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Abstract 

Clinical trials are mainly based on single point assessments of psychopathology. At the same time, 

automatized repeated assessments based on short scales are an increasing practice to account for daily 

fluctuations in disease symptoms (e.g. ecological momentary assessment, or time series-based 

analyses). This study investigated the impact of Intense Pre-Post-Assessment (IPA) on statistical 

power in randomized controlled trials (RCTs).  

A simulation study, based on three scenarios and several empirical data sets, estimated the expected 

power gains of two- or fivefold pre-post-measurements of fluctuating disease symptoms. For each 

condition, patient data sets of various effect sizes were generated, and AN(C)OVAs were applied to 

the sample size of interest (N=50 – N=200).  

Power increases ranged from 6% to 92%, with higher gains in more underpowered scenarios. 

ANCOVA with baseline as covariate profited from a more precise estimation of the baseline covariate, 

resulting in additional gains in statistical power. Ecological momentary assessment-like data sources 

resulted in highest absolute statistical power and outperformed traditional point assessments if fivefold 

IPA was applied. For example, ANCOVA of automatized PHQ-9 questionnaire data resulted in 

absolute power of 55 (for N=200 and d=0.3). Fivefold IPA, however, resulted in power of 88.9 to 

detect a similar effect.  

IPA integrates short EMA-based assessments into RCT-based research designs. Sensitivity and 

efficiency of current RCTs could be improved by implementing a low number of automatized repeated 

assessments. Therefore, the merits of the suggested approach should be tested across various areas of 

clinical research (e.g. in neuroscience, or drug and psychotherapy research).  
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Statistical power in clinical research 

Statistical power is the probability to actually detect the phenomenon one is looking for (given the 

phenomenon exists). Statistical power is therefore a key component of every statistical study. As 

known form the continuing debate in neuroscience and psychological research (and the related 

replication crisis), many studies remain underpowered (Button et al., 2013; Halpern, Karlawish, & 

Berlin, 2002) - implying a high chance of overlooking effects. An assessment of effect sizes in the 

field of psychology and neuroscience revealed a median power of 0.12 to detect small effects and a 

power of 0.44 for medium effects (Szucs & Ioannidis, 2017).  

The situation in clinical research is comparable, where interested patients potentially volunteer in trials 

with restricted clinical value, or where studies fail in later stages of the admission process (Halpern, 

Karlawish, & Berlin, 2002; Khan, Fahl, & Brown, 2018). Even though this phenomenon does not 

present uniformly (Maddock & Rossi, 2001; Marszalek, Barber, Kohlhart, & Cooper, 2011), the 

practice of underpowered studies can be described as widespread and hard to change –ultimately 

increasing the risk to aggregate false findings in meta analytic evaluations (Califf et al., 2012; 

Maxwell, 2004; Roozenbeek, Lingsma, Steyerberg, & Maas, 2010; Wampold et al., 2017).  

As resources in clinical research are restricted, diverse strategies to maximize statistical power have 

been developed. Besides more elaborated techniques, a quantity of generic strategies are suggested in 

literature (Hansen, & Collins, 1994; Harrison, 2009; Roozenbeek et al., 2009). Prominent examples 

are: i) Maintaining sample size (e.g. preventing attrition and missing data), ii) maximizing effect size 

(e.g. maintaining program integrity, prognostic targeting), or iii) reducing variance (e.g. investigating 

homogenous populations). Even though a conscious consideration of these strategies may help to 

boost power, some of the described techniques entail important disadvantages. For example, a highly 

homogenous population can restrict validity of findings, and prognostic targeting may result in 

considerable extra work.  

With the intention of finding efficient solutions, scientists also developed advanced statistical methods 

to increase power in clinical research. The most prominent strategies are: i) Imputation of missing 

data, ii) repeated measurements, iii) covariate adjustment, or iv) linear mixed models (LMM). Most of 
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these techniques helped to improve clinical research. However, while some of these techniques 

increase the accuracy of a determined model (e.g. repeated measurements), others require additional 

assumptions, which potentially are prone to introducing further bias. For example, covariance 

adjustment leads to biased results, if the imputed covariate is not equally distributed over trial 

conditions (e.g. no true randomization) (Harrison, 2009; van Breukelen, 2006; Zhang et al., 2014). 

