m. In both regions, 
the cross-sectional width of the river channels highly varies between 4 m 
and 18 m. Typical for guinea savannah, the rivers are dry in the dry 
season and surface run-off begins at the start of the rainy season (around 
April). 

Damage data was documented using a questionnaire (c.f. S1, ques
tionnaire 1) based on i) visual observations of damage (where the repair 
was not yet carried out), or ii) deduced from visual observations of re
pairs that were already carried out. Where new patterns were observed, 
which were not included in the preliminary damage list, an update is 
made. For example, ground floor settlement was included based on 
observations after the data collection in study region 1. Documented 
damage was specifically related to the building structure itself and not 
for external components such as fencing walls. 

3.4. Data pre-processing and analysis 

The overall data set consists of observations from study regions 1 and 
2. Prior to using the data for analysis, few pre-processing steps were 
taken. Firstly, to maintain a consistent range across all variables (rec
ommended in Ref. [59]), we implement a variable level (scaling) as 
shown in Table 3. A variable level is a form of internal weighting for 
sub-variables whereby low or high scores are assigned based on deduced 
influence on building vulnerability to floods [26,59,60]. In this study, a 
combination of literature review and author expert knowledge were 
used to assign variable levels using a score range between 1 and 6. The 
variable level is implemented in such a way that sub-variables, which 
are indicative of high vulnerability were given lower scores and 
sub-variables indicative of lower vulnerability are given higher scores 
(see Table 3). Secondly, a data reorganization was carried out which 
involves merging damage grade classes 1 and 2 (Class 1 + 2), as well as 

classes 5 and 6 (Class 5 + 6), while damage grade classes 3 and 4 are 
maintained as observed on the field. Merging damage grade classes were 
necessary given the low number of observations in each of the merged 
classes and low variation in explanatory variables between these 
neighbouring classes. In addition, merging the initial six-factor levels 
into just four levels facilitated model training, as this resulted in an 
almost perfectly balanced data set, thereby limiting bias of the 
data-driven model toward damage grade classes with higher observa
tions. Merging the damage classes was also warranted from a contextual 
point of view, as they exhibit very similar damage patterns: Damage 
classes 1 and 2 represent minor damage including moisture defects or 
damage to wall finishes, and damage classes 5 and 6 represent severe 
damage including the partial or complete collapse of the building. 

Furthermore, we carried out an Exploratory Data Analysis (EDA) to 
better understand the distribution of the data and empirical relation
ships between observed variables. Given that the scale of measurement 
of most variables is categorical, Spearman’s ρ rank correlation coeffi
cient was computed for all variables using a variable scale based on 
Table 3. 

For the data analysis, two approaches were used: i) all observations 
were considered together and model training/validation/testing was 
performed on the full data set, and ii) the full data set was stratified by 
study region, using one subset for training/validation and the second 
subset for testing to check transferability from one case study to another. 
The combination of data from study regions 1 and 2 was plausible given 
the highlighted similarity in (i) channel and flood plain geomorphology 
(sec. 2 and 3.1), and (ii) reported inundation sequence in both regions. 
Combining data from both study regions is beneficial since it alleviates 
the problem of overfitting a single event [45]. Two methods were used 
to analyze the data sets: an expert-based and a data-driven approach. A 
confusion matrix was used to enable a systematic comparison between 
predicted and observed damage grades: it enables a simple visualization 
for the categorical response variable whereby the diagonal of the matrix 
represents correct predictions. Finally, from the confusion matrix, the 
predictive accuracy is computed as the ratio between the number of 
correct predictions and the total number of predictions (total number of 
buildings) such that a predictive accuracy of 1 represents 100% correct 
predictions. The predictive accuracy used in this study is very conser
vative such that only correctly predicted damage classes are considered 
for computing model accuracy. 

3.4.1. Expert-based method 
The expert-based method was based on three phases used to develop 

the model including i) development of vulnerability index, ii) develop
ment of damage grade, and iii) synthetic what-if analysis [7]. Experts 
selected to participate in the study were chosen based on their back
ground in the area of building vulnerability to floods in Nigeria. Selected 

Table 3 
Building resistance variables with corresponding variable levels as defined for this study.  

Variable Variable levels (y) 

6 5 4 3 2 1 

Wall material (s1) Sandcrete  Mixed  Clay  
Wall thickness (s2) 22.5   15   
Building condition (s3) 3.5–4 (Very good) 2.6–3.5 (good)  1.6–2.5 (moderate)  1–1.5 (poor) 
Building quality (s4) 2.6–3 (Very good) 2.1–2.5 (good)  1.6–2 (moderate)  1–1.5 (poor) 
Height of opening (cm) (s5) above 120  81–120   0–80 
Building footprint (s6) rectangle L-shape  Irregular   
Wall plaster material (l1) Cement/sand   Clay  None 
Extent wall plaster (l2) complete   Partial  None 
Fencing material (l3) Sandcrete Clay or mixture of sandcrete and clay   Zinc/thatched none 
Extent of fencing (l4) complete   Partial  none 
ground floor elevation (cm) (l5) 81–100 61–80 41–60 21–40 5–20 0 
Distance to channel (m) (e1) above 60  41–60 21–40  0–20 
Functional channel (e2) yes   no   
Natural barriers (e3) yes   no   
Sheltering (e4) direct   Partial  none  
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experts were also from different geographical regions of the country 
(northeast, north-central, and south-west), and disciplines (such as ge
ography, building or civil engineering, and environmental studies) so 
that evaluations received are representative from different expert com
munities within Nigeria. 

