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Nervous System
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and Giuseppe Locatelli*

Theodor Kocher Institute, University Bern, Bern, Switzerland

The central nervous system (CNS) parenchyma is enclosed and protected by a
multilayered system of cellular and acellular barriers, functionally separating glia and
neurons from peripheral circulation and blood-borne immune cells. Populating these
borders as dynamic observers, CNS-resident macrophages contribute to organ
homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these
phagocytes start playing additional roles as immune regulators contributing to disease
evolution. At the same time, pathological CNS conditions drive the migration and
recruitment of blood-borne monocyte-derived cells across distinct local gateways. This
invasion process drastically increases border complexity and can lead to parenchymal
infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue
repair. While recent studies and technical advancements have highlighted the extreme
heterogeneity of these resident and CNS-invading cells, both the compartment-specific
mechanism of invasion and the functional specification of intruding and resident cells
remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS
interfaces, indicating how further studies of CNS border dynamics are crucially needed to
shed light on local and systemic regulation of CNS functions and dysfunctions.

Keywords: macrophage cell, meninges, CNS inflammation, cell trafficking, choroid plexus
INTRODUCTION

The borders of the central nervous system (CNS) parenchyma are complex structures which
maintain organ homeostasis through distinct anatomical specializations. These border areas halt the
transit of potentially harmful trespassers contributing to the establishment of a relatively immune-
privileged milieu within the CNS parenchyma (1). At the same time, these functional barriers host
Abbreviations: CNS, central nervous system; SAS, subarachnoid space; BCSFB, blood-cerebrospinal fluid barrier; BBB, blood-
brain barrier; ChP, choroid plexus; lpM, resident leptomeningeal macrophage; pvM, resident perivascular macrophage; ChPM,
resident stromal choroid plexus macrophage; MdM, monocyte-derived macrophage; BAM, barrier associated macrophage;
MS, multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; ROS/RNS, reactive oxygen and nitrogen species;
SCI, spinal cord injury; TBI, traumatic brain injury; AD, Alzheimer’s disease; Ab, amyloid-b; PD, Parkinson’s disease; DAMPs,
damage-associated molecular patterns.
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an extensive variety of yolk sac- and bone marrow-derived
myeloid cells, cellular dwellers which are an integral part of the
historically overlooked CNS immune capabilities. Altogether,
CNS interfaces are fundamental participants in CNS functions
and defense mechanisms, as well as contributing to the overall
integration of the CNS with the rest of the organism (2–4).

While an increasing body of research is finally dedicating
attention to CNS borders and their cellular components,
surprisingly much remains to be investigated and understood (5–7).

In this review, we will illustrate the functions and migratory
routes of monocyte-derived and tissue-resident macrophages,
the immune cells that most densely populate CNS interfaces
during homeostasis and upon damage and inflammation (8).
BARRIER-ASSOCIATED DWELLERS:
LOCATION AND HOMEOSTATIC
FUNCTION OF CNS MACROPHAGES

CNS borders contain functional barriers separating the CNS
parenchyma from peripheral circulation at the level of I- the
leptomeningeal/subpial vasculature within the subarachnoid
space (SAS), II- the blood-cerebrospinal fluid barrier (BCSFB)
of the choroid plexus (ChP) and of the arachnoid mater, and III-
the blood-brain/spinal cord barrier (BBB) within parenchymal
vessels. As an exception to this rule, circumventricular organs
lining the brain ventricles and possessing endocrine functions
lack a BBB (9). Furthermore, the CNS parenchyma is protected
by the astrocytic glia limitans which envelops perivascular and
meningeal surfaces (10) allowing a double layer of separation
between parenchymal cells and peripheral circulation (11–13).