Additionally, the exact influence of a given covariate is not always clear beforehand, and, thus, 

covariate adjustment sometimes is of limited value for a priori power or sample size calculations 

(Pocock, Assmann, Enos, & Kasten, 2002; Raab, Day, & Sales, 2000).  

RCTs do not adequately capture intraindividual variation 

Clinical trials are mainly conducted using point assessments of psychopathology. Recent studies 

suggest, however, that many psychological constructs (e.g. depressed mood) show substantial 

intraindividual variation when measured over time (e.g. different days). Even after improving the test 

length, such fluctuations remain undetected if point assessments are used. Fisher, Medaglia and 

Jeronimus (2018) showed that the intraindividual variance of depressive symptoms and anxiety is 

three times higher than interindividual variation. Together with other studies (Pfeiffer et al., 2015), the 

authors conclude that future research should attempt to capture intraindividual variance more 

extensively. Implementing IPA into RCTs can be seen as a pragmatic approach to this, as 

intraindividual fluctuations are captured over several days, while the research design stays within well-

established practices (cf. Figure 1). 

 

************ Figure 1 **************** 

 

Intense assessments are an increasing practice in clinical research. Historically, the (practical) costs of 

multiple assessments were high, and the investigated impact of single added measurements was 

relatively small compared to other factors such as sample size or study duration (Moerbeek, 2008; 

Venter, Maxwell, & Bolig, 2002). Technological advances of the past years made intense assessments 
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less effortful, leading to a clear trend towards EMA, or other forms of time series-based analyses 

(Bhugra et al., 2017; Holmes et al., 2016).  

Considering the afore-mentioned aspects, this article investigates the merits of implementing short 

EMA (to which we refer as IPA) into RCT-based clinical research designs. While conducting an 

empiric study would provide first-hand data, simulations yield the advantage to effortlessly test the 

underlying mathematical assumptions independently form the specific study context. In order to 

optimize study validity, we implemented first-hand data form our lab together with several external 

sources. The aim of this simulation study is to infer the extent to which IPA can contribute to 

increased power in RCTs. In this regard, the following scenarios will be considered (Table 1): In 

Scenario 1 (standard scenario) we assumed that an average psychological short questionnaire is being 

applied once, twice, or five times at pre- and at post-measurement. In Scenario 2 parameters were 

modeled after an RCT investigating the effects of online therapy for depression (Klein et al., 2016). In 

Scenario 3 we assumed that EMA or time series-based analyses are being used to assess state-like 

depressiveness or depressed mood (Torous & Powell, 2015). Therefore, the correlation of the single 

pre- or post-assessments in this scenario is considerably lower.  

 

************ Table 1 **************** 

 

METHOD 

Parameter estimation 

The parameters in Scenario 1 corresponded to average reliabilities of frequent (automatized) 

depression questionnaires in the field of clinical psychology (Drake, Csipke, & Wykes, 2013; Löwe et 

al., 2004; Vittengl, Clark, Kraft, & Jarrett, 2005). Thus, Scenario 1 will be referred to as standard 

scenario. In Scenario 2, modeling was based on data from the EVIDENT trial (N=1013) (Klein et al., 

2016), a multicenter trial on the effects of online depression treatment. In this trial, PHQ-9 was 

automatically applied biweekly during the treatment course. The time lag between two of the repeated 
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assessments varied, providing a fine-grained gradient of real world correlations. The data also allowed 

us to model a learning effect (increased correlations over time). Thus, Scenario 2 constitutes an 

empirically informed analogue to Scenario 1. Set PHQ-9 parameters were confirmed by a further data 

set from a pilot study provided by Nuij and colleagues (2018). 