In phase 1, the selection, weighting, and aggregation of indicators to 
form an index were carried out. Firstly, a literature review was used to 
provide a preliminary list of vulnerability indicators for Nigeria. 
Thereafter, we develop a questionnaire in which experts were requested 
to comment on the preliminary selected indicators and suggest other 
indicators that were not included. A second questionnaire was devel
oped using a compiled list of indicators from different experts for indi
cator weighting (S1, questionnaire 2). Both the indicator selection and 
weighting was carried out by seven experts. A table of influence was 
provided (Table 4), containing a scale of influence, to maintain consis
tent weighting across different experts. Experts were requested to assign 
a weight for each indicator (variable) and indicator category: the weight 
is a quantitative value that represents the extent an indicator influences 
flood damage based on definitions from Table 4 adapted after Saaty 
[58]. Mean expert weights were calculated and a threshold of weight 3 
(moderate influence), representing the first quartile of the influence 
indicator weighting scale (c.f. Table 4) was chosen to enable a final in
dicator selection for aggregation. A lower threshold value was not 
suitable given that it would result in selecting variables that on average 
were either having only slight (for a threshold of 1) or slight to moderate 
(for a threshold of 2) influence on vulnerability. Indicator aggregation 
was carried out using a simple weighted additive method (equation (1)) 
to form a building resistance index (BRI). The BRI sums the product 
between the weight of each variable and the variable levels (Table 3) for 
all exposure (ei, yi), susceptibility (sj, yj), and local protection (lk, yk) 
variables. Mean weights of variables representing exposure (ei), sus
ceptibility (si) and local protection (li) are shown deduced from expert 
interview. Corresponding variable levels (ranging between 1 and 6 on 
Table 3) are represented by yi, yj, and yk for variables belonging to 
exposure, susceptibility and local protection respectively. Each variable 
category (exposure, susceptibility and local protection) is divided by the 
number of variables (n, p, k) (equation (1)) so that results are not biased 
towards categories with higher number of variables. Lastly, each vari
able category is multiplied by the corresponding weights (Exposureweight, 
Susceptibiltyweight, Local protectionweight) (equation (1)). The BRI measures 
the resistance to flooding that a building can offer given its suscepti
bility, local protection, and exposure. A maximum-minimum normali
zation (see Ref. [59]) was implemented to confine the upper and lower 
bounds of the BRI between 0 and 100 (equation (2)). The 
maximum-minimum normalization uses the BRI calculated from equa
tion (1) and a minimum and maximum BRI (BRImin, BRImax) values 
which are computed using the minimum variable level (ymin) and 
maximum variable level (ymax) for all variables. The formulae for 
calculating the BRImin, BRImax are shown in the appendix in equations A4 
and A5 respectively. Using a quartile classification, the normalized BRI 
values (BRInorm) are classified into buildings with poor (low), moderate 
(average) and good (high) resistance to floods. 

BRI =
Exposureweight

n
∑n

i=1
(eiyi) +

Susceptibilityweight

p
∑p

j=1

(
sjyj

)

+
Local protectionweight

r

∑r

k=1
(lkyk) (1)  

BRInorm = 100
(

BRI − BRImin

BRImax − BRImin

)

(2) 

Phase 2 relies on the classification of commonly observed damage 
patterns into damage grades. Building damage patterns used in this 
study (sec. 3.2.1) were developed from a combination of literature re
view, building damage reports, and evaluation of field data. Additional 
details on damage grades are given in section 3.2.2 and Table 3. 

In phase 3, a synthetic what-if analysis for the three BRI classes was 
carried out. For selected representative buildings in each BRI class, 
seven experts were asked to predict expected building damage patterns 
using synthetic flood depths 1–5 m at 1 m intervals (see S1, question
naire 3). For each flood depth interval, experts predicted three damage 
states; i) Low Probable Damage (LPD), ii) Most Probable Damage (MPD), 
and iii) High Probable Damage (HPD). While the LPD and HPD define 
the lowest and highest likely damage expected, the MPD defines the 
most likely damage. Predicted damage from different experts was used 
to compute a single mean damage grade class per flood depth interval 
for each BRI class. The mean damage grade represents an average ex
pected damage given a vulnerability class (BRI class) and specific water 
depth interval [57]. A Bayesian ordered logistic regression model [61] 
was used to fit mean damage grades to water depth. The model fit was 
implemented by leveraging the ‘arm’ package in R. Specifically, the 
function ‘bayespolr’ was used, employing a logistic link function to 
assign class probabilities for each damage grade through a maximum 
likelihood approach. Resulting damage grade probabilities for synthetic 
water depth intervals represent damage curves for the three damage 
states MPD, LPD, and HPD for all BRI classes. 

A model performance check was carried out using the MPD curves 
given that they define the most likely damage expected. The MPD curves 
for each BRI class is used to predict damage grade class for the full data 
set (combined data from study regions 1 and 2). Damage grade with the 
highest probability is assigned as the predicted class for the building. 
Separate confusion matrices were generated the three BRI classes, which 
were later merged using a matrix addition to generate one confusion 
matrix. 

3.4.2. Data-driven method 
The data-driven approach is based on ensembles of random forest 

models [62] carried out on the full data set (combined from study re
gions 1 and 2). To obtain robust models and unbiased estimates of model 
generalization performance, a modeling strategy featuring repeated 
nested resampling was pursued. Since honest model quality assessment 
is only possible if all elements of model building are included in the 
resampling procedure, models that require hyperparameter optimiza
tion necessitate two nested resampling loops. The outer resampling, 
which provides information for model performance assessment, was 
realized by means of five-fold cross-validation. In the inner resampling, 
which is targeted at hyperparameter tuning, out-of-bag predictions were 
used for evaluation. Hyperparameter tuning was carried out by means of 
model-based optimization [63,64]. In order to minimize the variance of 
random partitioning within folds, the whole nested resampling pro
cedure was repeated ten times. 

3.5. Further analysis 

To additionally evaluate collective outputs of both the expert-based 
and data-driven method, few additional steps were taken. Firstly, the 
selected threshold for indicator importance was chosen at weight 3 

Table 4 
Table of influence for indicator weighting, ranging from slight influence of an indicator (1) to extreme influence (9) (modified after Saaty [58]).  

1 2 3 4 5 6 7 8 9 

Slight 
influence 

Slight to moderate 
influence 

Moderate 
influence 

Moderate to strong 
influence 

Strong 
influence 

Strong to very 
strong influence 

Very strong 
influence 

Very strong to 
extreme influence 

Extreme 
influence  
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(Table 4) to ensure that variables with low mean weights were not 
included in the final indicator selection and index aggregation. To 
evaluate the uncertainty of the selected threshold was optimal, we 
carried out a sensitivity analysis for different threshold values and re- 
evaluate model performance. To do this, we varied the threshold be
tween 4, 5, 6, and ‘no threshold’, and in each case, we recalculated the 
BRI value, reclassified each building into a BRI class using the quartile 
classification and predicted damage grades using the MPD curve. The 
sensitivity analysis was carried out using both the combined and sepa
rate data from the two study regions. Secondly, to further examine the 
transferability of the data-driven model, we use data from study region 1 
to train a random forest model using the same procedure described in 

section 3.3.2. The prediction accuracy of the model is evaluated there
after using data from study region 2. Furthermore, we carried out a 
critical comparison between both methods, focusing on variable 
importance and model performance. 

4. Results and discussion 

4.1. Exploratory data analysis 

A total of 324 observed buildings are located in study region 1 and 
120 buildings in study region 2. The maximum inspected flood depth in 
study region 1 is 333 cm compared to study region 2 with 147 cm. 

