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ABSTRACT

We investigate starspot distributions consistent with space-based photometry of F,
G, and K stars in six stellar associations ranging in age from 10 Myr to 4 Gyr. We
show that a simple light curve statistic called the “smoothed amplitude” is proportional
to stellar age as t−1/2, following a Skumanich-like spin-down relation. We marginalize
over the unknown stellar inclinations by forward modeling the ensemble of light curves
for direct comparison with the Kepler, K2 and TESS photometry. We sample the
posterior distributions for spot coverage with Approximate Bayesian Computation. We
find typical spot coverages in the range 1-10% which decrease with increasing stellar
age. The spot coverage is proportional to tn where n = −0.37± 0.16, also statistically
consistent with a Skumanich-like t−1/2 decay of starspot coverage with age. We apply
two techniques to estimate the spot coverage of young exoplanet-hosting stars likely to
be targeted for transmission spectroscopy with the James Webb Space Telescope, and
estimate the bias in exoplanet radius measurements due to varying starspot coverage.

1. INTRODUCTION

Stars are born rapidly rotating, and dap-
pled with dark starspots in their photospheres
(Berdyugina 2005). Starspots are regions of in-
tense magnetic fields which dominate over lo-
cal convective motions to produce dim, cool
regions in stellar photospheres. Starspot cov-
erage shrinks from stellar youth into middle
age. Young solar analogues like EK Dra (50
Myr) have hemispheric starspot filling factors
in the tens of percent (Strassmeier & Rice 1998;
Järvinen et al. 2018), while the Sun’s hemi-
spheric spot coverage is roughly 0.03% at 4.6
Gyr (Morris et al. 2017). Many insights into
starspots have been learned by analogy from
observations of the Sun and its spots (Solanki
2003).

morrisbrettm@gmail.com

Stellar magnetic activity is perhaps most eas-
ily studied via stellar chromospheres, where
magnetic active regions shine brighter than the
mean photosphere, giving rise to strong emis-
sion lines like Ca II H & K which correlate with
magnetic activity. One of the pivotal observa-
tions of stellar magnetic activity was made by
Skumanich (1972), using chromospheric emis-
sion line observations from O.C. Wilson. Sku-
manich showed that Ca II H & K intensities
decay as t−1/2, and provided observational evi-
dence that stellar rotation is a key feature which
drives stellar magnetic dynamos. Many pa-
tient observers have carried on studies of stel-
lar chromospheric activity over the last half-
century since Skumanich (Baliunas et al. 1995;
Hall 2008).

The ability to probe the properties of mag-
netic active regions in photospheres has come
into focus more recently, due in part to the
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now widespread availability of space-based pho-
tometry from NASA’s Kepler, K2 and TESS
missions. Space-based photometry is precise
enough to measure rotation periods accurately
even for relatively inactive stars, enabling pho-
tometric detections of flux variations which were
previously very difficult or impossible to mea-
sure from the ground.

The Kepler mission observed 150,000 stars
just above the galactic plane (Borucki et al.
2010, 2011). McQuillan et al. (2014) found that
most stars in the Kepler field are consistent with
a gyrochronological age of 4.5 Gyr. There was
also a young cluster in the original Kepler field,
NGC 6811 (1 Gyr; Curtis et al. 2019a). Con-
forming to new hardware constraints, the fol-
lowing K2 mission targeted 400,000 stars in the
ecliptic plane (Howell et al. 2014), which mea-
sured photometry on stars in several clusters of
various ages including Upper Scorpius (10 Myr;
Pecaut & Mamajek 2016) Praesepe (650 Myr;
Douglas et al. 2017), and M67 (4 Gyr; Önehag
et al. 2011; Barnes et al. 2016). The TESS mis-
sion covers 85% of the sky and collects photom-
etry on the brightest stars (Ricker et al. 2014),
including stars in several young associations in-
cluding the Upper Centaurus Lupus (UCL) as-
sociation (16 Myr; Pecaut & Mamajek 2016),
and the Pisces–Eridanus (Psc-Eri) stream (120
Myr; Curtis et al. 2019b).

The wealth of precision photometry available
for stars of different ages, as well as precise clus-
ter membership catalogs via Gaia observations
(Gaia Collaboration et al. 2018), makes it pos-
sible to investigate how spot coverage varies as
stars age. There is a rich history of attempt-
ing to invert photometry of active stars to re-
cover stellar surface intensity maps (see review
by Lanza 2016). In general these techniques suf-
fer from many degeneracies; a single light curve
can be reproduced by a wide variety of spot
models.

In this work, we will make a few critical as-
sumptions to overcome these degeneracies and
determine starspot coverages accurately. These
assumptions are: (1) that stars of similar age,
mass, and rotation period should have similar
spot distributions; and (2) the inclination an-
gles of stars are nearly randomly distributed as
observed from Earth. If these assumptions are
true, then an ensemble of light curves of stars in
a young cluster can be used to constrain their
spot distributions. One can imagine that photo-
metric surveys of young clusters are essentially
observing the same star at many different in-
clinations, allowing us to marginalize over the
unknown inclinations of the individual stars if
we model their light curves as a population. A
similar hypothesis was used by Jackson & Jef-
fries (2013).

We devise a method for inverting an ensem-
ble of light curves to measure spot coverage as a
function of stellar age. In Section 2, we describe
several samples of stars sourced from Kepler,
K2 and TESS photometry. In Section 3, we
outline an efficient algorithm for calculating the
rotational modulations of many spotted stars,
for comparison with the Kepler, K2 and TESS
photometry of young stars. In Section 4 we sam-
ple the approximate posterior distributions for
the spot coverages of stars in each young asso-
ciation using Approximate Bayesian Computa-
tion. In Section 5 we discuss the implications
for stellar dynamos and exoplanet radii.