For the EMA data in Scenario 3 we set the correlation to r=0.4, as provided by data from our lab’s 

research on high frequency time series (Kaiser, & Laireiter, 2019), as well as data from Fisher and 

Colleagues (2017). Fisher and Colleagues assessed 40 individuals with generalized anxiety disorder 

(GAD), major depression (MDD), or comorbid GAD and MDD over a period of 30 days. Daily 

correlations of GAD and MDD scales (based on DSM-V criteria) ranged from r=0.36 (SD for r=0.19) 

for MDD to r=0.44 (SD for r=0.20) for GAD. Additionally, average scale values fluctuated, but 

neither increased nor decreased over the course of time (adjusted R²=0.056 - 0.007), suggesting no 

reactive measurement due to multiple assessments. Although consistent with ongoing research from 

other EMA studies, the correlation of r=0.4 represents an approximation, which in practice depends on 

potential subtypes (eg. melancholic vs. bipolar) and the severity of a given syndrome; as well as the 

exact EMA instruction (e.g. “how do you feel at the moment” vs. “how do you feel today”) and the 

item wording. In order to account for this complexity, we present results for higher correlations in 

Appendix 1.  

Data simulation 

Simulations and graphs were produced using the R packages copula, reshape, and ggplot2. In a first 

step, the respective covariance structure was extracted from the given real-world data set. As example, 

Section 1 of Appendix 1 provides the process of data extraction for PHQ-9 questionnaire data 

(Scenario 2) based on N=1013 real world patients. The same procedure was applied for EMA data in 

Scenario 3.  

In a next step, we used Clayton und Frank copula to implement the respective covariance structure 

into the simulation model. Copulas are functions that connect joint distributions and their one-

dimensional marginal distributions, representing the desired covariance structure. At this, copula 

parameters were fitted to empiric data by Bernstein estimator (for each Scenario 1-3, and the three IPA 



6 
 

types: single-, two-, or fivefold). Again, PHQ-9 data from Scenario 2 serves as example for this 

simulation step (Appendix 1, Section 2), with the corresponding dependence structure for pre-to-post 

assessments (Section 2.1), as well as repeated pre- and repeated post-measures (Section 2.2). Figures 2 

and 3 of Appendix 1 demonstrate the fit between empiric data (blue lines) and simulation model by 

Bernstein estimator (red curve). After fitting the model, virtual patient data sets can be generated. For 

our example, this resulted in smooth slightly skewed distributions (Figure 4 of Appendix 1). After 

copula parameters had been fitted, virtual RCT data sets were generated. We produced 1000 virtual 

RCTs for 62 different effect sizes and the sample sizes of N=50, 100, 150, 200.  

In a last step, the statistical model of interest (ANOVA or ANCOVA; and LMM or non-linear 

Bootstrap permutation test for additional analyses) was performed on the 62*1000 virtual RCTs of 

Scenarios 1 - 3. Whenever applicable, the generated pre- and post-values (two-, or fivefold) were 

averaged for each simulated patient. For example, if a simulated patient would score 9, 13, 14, 8, 10 

on the PHQ-9 at pre-measurement, the resulting value would be 10.8 scale points. This process led to 

the intended reduction of within-subject error variance in the applied statistical model.  

Finally, single results were logged, and statistical power was calculated as the proportion of significant 

results over all conducted tests (e.g. 800 significant results over 1000 applied AN(C)OVAs: 

power=80%). Corresponding results were printed by Satorra–Saris power curves mapping effect size 

(x-axis) and achieved power (y-axis). Satorra-Saris curves are provided in Sections 3 - 5 of Appendix 

1. 

 

RESULTS 

Standard scenario 

In Scenario 1 we tested the influence of IPA on achievable power in questionnaire-based RCTs. Figure 

2 depicts the Satorra-Saris power curve as a function of sample size and number of assessments. 

Accordingly, ANOVA without IPA resulted in lowest power, while ANOVA with fivefold IPA and 

ANCOVA without IPA resulted in comparable power. With a clearly discernible difference, power 
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was highest for ANCOVA with 5 IPAs. Furthermore, increases in sample size resulted in higher 

power (steeper curves for bigger samples), with the proportion of gained power remaining constant 

(green line). This indicates, that IPAs yield advantages independently of the respective sample size. 