Fig. 3. Bivariate plots for water depth and damage grade classes for (A) study region 1, and (B) study region 2.  

Fig. 4. Spearman’s correlation for the entire data. Areas of squares represent absolute values of correlation coefficients.  
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Bivariate analysis showed that water depth correlates rather poorly with 
damage grades (Fig. 3). For example, in study region 1, over 40% of 
buildings with a damage grade 6 (complete collapse) were from the 
lowest category of water depths (0–50 cm) (Fig. 3A). Also, out of 12 
buildings with water depths above 250 cm, none sustained a damage 
grade 6 (Fig. 3A). In study region 2, most of the buildings incurred 
damage grade 4 especially at water depths between 51 and 100 cm 
(Fig. 3A). In particular, damage grade 4 for in study region 2 is mostly as 
a result of damage to the ground floor (Table 2). Spearman correlation 
coefficient for the combined data showed a high positive correlation 
between sheltering and distance to channel (Fig. 4). The correlation can 
partly be explained by the fact that the more distanced a building is from 
a river channel, the more likely it will be surrounded by other buildings. 
Other high correlations observed were between wall plaster with wall 
plaster extent and fencing material with fencing plaster extent. How
ever, these are directly related since only buildings with wall plaster (or 
fencing material) have features for wall plaster extent (or fencing 
extent). A summary of the bivariate analyses for all resistance variables 
for both study regions and the combined data is presented in supple
mentary 2 (Figure S2-1 and S2-2). Results show that sandcrete block 
buildings are predominant in both regions followed by the mixed 
building (sandcrete and clay) and clay buildings. Another interesting 
result of the EDA was that while building condition and building quality 
were positively correlated in study region 1, they were however nega
tively correlated in study region 2. The reason for such difference is not 
completely clear, however, the negative correlation in study region 2 
might be related to the fact that it is relatively a new settlement (10–20 
years) (as visualized from Google Earth satellite image from 2004). As a 
result, while many buildings were identified to be in a good condition 
(recently built), their construction quality was not well according to 
standard specified by NBC [65]. Similar problems relating to building 

quality were identified in studies by FGN [16] where over 60% of 
inspected buildings were found to have built their houses without using 
the services of formal institutions. 

The distribution of building damage grades in the data is shown in 
Figure S2-3. Damage grade 6 was generally less represented in both data 
sets (Figure S2-3A): this was partly because in many completely 
damaged buildings, residents were no longer available or no community 
representative could ascertain the flood depth at the building location. 
Merging damage classes 1 and 2 (class 1 + 2), and classes 5 and 6 (5 + 6) 
(Figure S2-3B) resulted in a distribution that limits bias from over (or 
under) representation especially for the combined data set. 

4.2. Expert-based method 

The list of indicators selected by experts is given in Table 1. Mean 
indicator weights, representing a ranking of variable and variable 
category importance are presented in Fig. 5. The results for mean 
weights assigned to variables categories (exposure, susceptibility, and 
local protection) are shown in Fig. 5A. The exposure variable was 
identified to have the highest influence on damage followed by local 
protection and susceptibility. An additive aggregation of indicators 
resulted in the calculation of the BRI value for each building (equation 
(1)). For the variables (Fig. 5B), distance to channel has been identified 
by experts to have the highest influence (weight of 7.1) on building 
damage to floods in Nigeria. Distance to channel is followed by building 
condition and functional drainage (weight of 6.4) and building quality 

Fig. 5. Mean expert weights for (A) variable categories, and (B) variables (or 
indicators). Dotted line in plot A indicates the selected threshold. 

Fig. 6. Most Probable Damage (MPD) curves for (A) poor, (B) moderate, and 
(C) good BRI class. 
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and ground floor elevation (weight of 6.3). A threshold (cut-off) for final 
indicator selection (Fig. 5B, dotted line) shows that two variables, height 
of opening and building footprint, were on average considered to have 
only a slight influence on damage. As a result, they were not included for 
indicator aggregation. Variables included in the final indicator selection 
(Fig. 5B) represent one of the first attempts at compiling a comprehen
sive list of vulnerability indicators to floods for Nigeria. The additive 
aggregation allows compensation such that lower values for one vari
able can be compensated by another variable with a higher value. Re
sults of the quartile classification for the normalized indices for all data 
sets are shown in Figure S2-4. The quartile classification categorizes all 

buildings into four equal classes with the lower and upper quartile 
reassigned as poor and good BRI classes respectively. The buildings in 
the interquartile range are reassigned as moderate BRI class. The 
normalized BRI has a range between 10 and 70 with a mean value of 40. 

Synthetic flood damage curves for most probable damage (MPD) are 
shown in Fig. 6 for BRI classes poor, moderate, and good. The curves 
were generated using probabilities estimated by the Bayesian ordinal 
logistic regression model. 

A maximum of 350 cm was used for the curves given that buildings in 
Nigeria are predominantly one story [49]. The damage curve shows that 
a damage grade of class 3 and above is expected for buildings with poor 

Fig. 7. Confusion matrix for observed and predicted classes using the MPD curve. The heatmap (A) indicates the percentage of values in each cell with respect to the 
total number of instances in the true class (i.e., columns sum up to 1). The mosaic plot (B) is a graphical illustration of the conditional relative frequency for each 
combination. The area of the tiles is proportional to the number of observations exhibiting the respective combination of factor levels, i.e. the corresponding 
joint frequency. 

Fig. 8. Confusion matrix for observed and predicted classes using random forests. The heatmap (A) indicates the percentage of values in each cell with respect to the 
total number of instances in the true class (i.e., columns sum up to 1). The mosaic plot (B) is a graphical illustration of the conditional relative frequency for each 
combination. The area of the tiles is proportional to the number of observations exhibiting the respective combination of factor levels, i.e. the corresponding 
joint frequency. 
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BRI and water depths above 50 cm (Fig. 6A). Buildings identified as BRI 
moderate and good are expected to have damage grades class 1 + 2 for 
water depths between 0 and 100 cm (Fig. 6 B, C). While the range for 
damage grades 3 and 4 are small for the category BRI poor (50–150 cm), 
the range is wider for BRI moderate (100–250 cm), and good (100–300 
cm). Complete or partial collapse (damage grade 5 + 6) is expected for 
water depths above 150 cm for building categorized as poor BRI: the 
same damage grade is expected at water depth above 250 cm (for BRI 
category moderate) and 320 cm (for BRI category good). 