2. STELLAR SAMPLES

In the present work we limit our analyses to
531 F, G, and K stars. FGK stars likely have
fundamentally different dynamos of magnetic
activity than M stars, which become fully con-
vective at low masses. For this reason, it may
be plausible that FGK stars behave similar to
the Sun, whereas M dwarfs quite likely have
very different expressions of surface magnetic
activity. Also, FGK stars have clearly distinct
motions in the observational parameter space
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Figure 1. Top row: TESS Full Frame Image (FFI) photometry of HD 326277, a member of the 16 Myr-
old Upper Centaurus Lupus (UCL) association. We measure the flux in a 3 pixel radius circular aperture
centered on the stellar coordinates, measure the rotation period with the Lomb-Scargle periodogram, and
phase fold the light curve on the rotation period to measure the “smoothed amplitude” of the light curve,
which is simply the peak-to-trough amplitude of the red curve on the right. Second row: Same measurements
as above for Gaia DR2 4984094970441940864, a member of the Pisces–Eridanus stream (120 Myr). Note
that the rotation period is slower and the smoothed amplitude is smaller than HD 326277.

which we will explore in this work, while their
M-dwarf siblings often have rapid rotation pe-
riods even for older clusters. In this analysis,
in which we seek to find a relationship between
spot coverage and age, we therefore restrict our-
selves to the “solar-type” FGK stars.

2.1. Smoothed amplitudes

In this section we define what we call the
“smoothed amplitude” of each light curve. This
quantity was first published by Douglas et al.
2017 for Praesepe members. The smoothed
amplitude is the difference between the maxi-
mum and minimum flux after the light curve has
been phase-folded and smoothed with a Gaus-
sian kernel.

2.2. Upper Scorpius (USCO): K2

USCO is a 10± 2 Myr old part of the nearby
Sco-Cen star-forming region (Pecaut & Mama-
jek 2016). We queried for K2 photometry from

FGK members of the young association listed
by Gagné et al. (2018), and found 19 sources.
We measure the stellar rotation period for each
star by estimating the peak power in the Lomb-
Scargle periodogram (Lomb 1976; Press & Ry-
bicki 1989). We then phase-fold each light curve
on the best period, smooth the light curve with
a Gaussian kernel of width 50-cadences, and
report smoothed amplitudes. We visually in-
spected each light curve for hints of binarity
in the periodogram (multiple, non-aliased pe-
riods), and discarded any possible binaries and
stars with ambiguous rotation periods.

2.3. Upper Centaurus Lupus (UCL): TESS

UCL is a 16 ± 2 Myr old part of the nearby
Sco-Cen star-forming region (Pecaut & Mama-
jek 2016). We queried for TESS photometry
of sources listed as UCL members by Gagné
et al. (2018), and found 34 sources with TESS
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Table 1. Smoothed amplitudes and rotation periods
for all targets considered in this work (full table is
available online).

Name Assoc. Period Smoothed

[d] Amplitude

G 132-51 B Upper Sco 1.73 0.0394

HIP 6276 Upper Sco 2.73 0.0311

G 269-153 A Upper Sco 2.40 0.0904

G 269-153 B Upper Sco 1.77 0.0712

G 269-153 C Upper Sco 2.43 0.0251

HS Psc Upper Sco 3.85 0.0666

BD+37 604 Aab Upper Sco 4.99 0.1422

41 Ari AB Upper Sco 10.56 0.0737

IS Eri Upper Sco 5.39 0.1365

HIP 14809 Upper Sco 2.23 0.0176

HIP 14807 Upper Sco 5.33 0.0663

V577 Per A Upper Sco 2.25 0.0377

V577 Per B Upper Sco 1.52 0.0506

HIP 17695 Upper Sco 5.84 0.0642
...

...
...

...

Input Catalog (TIC) masses M > 0.6M� in
the full-frame images (FFIs). We query the
FFI database for a square region 10 pixels per
side, centered on the coordinates of each UCL
member. We subtracted the median flux in a
3 pixel radius circular aperture from each FFI,
and remove a quadratic trend from each FFI
light curve. As in the previous section, for each
light curve, we measure the stellar rotation pe-
riod for each star by estimating the peak power
in the Lomb-Scargle periodogram, limiting the
maximum period to half of the TESS sector du-
ration. We phase-fold each light curve on the
best period, smooth the light curve with a Gaus-
sian kernel of width 50-cadences, and report the
smoothed amplitude. Again, we visually in-
spected each light curve for signs of binarity in
the periodogram, and discarded any possible bi-

naries. See Figure 1 for a visual representation
of this process.

2.4. Pisces–Eridanus (Psc-Eri): TESS

Psc-Eri is a 120 Myr old stellar stream extend-
ing 120◦ across the sky (Meingast et al. 2019).
We followed a similar procedure to the previ-
ous subsection to produce light curves for each
of 100 FGK targets which were identified as
members of the Psc-Eri stream by Curtis et al.
(2019b). In addition to using their membership
list, we also used the rotation periods reported
by Curtis et al. (2019b), and simply measured
the smoothed amplitudes of each light curve af-
ter phase folding the light curve and smoothing
with a Gaussian kernel with width 100 cadences.