Twofold IPA, however, resulted in only marginal power increases. 

 

************ Figure 2 **************** 

 

IPA and trial data 

In Scenario 2, we tested the influence of IPA on gained power based on a model implementing empiric 

parameters (automatized PHQ-9 assessments) from two external sources. Results (Figure 3) coincided 

with Scenario 1, and, thus, support the validity of the standard scenario.  

 

************ Figure 3 **************** 

 

EMA data 

In Scenario 3, we tested the influence of repeated EMA assessments on power in RCTs. Due to their 

weaker auto-correlation, potential power gains are (per sé) expected to be higher in this scenario. The 

results are depicted in Figure 4, where fivefold IPA of ANOVA already outperformed standard 

ANCOVA. Again, power was highest in fivefold IPA combined with baseline ANCOVA, and lowest 

if only twofold IPA was applied.  

 

************ Figure 4 **************** 

 

Comparison of absolute power  
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Additionally, the absolute power of both strategies can be compared. Table 2 presents the proportions 

of relative and absolute power gains for Scenario 2 (automatized PHQ-data) and Scenario 3 

(automatized EMA data). Relative increases in power ranged from 6% to 92%, with highest increase 

rates for more severely underpowered studies. Importantly, IPA clearly outperformed point 

assessments of psychopathology in terms of absolute statistical power. For example, ANCOVA of 

automatized PHQ-9 questionnaire data resulted in an absolute statistical power of 55 (for N=200 and 

d=0.3). Fivefold IPA with baseline as covariate, however, resulted in power of 88.9 to detect a 

comparable effect in a comparable sample.  

 

************ Table 2 **************** 

 

 

Additional findings 

In order to test the robustness of findings, we conducted additional simulations based on non-

parametric tests and simple linear mixed models (LMM). As a proof of concept, and to avoid 

redundancy, the corresponding findings are presented in Appendix 1 (Section 4.1 & 4.2). Non-

parametric and parametric tests yielded comparable results, indicating good robustness independent of 

scaling (ordinal vs. interval data). LMM led to comparable effects as obtained in ANCOVA, if 

baseline was used as covariate. A plot of apriori (predefined) versus observed effect sizes is provided 

in Appendix 1, Section 6. This plot indicates that averaging across twofold or fivefold pre- or post-

assessments (to achieve the intended variance reduction) did not bias the results (eg. overestimation of 

true effect).  

 

DISCUSSION 

This study examined the effects of intense pre-post assessments (IPA) on achievable statistical power 

in RCTs. It is based on the assumption that averaging repeated assessments will reduce variance (in 
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terms of time-related fluctuations) within subjects. Reduced within-subject error variance increases the 

proportion of explainable to unexplainable variance, resulting in increased statistical power, and, thus, 

higher sensitivity to changes. To test this assumption, three scenarios were simulated.  

Principal findings indicate that RCTs with IPA could lead to substantial power gains beyond standard 

methods of point assessment of psychopathology. A simulation based on empiric parameters from two 

external sources (Scenario 2) coincided with the corresponding standard scenario (Scenario 1), 

indicating high generalizability of presented findings. Furthermore, EMA-based IPA clearly resulted 

in highest absolute statistical power when compared to automatized point assessments. Thus, findings 

suggest that EMA or comparable forms of intensive repeated assessment may be well suited for 

implementation into RCT-based research, as they could outperform standard methods. In the wider 

perspective, IPA might help to tackle the problem of underpowered studies in clinical research (Khan, 

Fahl, & Brown, 2018; Roozenbeek, Lingsma, Steyerberg, & Maas, 2010; Szucs & Ioannidis, 2017), as 

small sample size situations exhibited highest improvements.  

IPA for questionnaire data  

The principal study results indicated a clear superiority of fivefold over twofold IPA, with the latter 

leading to marginal power increases (cf. Figure 2). This finding is in line with studies indicating only 

small power gains through occasional repeated assessments (Moerbeek, 2008; Venter, Maxwell, & 

Bolig, 2002).  