The multiclass prediction accuracy for the expert-driven method on 
the full data set is 0.30. Heatmap and mosaic plots (Fig. 7) generated 
from the confusion matrix showed that in general, the MPD curve per
formed relatively well for low damage classes (1 + 2, 3) compared to 
higher damage classes (4, 5 + 6) (Fig. 7A).Correct predictions for 
damage class 1 + 2 were relatively high at 48%, while that of damage 
class 3 is at 38%. Prediction accuracy dropped to 17% for damage class 4 
and 18% for damage class 5 + 6. The MPD curve incorrectly predicted 
41% of damage class 3 as class 1 + 2 (Fig. 7A). In addition, half of the 
buildings with damage class 4 were incorrectly predicted as damage 
class 1 + 2. Further evaluation of the individual confusion matrix 
generated for BRI classes poor, moderate, and good (Figure S2-5) 
showed that a substantial part of the misclassifications was resulting 
from buildings observed as damage classes 3 and 4 being predicted as 
class 1 + 2: this is especially high for BRI classes moderate and good with 
about 50–60% misclassification. In BRI poor, the main misclassification 
is from observed damage classes 1 + 2 and 4 being predicted as class 3. 
Relatively high accuracies in the classification of low damage grades are 
likely because a high percentage of the observed water depths were less 
than 150 cm (Fig. 3), and within this range, the damage probabilities of 
the MPD curve is high for low damage (see Fig. 7). Conversely, poor 
accuracy in predicting high damage grades is related to the underesti
mation of damage grade classes at low water depths. From the MPD 

curve (Fig. 7) higher damage was only assigned for high water depths 
and low damage for low water depths. However, as seen from the 
bivariate analysis (Fig. 3), higher damage occurs even at lower water 
depths. The use of a water depth range between 1 and 500 cm for the 
expert what-if assessment might have influenced the results given that 
experts become likely to associate higher water depth (400–500 cm) 
with the higher damage grades (class 6). 

Results for the mean low probable (LPD) and high probable (HPD) 
damage are shown in Appendix, Figure A1. Generally, LPD and HPD aim 
to accommodate variations in building characteristics within each BRI 
category. For example, for buildings classified as BRI poor, the lowest 
damage expected for a 200 cm flood depth is damage class 4, while the 
highest damage expected is a damage grade 5 + 6 (Figure A1 A). For the 
same flood depth (200 cm), we expect the lowest damage of class 4 for 
BRI moderate or class 3 for BRI good (Figure A1 C, E). The highest 
probable damage for a 200 cm flood is a class 4 or Class 5 + 6 (both have 
equal probabilities) and a class 4 for BRI good (Figure A1 D, F). Between 
150 and 250 cm water depth range, the LPD and HPD for BRI moderate 
overlap, both predicting damage class 4 (Figure A1 B). Generally, for 
most of the LPD and HPD curves, a change in damage grades class 
consistently occurs at around 100 cm. The change might be related to 
the height at which water starts entering the building: in Figure S2-1O, 
over 60% of the entire data have a height of openings between 81 and 
120 cm. 

4.3. Data-driven method 

The data-driven approach results in a multiclass prediction accuracy 
of 0.38. However, results vary across the different classes as depicted by 
the heatmap and mosaic plot resulting from the confusion matrix 
(Fig. 8). Generally, the model performed well for severe damage (Classes 
4, 5 + 6) compared to lower minor or moderate damage (class 1 + 2, 3). 

Fig. 9. Densities of predicted class probabilities for all class combinations. Results are presented for all ten models obtained via the repeated nesting resampling 
procedure. The vertical dashed line at 0.25 indicates the threshold for random guessing. 
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While more than 50% of all instances of classes 4 and 5 + 6 are predicted 
correctly, accuracy drops to 38% for class 1 + 2 and down to only 13% 
for class 3 (Fig. 8). About half of the buildings observed as class 3 (47%) 
were predicted as class 4. Also, high number of class 1 + 2 is predicted as 
class 4 as well. Density estimates (Fig. 9) of predicted class probabilities 
for all combinations of the confusion matrix show interesting patterns. 
Some correctly classified instances of class 5 + 6 values are predicted 
with relatively high certainty. Predictions for class 4 exhibit a mean 
clearly above 0.25 (which would correspond to random guessing given a 
classification problem with four classes) (Fig. 8), with predicted class 
probabilities up to almost 0.7. Class 3 exhibits a very balanced predic
tion across all four true classes, with distinct peaks around or slightly 
below 0.25, reflecting the overall low prediction of class 3 instances. 
Among all class 3 predictions, most belong to observed class 4. Predicted 
class probabilities for class 1 + 2 exhibit the best result for true class 1 +
2 observations, with class probabilities up to 60%, but also show be
tween 15% and 20% false predictions in each of the other classes with 
single cases exhibiting similar class probability of up to 60%. 

In terms of variable importance, wall material clearly prevails as the 
most important variable (Fig. 10). Distance to channel emerges as the 
second most important variable, exhibiting a large importance gap not 
only to wall material but also to wall thickness, which is ranked third 
(Fig. 10). The identification of wall material and distance to channel as 
the two most important damage influencing features was not entirely 
unexpected, given that i) buildings with sandcrete block have relatively 
consistent stability after contact with water compared to with clay 
material (especially unburnt clay), and ii) buildings constructed closer 
to the channel have higher water depths on average and are less shel
tered by other buildings. 

as shown by a high correlation between the two variables (Fig. 4). 
Building condition and quality were also ranked to be relatively 
important variables. Both wall plaster material and extent were identi
fied to have low variable importance. Given their importance in delay
ing the intrusion of water into the primary wall material, it remains 
unclear why they do not significantly contribute to explaining the 
variance in building damage. The low variability in factor levels of the 

wall material and extent (Figure S2-1) is a probable suspect to their 
performance. Functional drainage was identified to be the least impor
tant variable. The poor performance of functional drainage was unex
pected given its identification as important damage influencing 
variables in previous studies (e.g. Refs. [13,14,66]). However, the dis
tribution of the data for functional drainage (see Figure S2-1D) shows 
that most observed buildings (about 80%) do not have drainages or the 
drainages were blocked (both classified as ‘no functional drainage’), 
consequently limiting variability in the variable and hence its perfor
mance in the model. 