2.5. Praesepe: K2

Praesepe is a well-studied, nearby, 650 Myr
old cluster. Douglas et al. (2017) measured the
amplitudes of rotational modulation of many
apparently single stars in Praesepe with K2.
Here we will focus on stars that are not classified
as binaries or blends. The authors calculated
“smoothed amplitudes” (which are reported
as semi-amplitudes) of the rotational modu-
lation for each star, in which the maximum
and minimum flux are measured in smoothed,
phase-folded light curves. We adopt the au-
thors’ smoothed amplitudes and rotation peri-
ods without modification for 220 FGK stars in
Praesepe.

2.6. NGC 6811: Kepler

NGC 6811 is a 1 Gyr old cluster in the Kepler
field (Meibom et al. 2011). Curtis et al. (2019a)
found what they called a temporary epoch of
stalled spin-down for low-mass stars in NGC
6811. We use the Curtis et al. (2019a) member-
ship list and rotation periods to build a sample
of 167 FGK stars in NGC 6811, and measure
smoothed amplitudes from the PDCSAP fluxes
for each star in Kepler Quarter 2 using a Gaus-
sian kernel with width 100 cadences. We select
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only the second quarter of Kepler observations
to more closely approximate the variability on
timescales similar to the K2 and TESS observa-
tions; including the full Kepler light curve tends
to average over many spot evolutions and de-
crease smoothed amplitudes.

0.01 0.1 1 10
Smoothed Amp (%)

1

3.2

10

32

Ro
ta

tio
n 

Pe
rio

d 
[d

]

USCO (0.010 Gyr)
UCL (0.016 Gyr)
Psc-Eri (0.120 Gyr)

Praesepe (0.650 Gyr)
NGC 6811 (1 Gyr)
M67 (4 Gyr)

Figure 2. Rotation periods as a function of
smoothed amplitudes for the FGK stellar samples
defined in Section 2. Smoothed contours are drawn
around stars in each sample to guide the eye (these
contours are drawn by generating a 2D histogram
of the stellar samples, smoothing it with a Gaus-
sian, and selecting a cutoff level for drawing the
contour). The youngest stars fall in the bottom-
right of the plot, corresponding to large longitu-
dinal asymmetries in spot distributions and short
rotation periods, while the older stars have smaller
smoothed amplitudes, i.e.: more uniform longitudi-
nal starspot distributions, and longer rotation peri-
ods. Figure 3 shows the same observations with an
age axis. The spread in the smoothed amplitude
axis may be due to: activity cycle phase, stellar
inclination, or a combination of the two.

2.7. M67: K2

M67 is a 4.2± 0.2 Gyr old cluster in K2 Cam-
paign 5 (Gonzalez 2016a,b). We use the cluster
membership and rotation periods for 96 stars
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Figure 3. Smoothed amplitudes of the light curves
of the FGK stars in each association as a function
of age. The colors and symbol shapes correspond
to the legend in Figure 2.

listed in Gonzalez (2016b) (which are in good
agreement with the periods of Barnes et al.
2016), and measure smoothed amplitudes from
the PDCSAP fluxes for each star using a Gaus-
sian kernel with width 250 cadences.

2.8. Trends with rotation period and age

Figure 2 shows a trend in the observable prop-
erties of the light curves: there is an anti-
correlation between the typical rotation peri-
ods of stars in each cluster and the smoothed
amplitude of the light curves. One useful per-
spective encoded in this plot has to do with
the axisymmetry of the starspot distributions.
If a star has several starspots which are dis-
tributed uniformly in longitude, the rotational
modulation amplitude will be relatively small;
whereas if spots are concentrated into a small
region on one stellar hemisphere, the rotational
modulation amplitude will be relatively large.
Young stars have short rotation periods and
large smoothed amplitudes, corresponding to
significant concentrations of dark spots, or sig-
nificant deviations from uniformly distributed
spots. As stars age they drift towards the upper
left of the plot (following the direction of the sil-
ver arrow); their rotation periods increase and
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their smoothed amplitudes decrease, or their
spots become distributed more uniformly.

Figure 3 shows another view of the stellar
samples in Figure 2, demonstrating the decay of
the smoothed amplitude as a function of cluster
age. The linear regression trend line (gray) indi-
cates that smoothed amplitudes of light curves
generally decline with increasing stellar age, as

Smoothed Amplitude [%] = αtm, (1)

where and α = 0.56+1.00
−0.31 and m = −0.50± 0.17.

This power-law index m is remarkably close to
the t−1/2 decline in chromospheric emission with
age discovered by Skumanich (1972). Perhaps
this result suggests there may be a simple rela-
tionship between the area in chromospherically
active regions and the area in starspots, caus-
ing this simple metric for the spot coverage, the
smoothed amplitudes, to have the same age de-
pendence as the chromospheric emission index
(such relations already exist for magnetic field
strength and Ca emission, for example: Schri-
jver et al. 1989).

3. FORWARD MODELING ENSEMBLES
OF LIGHT CURVES

We now seek to essentially re-calibrate the ver-
tical axis in Figure 3 by mapping smoothed am-
plitude distributions onto hemispheric spot cov-
ering fractions, fS. In order to do this, we must
first devise a technique for simulating photom-
etry of an ensemble of rotating stars.