CNS interfaces harbor populations of tissue-resident macrophages
often referred to as CNS-associated macrophages or barrier-
associated macrophages (BAMs, Figure 1) (14–16). Once
mistakenly believed to derive from adult bone marrow progenitors
(17, 18), most BAMs originate in the yolk sac during embryonic
development and stably populate the respective niches by self-
renewal throughout adulthood (14), as previously shown for
microglia (19). The complex development of BAMs and microglia,
deriving from distinct yolk sac-derived progenitor lineages (20), has
been extensively reviewed in the last years (7, 21). Sharing high
expression of fractalkine receptor (CX3CR1) and a long half-life,
compared to circulating monocytes, BAMs and microglia have been
often collectively studied as CNS-resident phagocytes (22), at least
until the recent discovery of microglia-specific genes and related
targeted transgenic approaches (15, 23).

Compared to microglia, BAMs share universally upregulated
genes linked to blood vessel development, lipid and cholesterol
metabolism, immune response and antigen presentation (16). In
addition to the core genes Apoe,Ms4a7,Ms4a6c, Tgfbi andMrc1
(16), Dab2, F13a1,Mgl2, and Pf4 have been recently proposed as
BAM identifiers (24).

Not surprisingly, BAMs also express signature macrophage
markers such as integrin aM (CD11b), Aif1 (Iba1), receptor for
macrophage-colony stimulating factor (Csf1R), and F4/80 (25),
the latter, however, at lower levels compared to activated
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macrophages and circulating monocytes (26). Expression of
the adhesion molecule CD44 is negligible and can thus be used
to distinguish BAMs from CD44+ blood-borne macrophages
within the CNS (26). Interestingly, some BAMs express the
gene encoding for the T cell receptor b, although its function
remains unknown (26).

While BAMs at the BBB and within the leptomeninges are
solely yolk sac-derived, dura mater, and ChP interfaces harbor a
mixed resident population including blood-borne monocyte-
derived cells during steady state (14, 16). Novel techniques
such as mass cytometry (through CyTOF) and single-cell RNA
sequencing (scRNAseq) have indeed revealed a surprising
heterogeneity of BAMs (16, 26–28), despite the intrinsic
limitations of these approaches due to the use of predefined
markers (mass cytometry) and under-representation of lowly
expressed genes (scRNAseq) (16, 29).

In the next chapters, we will illustrate how BAM complexity is
inherently linked to the different anatomical locations that these cells
inhabit (30). A summary of cellular locations, origin and known
markers in mice and humans can be found in Tables 1 and 2.
Resident Perivascular Macrophages
The low pinocytic endothelial cells forming parenchymal CNS
vessels possess specialized features constituting the BBB, a
relatively impermeable diffusion barrier (81, 82). On the
parenchymal side, astrocytic end-feet form the glia limitans to
offer a second functional barrier protecting the CNS parenchyma.
This astrocytic layer appears impermeable to immune cells (13)
but does not form tight junctions during homeostasis and allows
movement of low-molecular weight tracers (83). Together, this
multilayered border limits trafficking of circulating immune cells
and controls the selective exclusion of harmful substances from
the CNS parenchyma as well as the intake of water, chemicals, and
other molecules (3).

First described in the early 1980s as “granular pericytes” (84),
perivascular macrophages (pvMs) reside between the endothelial
and glia limitans basement membranes of CNS vessels (excluding
capillaries and small arterioles) located in basal ganglia and white
matter (85–87). PvM distribution remains, however, controversial,
with recent work reporting similar densities of pvMs in peri-
arteriolar and peri-venous space of the mouse brain (88).

Given their strategic location, pvMs are proposed to mediate
passage of information between the CNS and the periphery (4)
and to regulate lymphocyte immunesurveillance (89, 90). Indeed,
pvMs express MHC class II and co-stimulatory molecules (35)
and secrete cytokines and chemokines, which affect the local
microenvironment upon sensing damage or inflammation (8).
Moreover, pvMs help tomaintain the well-being of the endothelial
wall and to contribute to the regulation of vascular permeability
(91, 92). In line with the physiological function of the perivascular
space (93), PvMs participate in CNS waste clearance (94, 95)
displaying a high endocytic rate that can be exploited to mark
these cells in vivo (94, 96–98). PvMs can also phagocytose tracers
injected in the parenchyma, which demonstrates their ability to
sample outflowing CNS interstitial fluids (12). Altogether, given
the influence of pvMs on vascular smooth muscle cells (88) and
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the importance of pvMs on peri-arterial drainage (99), these cells
appear key players in CNS fluid dynamics.