Concerning predicted class probabilities, the results of the repeated 
nested resampling approach present a consistent picture across all ten 
models (Fig. 9). Density plots of predicted probabilities show a favorable 
distribution for correct class 5 + 6 predictions, with some instances 
being predicted with a probability of up to almost 90%. Densities of class 
5 + 6 predictions for all other classes show modes of around 0.1. Pre
dicted probabilities for observations predicted as class 3 and class 4 are 
more ambiguous. While densities for class 4 predictions indicate 
comparatively high predicted probabilities not only for true class 4 in
stances but across all other classes as well, class 3 exhibits narrower 
densities with lower-class probabilities. True class 1 + 2 predictions 
exhibit a very similar pattern to predicted class 4 probabilities for class 1 
+ 2 instances, thereby reflecting the percentage of 38% true class 1 + 2 
predictions and 37% of class 1 + 2 erroneously predicted as class 4. 

4.4. Model comparison 

Interesting implications can be drawn from a comparison of the 
expert-based and data-driven method. Firstly, the variable importance 
between the two methods reveals both similar and contrasting de
ductions. In both methods, distance to channel was consistently identi
fied as significant damage influencing variable. The consistency comes 
from its (i) repeated performance across the ten models of the random 
forest, and (ii) high mean weights from multiple experts compared to 
other variables. Wall material, although identified as the most important 
in the data-driven method, was moderately important in the expert 

Fig. 10. Random forest ensemble variable importance. Both the mean (black dot) and the range across the ten-member ensemble are depicted.  

M.B. Malgwi et al.                                                                                                                                                                                                                              



International Journal of Disaster Risk Reduction 57 (2021) 102148

13

method. Both methods rank building condition as more important than 
building quality, hence suggesting that a building with a low quality of 
construction is likely to perform well when it is properly maintained. 
Functional drainage, ranked second most important variable in the 
expert-based method, is the least important variable in the data-driven 
approach. Given the limited variability of functional drainage in our 
data (Figure S2-1D), this variable may require further evaluation. 
Furthermore, while the height of opening was identified to be relatively 
important in the data-driven method, it was averagely weighted as only 
‘slightly important’ by experts. Consequently, it was removed from the 
analysis based on the selected threshold (Fig. 5A). 

Model performance was measured using the percentage of correct 
predictions in each damage class. Multiclass prediction accuracy for the 
data-driven method (38%) was higher than that of the expert-based 
approach (30%) by 8%. Better performance of the data-driven method 
was not unexpected given that the implemented approach (random 
forest) is a supervised learning method that uses the observed damage 
for model training. On the other hand, the expert-based method was 
‘unsupervised’ given that no data on observed damage grade classes 
were used: it relies on a prior classification of buildings into resistance 
(vulnerability) classes based on building and exposure characteristics, 
and a what-if analysis based on expert knowledge. The data-driven 
method performed well especially for higher damage grades (classes 4, 
5 + 6) with predictions at over 50% accuracy (Fig. 8). The accuracy of 
the data-driven method dropped for low damage grades, especially for 
damage class 3 with the least accuracy at 17%. Apparently, class 3 and 
class 4 are difficult to distinguish based on the available data, implying 
that the collected variables do not have enough explanatory power to 
better separate between these two classes. The low accuracy for class 3 is 
mainly because observed damage class 3 instances are mostly over
estimated and predicted as damage class 4. 

Conversely, the expert-based method performed well at low damage 
grades (class 1 + 2, 48% and class 3, 38%) compared to high damage 
grades (class 4, 17% and class 5 + 6, 18%) (Fig. 7). However, this can be 
attributed to the fact that the expert-based method is biased towards 
underestimating the damage class in general. Since low damage classes 
are predicted much more frequently, the number of correct predictions 
seems to be high. At the same time, the number of buildings incorrectly 
predicted to belong to low damage classes is high as well. These results 
suggest that the data-driven method outperforms the expert-based 
method, especially for predicting damage classes 4 and 5 + 6. Results 
for low damage classes have to be interpreted carefully. While the data- 
driven method generally overestimates low damage classes, the expert- 
based method clearly underestimates high damage classes. The highest 
misclassifications in the data-driven approach were related to 47% of 
class 3 being predicted as class 4 (data-driven method). As highlighted 
earlier, the small difference between moderate cracks (class 3) and 
heavy crack (class 4), might result in difficulty for the model to distin
guish the two classes. In the expert method, 50% of class 4 and 41% of 
class 3 were predicted as class 1 + 2, further underlining how experts 
underestimated damage for low water depths. In both methods, while 
class 1 + 2 has the highest cumulative prediction accuracy considering 
both methods (38% in the data-driven and 48% in the expert method) 
class 3 had the worst performance (13% in the data-driven and 40% in 
the expert method). In general, given limited research on typical sand
crete, clay, and mixed buildings used in this study, and the unsupervised 
approach adopted by the expert-based method, a 30% prediction accu
racy is considered satisfactory and provides provisional alternative for 
typical data-scarce areas. 

4.5. Model transferability 

To ensure that the spatial extent of model applicability is not entirely 
limited to the selected study regions, some steps were taken regarding 
data used and methods applied. For example, the use of a merged data 
set (section 3.3) reduces model overfitting to a single event. In the 

expert-based method, experts were chosen from different locations 
within Nigeria (section 3.3.1), so that variable (indicator) selection, 
weighting, and what-if analysis were reflective of different regional 
damage drivers, physical geomorphology, and hazard characteristics. 
On the other hand, the data-driven model implemented a nested 
resampling technique (sec 3.3.2) to allow for unbiased performance 
estimates on the combined data. Model results for training a random 
forest model using data from study region 1 and testing on study region 
2 show the same multiclass accuracy of 0.38 similar to the model 
developed from the combined data set. Heatmap and mosaic plot 
(Figure S2-5) generated from the confusion matrix of true and predicted 
damage classes show the highest prediction accuracy for class 5 + 6 at 
70%. All the other classes show low accuracies: class 1 + 2 (29%), class 3 
(24%), and class 4 (32%). 

Given the highlighted steps and the multiclass prediction accuracy of 
the model (0.38) on a different flood event and spatial location, the 
transferability of both models is highly plausible particularly in regions 
with similar building characteristics. In general, we further recommend 
the application of both methods in regions with comparable building 
characteristics so that model transferability can be further evaluated. 
Alternatively, spatial resampling such as spatial cross-validation can be 
used to alleviate the problem of spatial autocorrelation, which might 
lead to overoptimistic results. Spatial autocorrelation structures stem 
from the fact that geographic data are often not statistically indepen
dent, since observations tend to be more similar the closer they are to 
each other [67]. When employing spatial partitioning, model perfor
mance results are evaluated on spatially disjointed subsets and do thus 
exhibit a lower bias [68]. 