3.1. Vectorized ensemble light curve generation

We simulate ensembles of light curves of
stars through a full rotation and measure their
smoothed amplitudes using fleck1. fleck is a
pure Python software package which simulates
starspots as circular dark regions on the surfaces
of rotating stars, accounting for foreshortening
towards the limb, and limb darkening, which is

1 https://github.com/bmorris3/fleck

an efficient, vectorized iteration of earlier codes
used in Morris et al. (2018, 2019). The fleck al-
gorithm is outlined as follows: suppose we have
N stars, each withM starspots, distributed ran-
domly above maximum latitudes `max, observed
at N inclinations ~i? (one unique inclination per
star), observed at O phases throughout a full
rotation ~φ ∼ U(0, 90◦).

We initialize each star such that its rotation
axis is aligned with the ẑ axis, and set the ob-
server at x → ∞, viewing down the x̂ axis to-
wards the origin.

We define the rotation matrices about the ŷ
and ẑ axes for a rotation by angle θ:

Ry(θ)=

 cos θ 0 sin θ

0 1 0

− sin θ 0cos θ

 (2)

Rz(θ) =

cos θ− sin θ 0

sin θ cos θ 0

0 0 1

 (3)

We begin with the matrix of starspot positions
in Cartesian coordinates Ci,

Ci =


x1 y1 z1

x2 y2 z2
...

...
...

xM yM zM


for i = 1 to N with shape (3,M), which we
collect into the array S,

S =
[
C1, C2, . . . , CN

]
of shape (3,M,N). We rotate the starspot po-
sitions through each angle in φj for j = 1 to O
by multiplying S by the rotation array

Rz =
[
[[Rz(φ1)]], [[Rz(φ2)]], . . . , [[Rz(φO)]]

]
with shape (O, 1, 1, 3, 3). Using Einstein nota-
tion, we transform the Cartesian coordinates ar-
ray C with:

Rz[lm... ]ijS
j[lm... ] = S′i[lm... ] (4)

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
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to produce a array with shape (3, O,M,N),
where lm indicates an optional additional set
of dimensions. Then after each star has been
rotated about its rotation axis in ẑ, we rotate
each star about the ŷ axis to represent the stel-
lar inclinations i?,k for k = 1 to N , using the
rotation array

Ry =
[
Ry(i?,1), Ry(i?,2), . . . , Ry(i?,N)

]
with shape (N, 3, 3), by doing

Ry[lm... ]ijS
′j[lm... ]

= S′′i[lm... ] (5)

which produces another array of shape
(3, O,M,N). Now we extract the second and
third axes of the first dimension, which corre-
spond to the y and z (sky-plane) coordinates,
and compute the radial position of the starspot
ρ =

√
y2 + z2, where ρ has shape (O,M,N).

We now mask the array so that any spots with
x < 0 are masked from further computations,
as these spots will not be visible to the ob-
server. We use ρ to compute the quadratic limb
darkening

I(ρ) =
1

π

1− u1(1− µ)− u2(1− µ)2

1− u1/3− u2/6
(6)

for µ =
√

1− ρ2. We compute the flux missing
due to starspots of radii Rspot, which has shape
(M,N):

Fspots = πR2
spot(1− c)

I(r)

I(0)

√
1− ρ2 (7)

The unspotted flux of the star is

Funspotted =

∫ R

0

2πrI(r)dr, (8)

so the spotted flux is

Fspotted = 1−
Fspots,ijkF

ik
spots

Funspotted

(9)
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Figure 4. Comparison between the approximate
fleck and the more accurate STSP starspot mod-
els, for spots of size Rspot/R? = 0.1. The agreement
between models is on the order of the noise in Ke-
pler photometry, so we deem the approximations in
fleck to be valid for the space-based photometry
considered here.

3.2. Limitations of the model

The model presented above works best for
spots that are small. The array masking step
for x < 0 does not account for the change in
stellar flux due to large starspots which strad-
dle the limb of the star. Large starspots also
have differential limb-darkening across their ex-
tent, which is not computed by fleck.

Comparison with STSP2 is shown in Fig-
ure 4. The models reproduce consistent rota-

2 https://github.com/lesliehebb/STSP

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/lesliehebb/STSP
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Figure 5. Outputs of the fleck algorithm, which produces light curves throughout stellar rotations (left),
allowing us to measure the difference between the maximum and minimum fluxes for large ensembles of
light curves (right). We compare the amplitude distribution of the simulated light curves on the right to the
observed distributions of smoothed amplitudes for cluster stars using Approximate Bayesian Computation.

tional light curves at the 50 ppm level – similar
to the Kepler noise floor on 1 hour timescales for
bright stars (Borucki et al. 2011; Christiansen
et al. 2012). The maximum divergence between
models occurs when the spots are near the limb,
where STSP accounts for the spot which strad-
dles the limb and fleck does not. The differ-
ences between the models are small compared to
the uncertainties in flux of the K2 photometry,
for instance.

4. APPROXIMATE BAYESIAN
COMPUTATION

fleck makes it simple to generate new sim-
ulated datasets of light curves and their corre-
sponding smoothed amplitude distributions, as
shown in Figure 5. It is difficult, however, to
write down the likelihood of reproducing the ob-
served smoothed amplitudes given a set of spot
parameters. When it is straightforward to com-
pute simulated datasets for comparison with ob-
servations, but it is difficult to write down the
likelihood, Approximate Bayesian Computation
(ABC) is a practical tool for sampling from the
posterior distributions of parameters (Sunn̊aker
et al. 2013; Akeret et al. 2015; Dutta et al. 2016;
Sisson et al. 2018).

In order to find the most likely spot cover-
ing fraction fS given an observed smoothed-
amplitude distribution, we explore the spot
radius-position-contrast parameter space using
ABC. ABC allows us to approximate the pos-
terior PDFs of the spot radius, position and
contrast parameters, to ultimately probe which
spot covering fractions are compatible with the
observations.