For fivefold IPA, power gains of ANOVA were comparable to applying point assessments and 

ANCOVA with baseline as covariate (cf. Figure 2). So far, baseline ANCOVA without intense 

assessments would be indicated as it constitutes the most efficient way to optimize power (van 

Breukelen, 2006; Zhang et al., 2014). However, as IPA provides a more precise estimation of the 

investigated construct (e.g. depressed mood), the precision of the baseline covariate also improved. 

According to our simulation, the combination of IPA and ANCOVA led to substantial power gains. 

Contrary to the sometimes unknown influence of additional variables in ANCOVA (Harrison, 2009; 

Pocock, Assmann, Enos, & Kasten, 2002), potential sample size reductions can be approximated by 
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standard parameters (e.g. retest reliability). Thus, IPA also is applicable for a priori sample size 

calculation, and could thereby help to reduce the costs of conducting clinical research.  

IPA for EMA data  

Even though EMA and other time series-based procedures are increasingly used in clinical research 

(Bhugra et al., 2017; Holmes et al., 2016), the practice of implementing them into RCTs to improve 

statistical power is not widespread. However, first empirical evidence exists. For example, a recent 

study on the comparison of EMA-based and paper-pencil measures of depression and anxiety reported 

a 25-50% improvement of change sensitivity (number needed to treat, NNT) with 10 pre- and 10 post-

assessments (Moore, Depp, Wetherell, & Lenze, 2016). Though counterintuitive at first sight, previous 

simulations revealed that more weakly related constructs can result in higher statistical power in 

multiple assessment situations (Basagana, & Spielman, 2011, p. 61). Further supportive evidence 

comes from a medical study on irritable bowel syndrome (IBS), in which sensitivity of EMA was 

compared to a retrospective symptom rating scale (Vork et al., 2019). Thus, recent empiric findings 

support the assumption that change in psychological constructs could rather be evaluated by time 

series then by point assessments of psychopathology (Fisher, Medaglia, & Jeronimus, 2018; Moore, 

Depp, Wetherell, & Lenze, 2016, Vork et al., 2019). Such intense assessments could simultaneously 

serve to investigate temporal dynamics of disease symptoms (or syndromes) (Bos, Schoevers, & Rot, 

2015), to improve classification (Pfeiffer et al., 2015), and to improve statistical power in clinical 

trials.  

Pros & cons of IPA 

Summing up, IPA might constitute a promising approach to tackle some current problems in clinical 

research by blending EMA and RCT-based paradigms. While daily EMA assessments over the entire 

study period may quickly overload patients, a limited number of assessments in the pre- and post-

phase of a clinical study seems much more feasible (Verhagen et al., 2016). Nevertheless, this small 

additional effort could result in a significant increase in data quality. Especially small trials in early 

research stages and lager trials with active comparators (e.g. testing against the gold-standard 



11 
 

treatment) could benefit from selecting a set of items or short scales to be assessed intensely. To 

consider pros- and cons of IPA an overview of relevant aspects is provided in Table 3.  

 

************ Table 3 **************** 

 

Strengths and limitations  

This study has several noteworthy strengths and limitations. Amongst its most important strengths, 

reported findings are fully based on numerous simulations and therefore reproducible and well 

interpretable, providing insights which are merely independent from fluctuations in single trials. 

Additionally, a replication modeled after standard parameters (Scenario 1) and complementing 

analyses based on non-parametric tests and basic linear mixed models supported the principal findings. 

Furthermore, the simulation process was carried out by four authors (RS, MS, TK, WT), resulting in a 

high degree of mutual control in a multidisciplinary team. During the process, two models were 

developed independently, and integrated stepwise. 