4.6. Sensitivity analysis 

The results of the sensitivity analysis are shown in Figure S2-6. 
Generally, percentage correct predictions for varying threshold values 
were marginally comparable across each data set. The highest variation 
in prediction accuracy within the same data was within a 5% difference 
as observed in data set 2 between a threshold value of 5 and 6. Observed 
low sensitivity of varying threshold values might be related to two 
reasons. Firstly, variables with low mean weights do not significantly 
contribute to the BRI, hence their removal results in only slight (or no) 
changes on the BRI classification. Secondly, the quartile classification of 
the BRI was relatively conservative since it maintains the same number 
of observations between each quartile. Also, for the quartile classifica
tion, the classification of BRI moderate is relatively large (interquartile 
range). As a result, it limits the ease with which small changes in BRI will 
alter a buildings’ class, except for buildings at class boundaries. 
Generally, the low sensitivity of different threshold values suggests that 
even with a low number of variables (e.g. only 5 variables at a threshold 
value of 6), relatively comparable model performance can be achieved. 
Hence efforts required in undertaking field data collection can be 
drastically reduced and methods for rapid building vulnerability 
assessment can be further enhanced. Figure S2-6 indicates that data 
from region 1 maintained a performance accuracy above 31% but region 
2 showed a consistent low performance with an average of around 20%. 
The reason for the low performance in region 2 is most likely attribut
able to a higher proportion of damage grade 4 at lower water depths 
(51–100 cm) (Fig. 3). Field observations showed that a high percentage 
of the buildings (in region 2) experienced either (i) a ground floor set
tlement or (ii) disturbance to the compacted soil material directly below 
the ground floor - in both cases, resulting in damage to the ground floor 
cover material (class 4). The frequency in damage class 4 for region 2 
may be related to the soil properties and will need further investigation. 
The general low water depths observed in study region 2 contributed to 
the low performance since the MPD curve underestimates damage for 
low water depths. The standard deviation for the percentage correct 
prediction between the BRI classes shows that study region 2 had the 
highest variation of percentage accuracy between BRI classes compared 
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to study region 1 or the combined data. The high variation in study 
region 2 shows that poor prediction accuracy is related to one or two BRI 
classes showing significant low performance. 

4.7. Model uncertainties and outlook 

Several uncertainties regarding data collection and analysis exist. In 
this section, we discuss these uncertainties and provide recommenda
tions for future studies. 

A basic input for the study is the field data collected by interviews. As 
a result, model output relies on the accuracy of such data, which in turn 
partly relies on personal recollections by the building residents during 
field interviews. Such personal reflections present some uncertainties 
especially if the field surveys were conducted long after the flood event. 
In study region 1, field data collection was carried out eight months after 
the flood. While data such as susceptibility, local protection, and 
exposure could be directly observed on the field and satellite imagery, 
water depths are not directly deductible. Yet, a large percentage of the 
water depths used in the study were based on personal reflections by 
building residents and not on measured watermarks. In study region 2, 
field surveys were conducted three months after the flood event, hence, 
residents have a higher tendency to remember flood depths with good 
accuracy. In general, floods are traumatic events [69–71] and people 
affected by them do not easily forget details about the events. However, 
where possible, data collections should be carried out as soon as possible 
after flood occurrence to generally ensure higher accuracy in water 
depths. 

Bivariate analysis showed that the distribution of some variables is 
skewed and the data-driven model may favor factor levels that are over- 
represented. For example, variables such as functional drainage, natural 
barrier, wall thickness are characterized by imbalanced factor levels, 
with one dominating manifestation of the variable. However, since the 
random forest algorithm is a non-parametric classifier, there are no 
prerequisites with respect to the distribution assumptions of input data. 
The repeated nested resampling strategy was applied to obtain a robust 
model with honest performance estimates. Models fitted using a simple 
single train-test split might still be prone to suffer from a slight bias 
caused by overfitting. For some variables, the disproportionate distri
bution of the data (e.g. sandcrete block in wall material) is representa
tive of the actual situation (see data from Ref. [49]). 

Additional uncertainties relating to non-inclusion of other variables 
that may influence building damage exists (i.e. unobserved heteroge
neity). For example, two resistance variables, building age and number 
of floors, initially selected by experts had to be removed. The building 
age was highly incomplete because residents could either not remember 
the year of construction or simply have no knowledge about it since they 
were not the first to reside in the house. The number of stories was 
removed due to a lack of variability: out of the entire data comprising 
444 buildings, only one building was two-story while all the others were 
one story (only ground floor). Other hazard variables that could have 
been interesting for the study were flood duration and velocity. Many 
residents qualitatively described how the flow approached at ‘high’ 
speed. Other residents, especially those residing in clay buildings, sug
gested that their houses were damaged due to longer durations of 
exposure to water. Given high uncertainties in translating qualitative 
and quantitative reports on flood velocities and duration, both variables 
were excluded from the data. For example, many residents have stated 
that during flooding, it is very difficult to keep track of time. Hence, in 
some cases reported durations for two buildings next to each were more 
than 6 h apart. A method for hydrodynamic modeling for data-scarce 
regions without hydrological data has been proposed in Ref. [72]. 
Such methods provide a pathway for flood data extrapolation (flood 
duration and velocity) to complement current efforts for flood damage 
modeling in data-scarce regions. 

Predicting damage grades presents a rather challenging task which is 
also evident from the mediocre performance observed in the random 

forest model. Such difficulties are even more pronounced in regions 
where policies on building standards are less well implemented, which 
results in substantial variation in building quality and value [7,16,34]. 
The variations in building quality contribute to uncertainty in damage 
prediction since buildings within the same BRI category (poor, moder
ate, good) may not incur comparable damage even when impacted by 
the same flood depth. The LPD and HPD curves (Figure A1) are devel
oped to reduce uncertainties inherent in each BRI class. We recommend 
a further sub-classification within each BRI class such that MPD is only 
used for buildings that are more comparable to the representative 
building. LPD and HPD are then applied to buildings with characteristics 
(or calculated BRI value) deviating from the representative building. 
Where high variations in building standards do not exist, the recom
mended additional sub-setting in each category will not be necessary. In 
general, we recommend further performance assessment of the MPD, 
LPD, and HPD curves in different data-scarce regions with comparable 
building characteristics. 