The stellar rotational modulation forward-
model built with fleck has three free param-
eters θ∗ = {`max, Rspot/Rstar, c}, the minimum
spot latitude above which spots are randomly
distributed `max, the spot radius Rspot/Rstar,
and the spot contrast c which varies on [0, 1]
where c → 0 approaches perfectly dark spots
and c → 1 are spots with the same in-
tensity as the photosphere. We assign uni-
form bounded prior probability distributions
U(0, 90◦), U(0, 1), U(0, 1), respectively. We use
fleck to generate thousands of light curves of
stars observed at random inclinations, produc-
ing one trial smoothed-amplitude distribution
per θ∗.

We construct a simple rejection sampling al-
gorithm which operates as follows: (1) perturb

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
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Figure 6. Observed smoothed light curve ampli-
tude distributions (colored histograms) compared
with simulated smoothed amplitude distributions
(gray) drawn from the posterior distributions for
the spot parameters from the ABC technique with
fleck. The goal of the ABC technique is to search
for starspot parameters that produce simulated
smoothed amplitude distributions which are statis-
tically indistinguishable from the observations.

the previous step to propose a new set of param-
eters θ∗ drawn from the prior; (2) use fleck

to compute the smoothed-amplitude distribu-
tion for a large sample of stars, (3) for use
as a summary statistic, we compute the two-
sample Anderson-Darling statistic A2 for com-
paring how close the trial smoothed-amplitude
distribution is to the observed one (Anderson
& Darling 1952; Scholz & Stephens 1987, see
discussion in Appendix A); (4) if A2 < A2

crit,
we accept the proposed step and add it to our
chain; (5) go back to step (1), and repeat. We
select A2

crit = 0, not far from the minimum value
of the Anderson-Darling statistic A2

min ∼ −1.3.
The approximate posterior distributions pro-

duced by ABC should approach the true poste-
rior distributions in the limit that A2

crit → A2
min,

provided that the Anderson-Darling statistic is
a sufficient statistic. In practice it is difficult
to prove that a statistic is sufficient, so we note
that the posterior distributions shown here are
valid given the hypothesis that the Anderson-
Darling statistic is a sufficient one.

The posterior distributions from the ABC
analysis illustrate the three-way degeneracy be-
tween starspot latitudes, radii and contrasts for
stars with unknown inclinations. For a fixed
number of spots, small spots spread randomly
over all latitudes generate rotational modula-
tions similar to larger spots concentrated near
the poles. Similarly, small spots with extreme
intensity contrasts (c → 0) reproduce similar
rotational modulations to larger spots with less
extreme spot contrasts (c → 1). This exer-
cise is a demonstration of why it is so difficult
to invert light curves of rotational modulation
and recover unique starspot properties – a wide
range of spot parameters can produce similar
light curves.

Figure 6 shows the simulated smoothed ampli-
tude distributions (gray histograms) with spot
parameters drawn randomly from the poste-
rior distributions, compared with the observed

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
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smoothed amplitude distribution for stars in
each association (colored histograms). This fig-
ure illustrates how the ABC algorithm mini-
mized the Anderson-Darling statistic between
the simulated and observed smoothed ampli-
tude distributions. Most simulated and ob-
served distributions are statistically indistin-
guishable according to the Anderson-Darling
statistic.

The poorest “fit” is M67, the oldest clus-
ter, for which the simulations produce a more
strongly peaked smoothed amplitude distribu-
tion near 0.5%. The lack of a peak in the
observed smoothed amplitude distribution for
M67 is likely real; observational bias in favor
of detecting large amplitude variability would
cause a peak at large smoothed amplitudes. The
lack of a peak in the smoothed amplitude distri-
bution may be a hint that the spin axes of the
stars in M67 are not randomly distributed (see
further discussion in Section 5.2.5).

The approximate posterior distributions for
the total spot coverage is shown in Figure 7.
The ABC technique constrains the spot cover-
age for each stellar sample to between 0.05 <
fS < 0.2 for the youngest stars (at 10 Myr in
USCO), and 0.002 < fS < 0.02 for the oldest
stars (at 4 Gyr in M67).

5. DISCUSSION

5.1. A relation between starspot coverage and
stellar age

The relationship between starspot coverage
and age can be deduced from the slope and in-
tercept in the right panel of Figure 7. We find
the hemispheric starspot covering fraction fS is
related to the stellar age t in Gyr by the simple
relation

fS ≈ atn (10)

where a = 0.014+0.022
−0.008 and n = −0.37 ± 0.16.

The power law index n is statistically consistent
with the approximate inverse square root rela-

tion between chromospheric activity and stellar
age by Skumanich (1972).

One must take care not to infer upper or lower
limits to the spotted coverage of individual stars
of a given age from Equation 10. The light curve
ensemble modeling technique constrains a typi-
cal spot coverage for stars in each sample, and
outliers are likely to exist which will not fall
neatly within the confidence intervals of Equa-
tion 10.

LkCa 4, for example, is a weak-lined T
Tauri star in the Taurus Molecular Cloud (<
10 Myr; Kenyon & Hartmann 1995). High-
resolution near-infrared IGRINS spectra from
Gully-Santiago et al. (2017) constrained the
star’s spot coverage to fS ∼ 0.8. The authors
argue that such a large coverage by dark re-
gions challenges our notion of “spot coverage,”
since the majority of the stellar photosphere
emits at a cooler temperature than its spec-
tral type (Pettersen et al. 1992). The ensemble
light curve modeling technique assumed three
starspots which cover a minority of the stellar
surface, so the results (Equation 10) should not
be applied to stars covered in mostly cool re-
gions, like LkCa 4.