Regarding the study limitations, further evidence from empiric research is warranted. Due to the 

novelty of the investigated approach, only scarce empiric evidence for its positive impact on statistical 

power exists (Moore et al., 2016; Vork et al., 2019). Additionally, findings may not account for 

psychiatric conditions with more complex symptom dynamics (e.g. PTSD or eating disorders), or 

whenever strong patient reactivity is being expected. In this context, EMA has been suspected to not 

only measure, but also influence symptoms of mental health. Until now, the exact circumstances of 

“reactive measurement” in psychiatric research are unknown (Mehl & Conner, 2011; Schrimsher, & 

Filtz, 2011), and corresponding studies are still ongoing (van Ballegooijen et al., 2016). Experts 

previously suggested that EMA may be contraindicated for patients with severe psychiatric conditions 

(Rot, Hogenelst, & Schoevers, 2012), or with high social desirability (e.g. alcohol intake) (Johnson et 

al., 2009). Amongst other strategies to counteract potential reactivity (and to increase engagement) 

(Sandstrom, Lathia, Mascolo, & Rentfrow, 2016), Torous and colleagues (2015) investigated the 
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benefits of item-shuffling. Regarding the empiric data of the current study, we did not find any 

reactive measurement in terms of increased or decreased scale values over the course in time. 

However, in order to test the potential impact of another form of reactivity (increased auto-

correlations), such a learning effect was implemented into Scenario 2 (the respective correlation 

matrix is provided in Appendix 1). This effect did not excerpt any relevant influence on the presented 

results. As a further limitation, the presented simulations did not include missing data or dropout. 

Therefore, the calculated effects will be lower at an increasing dropout rate. On the other hand, intense 

assessments damper the impact of missing single point assessments – which is equivalent to dropout in 

RCTs. At this, the investigated maximum of five assessments per measurement occasion was set 

somewhat arbitrary, with eight or ten assessments constituting a feasible alternative. Simultaneously, 

the impact of a higher number of assessments cannot be determined from this study. As a last 

limitation, more complex methods of time series imputation would have been applicable as well. One 

such strategy includes complexity or entropy measures from non-linear time series, as investigated by 

our workgroup (Kaiser & Laireiter, 2018). Alternatively, hierarchical methods (LMM) are one 

suggested standard method in classic and recent literature (Schwartz, & Stone, 1998; Bolger & 

Laurenceau, 2013). To speed up the simulation process, our principal analysis was based on 

AN(C)OVA, with complementary analyses based on LMM and permutation tests. At this, the 

conducted bias analysis indicated robustness of findings (cf. Appendix 1). One possible explanation is 

that the method of averaging over multiple assessments constitutes a data aggregation and not a 

disaggregation procedure (Nezlek, 2001), which optimize other statistical requirements, such as the 

underlying normal distribution or homogeneity of variances, of the simulation process.  

Conclusion 

The mathematical principles behind IPA indicate clear superiority of multiple assessments over 

frequently used point assessments of psychopathology. At this, time series-based procedures (such as 

EMA) seem to outperform classic point assessments by a comparably low number of repeated 

assessments. This is because psychological constructs underlie natural fluctuations which cannot be 

addressed by means of test extension. Ongoing empiric evidence on IPA’s feasibility is promising, but 
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more evidence is needed. If the approach proves feasible, IPA could help to optimize the quality and 

efficiency of clinical research.  
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Figure 1. Different slopes of improvement as a function of measurement day during pre- and post-

assessment. 

Figure 2. Power for standard scenario. 

Figure 3. Power for EMA data. 

Figure 4. Power modeled according to empiric data. 
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Table 2. Achieved power through intense pre-post-assessment (IPA) 

Table 3. Advantages and disadvantages of IPA 
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Figure 1. Different slopes of improvement as a function of measurement day during pre- and post-

assessment. 

 

 

 

 

 

 

 

 

 

Note. Point assessments of psychopathology (by standard questionnaires) introduce measurement error 

as symptoms fluctuate over time. For example, for a questionnaire with 16 items and a standard 

deviation of SD=5, a fluctuation of 1 point on 2 items of a given Likert scale would result in 40% 

fluctuation of SD. This imprecision doubles if both, pre- and post-assessment, are affected equally. 