Expert interviews are generally subjective, hence present some un
certainties. As a result, a high number of experts are required so that 
results are representative. In practice, getting a high number of experts is 
not always feasible, especially in regions where the required expertise is 
limited. In Nigeria, the challenge regarding the low number of experts in 
flood damage and vulnerability assessment has been previously pointed 
out by Komolafe et al., [9]. Our study included seven experts for indi
cator selection, weighting, and what-if analysis. Selected experts were 
chosen from different geographical regions and fields of study, which 
generally influences how they carry out the assessment. For example, in 
the what-if analysis, while experts with an engineering background 
included ‘ground floor settlement’ in their assessment, it was partly 
challenging for few others (with other backgrounds) to relate the vari
able with a water depth range. We generally recommend that for future 
studies, the what-if analysis should be conducted within the framework 
of a workshop during which all relevant information regarding damage 
states, water depth classification, and representative buildings from BRI 
classes are properly discussed. Such workshops will reduce consequent 
uncertainties that arise from knowledge gaps based on expert back
ground. As highlighted above, the general poor performance of 
expert-based assessment for higher damage may be related to using 
water depth ranges up to 500 cm. It would be interesting for future 
studies to re-evaluate the outcome of such what-if analysis using a 
maximum water depth of 350 cm to evaluate the influence of maximum 
water depths on damage grade estimates. 

Furthermore, future studies should consider upscaling the approach 
from a micro-scale to a regional scale to support disaster management at 
city level. The availability of free regional scale building data-sets such 
as ImageCAT [73] which provides georeferenced data on building 
characteristics for many African countries provides a good potential for 
such regional models. In addition, another important recommendation 
for future studies is to link the developed damage grades to repair cost so 
that model application can be extended to evaluating monetary loss. 

Both the expert-based and data-driven method have applications for 
disaster management. For example, calculated values of the BRI is useful 
for identifying buildings that are highly vulnerable to floods. This in
formation on vulnerable buildings is important for recommending 
mitigation or local protection measures to house owners during disaster 
preparedness phase. In addition, both the expert-based and data-driven 
models can be used to identify buildings with a high probability to incur 
severe damage during a flood event. Such information is important for 
emergency planners for rescue operations during disaster response. 
More so, the developed damage grades are simplistic and provide an 
easy communication tool to both decision makers and community resi
dents for creating awareness on flood disaster especially for community 
residents located in high risk areas. 
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5. Conclusion 

The development of flood damage models represents an important 
step towards flood risk disaster reduction given its multiple applications 
in mitigation and emergency planning, economic loss evaluation, the 
cost-benefit analysis for flood protection measures. However, the un
availability of well documented empirical data has so far limited the 
application of flood damage models in several data-scarce regions. In 
addition, current methods have either been limited to exposure assess
ment, identification of vulnerability indicators, or not well representa
tive of regional building types. 

In this study, we carried out a comparative assessment of a data- 
driven with an expert-based approach that does not require empirical 
data. The comparative assessment aimed at evaluating the prediction 
accuracy of the expert-based approach as well as gain understanding 
into regional damage drivers for typical building types. Flood damage 
data, collected from two different regions in Nigeria, was used to eval
uate model performance. Data from the two study regions were used 
either combined to reduce model overfitting to a single event or separate 
to enable an evaluation of model transferability. 

Several conclusions can be drawn from the study:  

i. Generally, experts underestimated the damage to lower water 
depths. The MPD curves predict high damage (class 4, 5 + 6) only 
for high water depths (above 100 cm). However, the bivariate 
analysis showed that high damage can occur at lower flood 
depths, for example, some buildings categorized under BRI low 
incur a damage grade 6 from a water depth of 50 cm. The un
derestimation of damage for low water depths consequently 
resulted in multiclass prediction accuracy of 30% by the expert- 
based model. However, given i) limited research on sandcrete 
and clay building types, ii) observed variation in building stan
dards, a 30% performance accuracy is considered satisfactory and 
provides a provisional alternative for typical data-scarce regions. 
The bivariate analysis supports other studies that demonstrate 
high uncertainty in predicting building damage using only water 
depths.  

ii. Damage grade prediction presents several challenges especially 
in regions with relatively high variation in building standards. 
Consequently, the data-driven method had an average perfor
mance accuracy of 38%.  

ii. Both methods suggest that even at a reduced number of variables, 
comparable model performance can be achieved. Hence, efforts 
and time spent on field data collection can be reduced or better 
targeted to the most important variables. Similar conclusions 
were deduced in a recent study by Papathoma-Köhle et al. [40].  

iv. Buildings within the BRI classes showed considerable differences 
for similar water depth range. This suggests that achieving better 
performance with the expert-based method will require i) a re- 
evaluation of the variables weights or classification scheme 
used or ii) incorporating additional variables that were not 
considered in the study.  

v. Both the expert-based and data-driven methods suggest that 
distance to channel, wall material, building condition, and 
building quality are important variables to be considered for 
physical vulnerability assessment in typical regions.  

vi. Experts assessments, in particular the what-if analysis, might 
require a formal discussion (e.g. workshop) to bridge knowledge 
gaps that arise especially when experts are from different fields of 
study.  

vii. The combination of different physical vulnerability assessment 
methods shows good potential for adapting flood damage models 
to regional situations typical for data-scarce areas. The inclusion 
of local experts allows the model to be tailored specifically to 
regional situations. 
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Appendix 1 

Variable definition and measurement 

Flood depth 
The height of floodwater, measured from the ground level (not floor level) at a building location. These were measured directly if flood marks were 

still visible or residents were asked based on personal recollections. 

Construction material 
The material used for erecting the walls of the building. The construction material was further classified into wall material and thickness.  

• Wall material: Three building materials are considered i) sandcrete block, ii) clay (burnt and unburnt), and iii) Mixed (a combination of sandcrete 
block and clay). Usually, for the mixed class, sandcrete block is used to a height of about 100 cm and the rest are completed using clay. The mixed 
system is mainly used in regions that are exposed to floods providing a relative balance between safety and construction cost.  

• Wall thickness: This refers to the size (width) of the wall unit. Common widths for wall thickness found in the study regions are 15 cm and 24 cm. 
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Building condition 
Assesses the maintenance status or state of the individual components of a building. In our study region, we carried out this assessment using 

scoring for different building components: i) 4 - very good (as new), ii) 3 - good (light deterioration), iii) 2 - moderate (average or increased dete
rioration), and iv) 1 - poor (severe deterioration) [74,75]. Building components included in this assessment are: i) walls, ii) doors and windows, iii) 
finishes or plastering, iv) flooring (part of the building the room stands on), and v) roofing. The building condition is computed as an average of the 
assigned score overall building components as shown in equation A1. The range of the building quality lies between 1 and 4. 