5.1.1. Relating smoothed amplitude to spot
coverage

Given that we have established a relationship
between spot coverage and age and smoothed
amplitude and age, we can infer the relation-
ship between spot coverage and smoothed am-
plitudes,

fS = a

(
Sm Amp [%])

α

)n/m

, (11)

or approximately

fS ∼ 0.02× (Sm Amp [%])0.74 . (12)

We caution users of this formula that it only
describes how ensembles of stars behave on av-
erage, and that one should not infer spot cover-
age for individual stars directly from light curve
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Figure 7. Approximate posterior distributions for the total spot coverage fS for stars in each association.
Colors correspond to the legend in Figure 2. As stars age (from purple through yellow), the most likely spot
coverage fS decreases from 8% at 10 Myr (USCO, purple) down to 0.8% at 4 Gyr (M67, yellow). Colors
correspond to the legend in Figure 2.

amplitudes, as the light curve amplitude is de-
generate with the stellar inclination and spot
contrast.

5.2. Second-order effects

In this subsection we discuss several factors
which may have small but significant affects on
the conclusions drawn from the ABC analysis.

5.2.1. Comparing rotational modulation across
bandpasses

One difficulty in comparing photometry across
two telescopes is that Kepler, TESS, and Gaia
all have a slightly different bandpasses. Fortu-
nately, the effect of the slightly different band-
passes on the scale of rotational modulation is
small (see Figure 2 of Morris et al. 2018). Fu-
ture catalogs of photometry from the Gaia mis-
sion may also prove useful in measuring the
photometric variability of young stars due to
starspots.

5.2.2. Activity cycles

Magnetic activity cycles with timescales of
years to decades will be a source of impreci-
sion in the spot distribution analysis. Stars ob-
served near activity minima will have smaller

smoothed amplitudes than identical stars ob-
served near activity maxima, creating a distri-
bution in smoothed amplitude space for even a
single star observed through time. Furthermore,
the properties of the activity cycle vary with
stellar age; Baliunas et al. (1995) found that
younger, rapidly-rotating G and K stars have
more stochastic variations when compared with
older, more slowly rotating stars with smooth,
cyclic activity patterns.

In this work we assume that by observing sam-
ples of tens to hundreds of stars at each age,
we are observing stars at a variety of activity
cycle phases. In this sense, we may be implic-
itly marginalizing over the latent activity cy-
cle phase variable within each stellar subsam-
ple. Some stars will be observed near minimum
and have smaller light curve amplitudes, while
others will be observed near maximum and have
larger amplitudes. The broad confidence inter-
val shown in Figure 7 may therefore already ac-
count for some of the apparent broadening in
the fS distributions of stars due to activity cy-
cles.

5.2.3. Metallicity and magnetic activity cycles

It has been claimed that metallicity may affect
the photometric variability of stars throughout
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their magnetic activity cycles. Karoff et al.
(2018) measured the photometric variations of
HD 173701, a star with twice the solar metallic-
ity, and found that its variability amplitude is
significantly larger than solar. When more pho-
tometry and cluster membership catalogs be-
come available, it may be necessary to add a
third dimension to the analysis of spot coverage
as a function of stellar age, which parameterizes
variation in spot coverage with stellar metallic-
ity.

5.2.4. Starspot evolution

Giles et al. (2017) showed that starspots have
longer lifetimes on cooler stars. When one phase
folds the light curve of a solar-mass star, the
light curve amplitude may vary strongly as a
function of the duration of the bin over which
the light curve is phase folded. Smaller duration
bins will match the comparatively short life-
times of starspots on Sun-like stars (. months),
giving accurate representations of the true light
curve amplitude. Larger duration bins, like the
four-year Kepler light curves of NGC 6811, will
integrate over several spot evolutions and there-
fore may dilute the true amplitude of the light
curve variation. For this reason, we used a sin-
gle Kepler quarter rather than the full Kepler
light curves for NGC 6811.

5.2.5. Stellar inclination distribution

We have assumed that spin axes of stars are
distributed randomly. Spins of stars in old
open clusters may be preferentially aligned with
one another (Corsaro et al. 2017; Kovacs 2018),
which would introduce yet another set of degen-
erate parameters into the ABC analysis.

5.3. Comparison with observations of
planet-hosting stars

In addition to ensemble light curve modeling,
we can also use fleck to directly model the
photometry of individual stars. In this section,
we fit the fleck model to the light curves of

spotted stars with Markov Chain Monte Carlo
(MCMC) to validate the spot coverage relation
in Equation 10 for stars with precise photome-
try and ages, listed in Table 2.

As discussed earlier, the positions, radii, and
contrasts of starspots are degenerate with one
another, making it difficult to extract precise
spot properties from the rotational modulation
of planet hosting stars. Thus we make several
simplifying assumptions that allow us to fit for
the spot coverage on these stars. First, we as-
sume that the stellar inclination is i? = 90◦,
which may be a good approximation since each
of these systems host (often multiple) transit-
ing exoplanets. Next, we fix the spot con-
trast to c = 0.7; this is compatible with the
area-weighted spot coverage of sunspots, the
starspot contrasts of HAT-P-11 (Morris et al.
2017), and a valid approximation to the ob-
served spot contrasts of several stars extrap-
olated into the Kepler and TESS bandpasses
(Morris et al. 2018). We also place a uniform
bounded prior on the spot latitudes |`| < 60◦.
It is necessary to impose this latitude prior be-
cause without it the Markov chains occasionally
prefer spots with implausibly large radii, skew-
ing the fits towards large spot coverage; this
prior is consistent with by solar observations
since sunspots are not observed above ∼ 45◦

(Morris et al. 2019). Finally, we also enforce
the prior that 0 < Rspot/Rstar < 1, ensuring
that the largest spots are still small compared to
the stellar radius, to forbid spots with radii sev-
eral orders of magnitude larger than the largest
sunspot groups.