Green lines represent three slopes of single point assessments. Red lines represent averaged slopes 

over a moving window of three measurement occasions.  
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Figure 2. Satorra–Saris power curves mapping effect size (x-axis) and achieved power (y-axis) for 

Scenario 1 (standard scenario). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Green line=power gain; red line=80% power level; dashed line: standard AN(C)OVA; solid line: 

intense assessment. 
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Figure 3. Satorra–Saris power curves mapping effect size (x-axis) and achieved power (y-axis) for 

Scenario 2 (empiric data based on automatized PHQ-9 assessments). 

 

Note. Green line=power gain; red line=80% power level; dashed line: standard AN(C)OVA; solid line: 

intense assessment. 

With IPA (2-fold) 
Without IPA  

With IPA (5-fold) 
Without IPA  
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Figure 4. Satorra–Saris power curves mapping effect size (x-axis) and achieved power (y-axis) for 

Scenario 3 (empiric EMA data). 

 

Note. Green line=power gain; red line=80% power level; dashed line: standard AN(C)OVA; solid line: 

intense assessment. 

  

With IPA (2-fold) 
Without IPA  

With IPA (5-fold) 
Without IPA  
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Table 1. Scenarios to test the impact of IPA 

 Scenario 1 

(standard 

scenario) 

Scenario 2  

(actual trial 

data) 

Scenario 3 

(actual EMA 

data) 

Assessment method Average 

questionnaire 

Automatized 

PHQ-9 

Automatized 

EMA 

Reliability of repeated pre- assessments (r)  0.7 ≈ 0.4 - 0.65   0.4 

Reliability of repeated post- assessments (r)  0.7 ≈ 0.4 - 0.65  0.4 

Quantity of pre-assessments 2 or 5  2 or 5 2 or 5  

Quantity of post-assessments 2 or 5  2 or 5 2 or 5  

Abbreviations: EMA= ecological momentary assessment; PHQ-9=Patient Health Questionnaire (depression); 

r=auto-correlation. 

 

Table 2. Achieved power through intense pre-post-assessment (IPA) 

  

ANOVA 

 

ANCOVA 

 No IPA Twofold 

IPA 

Fivefold IPA No IPA Twofold IPA Fivefold IPA 

Simulation Power (%) Power (%*) Power (%*) Power (%) Power (%*) Power (%*) 

Scenario 2 

(automatized PHQ-

9) 

      

N=50; d=0.8a 68.0 (100) 72.1 (106) 76.7 (113) 79.8 (100) 83.8 (105) 90.4 (113) 

N=100; d=0.5a 58.3 (100) 61.7 (106) 66.7 (114) 70.1 (100) 76,7 (109) 83.8 (120) 

N=200; d=0.3a 43.8 (100) 47.9 (109) 52.9 (121) 55.0 (100) 60.4 (110) 71,3 (130) 

Scenario 3 

(automatized EMA) 

      

N=50; d=0.8a 58.2 (100) 71.9 (123) 92.8 (159) 75.2 (100) 89.5 (119) 99.4 (132) 

N=100; d=0.5a 51.3 (100) 64.4 (125) 87.2 (169) 66.9 (100) 82.3 (123) 97.5 (146) 

N=200; d=0.3a 38.4 (100) 50.0 (130) 73.9  (192) 51.4 (100) 67.5 (131) 88.9 (173) 

Note. Fivefold IPA (columns 3 and 6 of Scenario 3) clearly outperforms questionnaire assessments of 

psychopathology (columns 1 and 4 of Scenario 1) in terms of absolute statistical power.  

Abbreviations: IPA=intense pre-post-assessment; %*=increase in percent relative to reference; N=number of 

participants; EMA=ecological momentary assessment. a Cohen’s d 

 

Table 3. Advantages and disadvantages of IPA 

Advantage Disadvantage 

Fits recent trends in clinical research  More feasibility research needed 

Increases measurement precision  May act as intervention 

Reduces impact of missing assessments Increased burden for participants  

Provides additional information on disease dynamics Applicability decreases with number of items 

Improves triangulation of data sources (e.g. neuroscience)  

Increases statistical power / reduces required sample size  

 