Building Quality=
1
5
(external wallscore + doors and windowsscore + flooring + finishesscore + roofingscore) (A1)  

Building quality 
Relates to the conformity of the building to country standards. In order to be consistent with established standards outlined in the Nigerian building 

code [65], building standard is assessed based on three considerations: aesthetics, durability, and functionality. A scoring system is used to qualify 
conformity to standards using i) 3 - good (high), ii) 2 - moderate (above average), and iii) 1 - poor (below average) conformity. Four building 
components used for evaluating building standard includes; external walls, doors and windows, roofing, and finishes or plastering. The building 
quality for each component is computed as an average of the score for aesthetic, durability, and functionality. An example for external wall is given in 
equation A1. The building quality score is thereafter computed as the average of the score for all four building components as shown in equation (A3). 
The range of the building quality lies between 1 and 3. 

External wallscore =
1
3
(aestheticscore + durabilityscore + functionalityscore) (A2)  

Building Quality=
1
4
(external wallsscore + doors and windowsscore + finishesscore + roofingscore) (A3)  

Height of opening 
The height of opening is the distance measured from the ground level to the lowest part of the window. If the window heights are different, the 

lowest window is used. The lower the height of opening, the faster flood water can gain entrance into a building. 

Building footprint 
Taken as the external form (or outline) of a building. In our study regions, predominant building footprints have been categorized into i) L-shape, 

ii) Rectangular, iii) irregular. 

Ground floor elevation 
The elevation of the building ground level (floor) or entrance partly influences the amount and time flood water can gain access inside a building. 

In certain communities where floods are relatively common, residents either raise the height of the building floor level or erect a small barrier at the 
doors as a local protection measure. 

Wall finishes/plaster 
Materials used as cover to the main wall unit are commonly referred to as wall finishes. The use of wall finishes varies from protection and 

aesthetics. While the recommended practice is the use of plaster on the entire building [65], this is not necessarily the case in many buildings. To 
accommodate these differences, we further categorize wall finishes/plaster into i) plaster material, and ii) plaster extent.  

• Plaster material: The material used for plaster categorized into i) cement and sand, ii) clay, and iii) none (no plaster).  
• Plaster extent: The proportion of wall that is plastered categorized into i) complete, ii) partial, and iii) none (no plaster). 

Fencing 
Refers to a walling unit erected around a building. In Nigeria, the practice of building a fence is relatively common. Although fences can primarily 

be for controlling access, they reduce the direct impact of the flood on buildings. We further classify fencing into i) fencing material, and ii) fencing 
extent.  

• Fencing material: The material used for the fencing influences how much pressure it can withstand from the flood. The fencing material is classified 
into i) sandcrete blocks, ii) clay, iii) mixture of sandcrete blocks and clay, iv) others (Zinc metal and thatched), and iv) none (no fencing erected)  

• Fencing extent: Fencing can be erected around the entire building or allowed to cover only part of a building. Three classes of fencing extent used in 
this study include i) complete (fencing covers the entire building), ii) partial (fencing covers only a part of the building), and iii) none (no fencing 
erected) 

Distance to river channel 
The distance between a building and the river channel is expressed using the variable distance to river channel. Distance to channel is usually 

limited to the flood extent since only buildings affected by the flood are included in this assessment. 

Functional drainage 
Drainages function to provide channelization of excess runoff. Where such drainages are not available or are non-functional (e.g., blocked by 

debris), excess runoff can quickly result in floods. In Nigeria, some studies (see Refs. [13,14,66]) have shown that the availability (or functionality) of 
drainages have remarkably contributed to flood occurrence and subsequent building damage. Here, we categorize functional drainage into two i) yes 
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(available), and ii) no (not available or non-functional). 
Natural barrier(s) 

The presence of vegetation (grasses, trees) around a building is expected to influence the velocity of flood water as it approaches the building. Here, 
each building is classified into to i) yes (existence of a natural barrier), and ii) no (no natural barrier) around the building.

Fig. A1. Lower and higher probable damage curves for (A, B) poor, (C, D) moderate, and (E, F) good BRI classes respectively.  

Sheltering 
The availability of a structure in between a building and a flood source or preferable water path (e.g., river channel or roads) influences the 

impacting force [76]. Sheltering refers to the relative protection of one building by another. Such that a direct impact is reduced or avoided. In our 
study, similar to Maiwald and Schwarz [76], two considerations are used to classify a buildings’ sheltering status: spatial location of a building relative 
to the river channel and other buildings, and direction of river flow. Buildings are classified into i) direct (complete), ii) partial (moderate), and iii) no 
(none) sheltering. 

Equations for maximum-minimum normalization 

BRImin =
Eweight

n
∑n

i=1
(eiymin) +

Sweight

p
∑p

j=1

(
sjymin

)
+

Lweight

r
∑r

k=1
(lkymin) (A4)  

BRImax =
Eweight

n
∑n

i=1
(eiymax) +

Sweight

p
∑p

j=1

(
sjymax

)
+

Lweight

r
∑r

k=1
(ekymax) (A5)  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2021.102148. 
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[27] K. Schröter, H. Kreibich, K. Vogel, C. Riggelsen, F. Scherbaum, B. Merz, How useful 
are complex flood damage models? Water Resour. Res. 50 (2014) 3378–3395, 
https://doi.org/10.1002/2013WR014396. 

[28] B. Merz, H. Kreibich, A. Thieken, R. Schmidtke, Estimation uncertainty of direct 
monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci. 4 (2004) 
153–163, https://doi.org/10.5194/nhess-4-153-2004. 

[29] B. Merz, H. Kreibich, R. Schwarze, A. Thieken, Review article “assessment of 
economic flood damage, Nat. Hazards Earth Syst. Sci. 10 (2010) 1697–1724, 
https://doi.org/10.5194/nhess-10-1697-2010. 

[30] B. Jongman, H. Kreibich, H. Apel, J.I. Barredo, P.D. Bates, L. Feyen, A. Gericke, 
J. Neal, J.C.J.H. Aerts, P.J. Ward, Comparative flood damage model assessment: 
towards a European approach, Nat. Hazards Earth Syst. Sci. 12 (2012) 3733–3752, 
https://doi.org/10.5194/nhess-12-3733-2012. 

[31] M.J. Hammond, A.S. Chen, Urban flood impact assessment : a state-of-the-art 
review, Urban Water J. 12 (2015) 14–29, https://doi.org/10.1080/ 
1573062X.2013.857421. 

[32] T. Gerl, H. Kreibich, G. Franco, D. Marechal, K. Schröter, A review of flood loss 
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