We choose to fix the number of starspots to
three in each fit. We find that fitting less than
three spots does not accurately reproduce the
observed rotational modulation, and fitting ad-
ditional spots does not significantly improve the
fits.

The photometry, maximum-likelihood mod-
els, spot coverage posterior distributions, and

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
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Table 2. Spot coverage on planet-hosting stars

Star Spectral Photometry Age fS

Type Source [Myr] Predicted Measured

V1298 Tau K0 K2 23± 4a 0.05+0.06
−0.02 0.09+0.01

−0.02
DS Tuc A G6V TESS 45± 4b 0.04+0.04

−0.02 0.071+0.003
−0.003

Qatar-4 K1V TESS 170± 10c 0.03+0.02
−0.01 0.030+0.009

−0.006
Kepler-411 K2V Kepler 212± 31d 0.02+0.02

−0.01 0.017+0.003
−0.002

WASP-52 K2V HST/WFC3 400+300 e
−200 0.01− 0.04 0.05± 0.01h

Kepler-289 G0V Kepler 650± 440f 0.015+0.009
−0.006 0.031+0.002

−0.005
EPIC 247589423 K5.5 K2 687± 063j 0.014+0.009

−0.006 0.0066+0.0017
−0.0016

K2-100 G0V K2 790± 30k 0.014+0.009
−0.006 0.032+0.003

−0.001
K2-101 K2V K2 790± 30k 0.014+0.009

−0.006 0.035+0.0004
−0.003

Kepler-21 F6V Kepler 2600± 160l 0.009+0.006
−0.003 < 0.001

Kepler-50 F7V Kepler 3590+780 l
−450 0.007+0.005

−0.003 < 0.001

Sun G2V — 4570± 10g 0.007+0.005
−0.003 < 0.005i

Note—Spot coverages fS “predicted” from the stellar ages (via Equation 10) com-
pared with “measured” spot coverages from direct modeling of the light curves with
fleck (for all targets except WASP-52), and HST/WFC3 spot occultation measure-
ments (for WASP-52). Predicted and measured spot coverages are plotted in Figure 9.

References—(a) David et al. (2019a,b); (b) Newton et al. (2019); (c) Alsubai et al.
(2017); (d) Sun et al. (2019); (e) Hébrard et al. (2013); Kirk et al. (2016); Bruno et al.
(2018); (f) Schmitt et al. (2014); (g) Sonett et al. (1991); (h) Bruno et al. (2019);
(i) Morris et al. (2017); (j) Ciardi et al. (2018); Mann et al. (2017), (k) Mann et al.
(2017); (l) Silva Aguirre et al. (2015)

spot maps are shown in Figure 8. The three-
spot model reasonably approximates the rota-
tional modulation in each light curve. Then we
compare the posterior distributions for the ex-
pected spot coverage inferred from the fleck

models with the spot coverage estimate from
Equation 10 in Figure 9. Most stars fall within
the 1σ confidence interval for the predicted spot
coverage.

We include an upper-limit for the spot cover-
age of the Sun in Figure 9 using the Mount Wil-
son Observatory sunspot catalog (Howard et al.
1984), analyzed in the stellar context by Morris
et al. (2017).

Equation 10 tends to over-predict the am-
plitudes of rotational modulation in the oldest

stars: Kepler-21, Kepler-50 and the Sun (Fig-
ure 9). Some possible explanations for overes-
timate from include: (1) cluster stars like those
of M67, which are the anchors for the spot
coverage relation near 4 Gyr, are more active
than field stars like Kepler-21 and Kepler-50;
(2) spots are more uniformly distributed on old
field stars, diminishing the rotational modula-
tion amplitude; (3) the field stars could have
been observed near activity minimum; or (4) we
may be viewing Kepler-21 and Kepler-50 at low
inclinations, producing small light curve ampli-
tudes. A larger sample of > 4 Gyr stars with
precise ages and clear rotational modulation is
required to determine whether or not a break in
the power-law near 1 Gyr is justified.

https://github.com/bmorris3/fleck
https://github.com/bmorris3/fleck
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Figure 8. Starspot rotational modulation models genereted with fleck (left, blue) for selected portions
of observations (left, black); the posterior distributions for the spot coverage (middle); and a single draw
from the spot parameter posterior distributions visualized in the Mollweide projection (right). Note that the
solutions to the spot latitudes are perfectly degenerate about the equator. Figure continues on next page.

5.4. Implications for young exoplanet radii

Exoplanet radii are measured from the depths
of their transit light curves. Unocculted dark

starspots slightly increase the depths of transit
light curves, giving the appearance of slightly
larger planets. In this section we quantify the

https://github.com/bmorris3/fleck
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Figure 8. (continued)

extent of exoplanet radius amplification by dark
starspots.

The Mandel & Agol (2002) transit model for
a uniform source is computed

F e(t) = 1− λe(t), (13)
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Figure 9. Comparing the posterior spot coverage
distributions from direct modeling of light curves of
planet hosting stars in Table 2 with the relation in
Equation 10 (black curve, grey 1σ confidence inter-
val). The solar measurement of spot coverage is an
upper limit based on the most-spotted observation
of the Sun.

where λe(t) is the fraction of the host star
eclipsed. However, this is assuming the eclipsed
body is not changing in brightness. If the host
star is changing in brightness, Equation 13 be-
comes

F e(t) = F?(t)− λe(t), (14)

where F?(t) is the brightness of the star as a
function of time relative to the unspotted stel-
lar flux. In practice, observations of individ-
ual transits are often normalized by the out-of-
transit flux immediately preceding and follow-
ing the transit event, so what is observed is

Fobs(t) ≈
F?(t)− λe(t)

F?(t)
. (15)

For a star with quadratic limb-darkening, for ex-
ample, the maximum flux obscured during the
transit event is

λemax =

(
Rp

R?

)2

×

1− u1(1−
√

1− b2)− u2(1−
√

1− b2)2

1− u1

3
− u2

6

,

(16)

where b is the impact parameter, so the min-
imum observed flux during a transit event
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Figure 10. Apparent radius amplification due to
transits at different points in the starspot modula-
tion, for a very spotted star with fS = 0.12 and a
giant transiting exoplanet. The maximum contam-
ination in the radius measurement due to starspots
is about 10% in this extreme case.

Fobs,min is

Fobs,min ≈ 1− λemax

F?(t)
. (17)

Since a spotted star has F?(t) ≤ 1, it is clear
that the transit depth δobs = λemax/F? is am-
plified by a dimmer, more spotted surface. It
is straightforward to compute F?(t) for spotted
stars with fleck, so we can easily compute δobs
given parameters for the planet and starspots.

We simulate a star with three large spots of
radius Rspot/R? = 0.4, with stellar inclination
i? = 90◦, and a planet with Rp/R? = 0.1 at im-
pact parameter b = 0 with solar quadratic limb-
darkening parameters. This is equivalent to the
very large spot coverage fS = 0.12. The results
are shown in Figure 10. The transit depth can
be amplified by as much as 10% by the mod-
ulation due to starspots. This is large enough
to be detected given typical observational un-
certainties on the radii of small planets orbiting
FGK stars, so the variation in transit depth as
a function of time is likely an important factor
for accurately measuring exoplanet radii orbit-
ing stars with ages . 20 Myr.

https://github.com/bmorris3/fleck
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6. SUMMARY

We present photometric amplitudes of rota-
tional modulation for 531 F, G, and K stars in
six associations ranging in ages from 10 Myr
to 4 Gyr. The age and rotation period are
anti-correlated with the amplitudes of the light
curves, which follows a Skumanich-like spin-
down relation with age (Figures 2 and 3). Using
the rotational modulation model fleck (Fig-
ure 5), along with an Approximate Bayesian
Computation technique (Figure 6), we estimate
the spot coverage of stars as a function of age
(Figure 7), and find that spot coverage decays
like tn where t is the stellar age in Gyr and
n = −0.37 ± 0.16, compatible with a decay of
spot coverage like the t−1/2 relation discovered
by Skumanich (1972).

We measured spot coverages of several planet-
hosting stars with precise ages by modeling their
rotational modulation (Figure 8), and found
good agreement between the measured and pre-
dicted spot coverages from the power-law rela-
tion (Figure 9 and Table 2).

Based on the spot coverage estimates for
young stars, we estimate that variations in the
baseline flux of young FGK stars with ages . 20
Myr can cause apparently amplified exoplanet
radii by up to 10% (Figure 10).

Jupyter notebooks are available online3 which
can be used to reproduce this analysis.

Software: astropy (Astropy Collaboration
et al. 2013, 2018), ipython (Perez & Granger
2007), numpy (Van Der Walt et al. 2011), scipy
(Jones et al. 2001), matplotlib (Hunter 2007),

scikit-learn (Pedregosa et al. 2011), corner
(Foreman-Mackey 2016), astroquery (Ginsburg
et al. 2019), lightkurve (Lightkurve Collabora-
tion et al. 2018), photutils (Bradley et al. 2016),
healpy (Górski et al. 2005; Zonca et al. 2019),
emcee (Foreman-Mackey et al. 2013)

Facilities: Kepler, K2, TESS
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APPENDIX

A. ANDERSON-DARLING STATISTIC

The k-sample Anderson-Darling statistic is a non-parametric test of the null hypothesis that two
groups of data are drawn from identical distributions. We use the scipy implementation of the
k-sample Anderson-Darling statistic which varies from approximately -1.3 to > 105, for distributions
that are nearly identical and easily distinguishable, respectively. An exact description of the algo-
rithm for computing the Anderson-Darling statistic can be found in Scholz & Stephens (1987). A
demonstration of the behavior and dynamic range of the Anderson-Darling statistic when comparing
pairs of samples is given in Figure 11.
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Figure 11. Demonstration of the behavior and dynamic range of the scipy implementation of the k-sample
Anderson-Darling statistic A2 when comparing pairs of bimodal distributions. The colored distributions
on the left panel are compared with the gray-filled distribution, and the corresponding Anderson-Darling
statistic is shown on the right panel with the same color. We chose a bimodal distribution for this example to
illustrate that the Anderson-Darling statistic makes no assumption about the distributions being compared.
The Anderson-Darling statistic for the sample with µ = 0 is A2 ≈ −0.6.
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