Morphologically, pvMs are compact elongated cells displaying
continuous movement of cell body and protrusions (14, 100).
Homeostatic pvMs are a transcriptionally homogeneous population
(27). Compared to monocytes and microglia, pvMs are characterized
by high expression of Cd163 (35), a pattern recognition receptor
(PRR) recognizing hemoglobin (101), Mrc1 (CD206), a PRR
responsible for scavenging circulating glycoproteins (102), and
Cd36, a scavenger receptor implicated in efferocytosis (14, 36).
Mass cytometry revealed that these cells, similarly to other BAMs,
Frontiers in Immunology | www.frontiersin.org 3
are also highly positive for CD38 (15), an ecto-enzyme with
metabolic functions (98).

Earlier reports, likely affected by the technical challenge of
distinguishing dendritic cell (DC) from BAMs (15), indicated
expression of DCmarkers such as CD11c and DC-SIGN in pvMs
(103). Functionally and ontogenically separate from BAMs,
CNS-associated DCs are described elsewhere (16, 27, 28).

Resident Leptomeningeal Macrophages
The cerebrospinal fluid (CSF)-filled SAS regulates CNS fluid,
pathogen, and immune cell dynamics (104) and hosts several types
A

B C

FIGURE 1 | Macrophages populating the CNS barriers and parenchyma at steady state. The figure shows the mouse CNS and, in the magnified inlets, schematic
representations of the anatomical CNS interfaces containing functional barriers. (A) The mouse meninges including (top to bottom) the dura mater, the impermeable
arachnoid mater, the SAS, the pia mater, the astrocytic glia limitans, and, finally, the CNS parenchyma. The dura mater is populated by both yolk sac-derived (green)
and blood-borne CCR2+ macrophages (orange). Conversely, the SAS, the subpial space and the CNS parenchyma host solely long-lived yolk sac-derived lpMs and
microglia, respectively. (B) Schematic representation of the perivascular space at the level of post-capillary venules within the CNS parenchyma. The perivascular
space hosts yolk sac-derived pvMs between a layer composed of endothelial basal lamina and pericytes and a parenchymal basal lamina. Endothelial cells forming
the blood vessel are linked by tight junctions thus constituting a BBB. On the parenchymal side, astrocytic end-feet collectively form the glia limitans vascularis.
(C) Schematic representation of the ChP within a CSF-filled brain ventricle lined by ependymal cells. On the apical side of the ChP epithelial cells, resident epiplexus
cells are shown. ChP epithelial cells are linked by tight junction thus constituting a functional BCSFB. The ChP stroma hosts a combination of yolk sac-derived cpMs
(green) and blood-borne CCR2+ macrophages (orange) extravasated from stromal vessels lacking a BBB. Monocytes circulating within vascular lumens are shown in
yellow. Next to each panel, gray boxes illustrate the main protein markers identifying CNS-resident macrophages in their distinct anatomical compartments.
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of immune and non-immune dwellers including leptomeningeal
macrophages (lpMs). The SAS is contained between the tight
arachnoid membrane and the pia mater, a thin monolayer of cells
linked by desmosomes and gap junctions (104–107). Different
Frontiers in Immunology | www.frontiersin.org 4
collagen-rich trabeculae covered by pial/leptomeningeal cells
connect the arachnoid to the pia mater in humans (103). Finally,
below the pia mater, the glia limitans functionally separates the SAS
from the parenchyma delineating the entire CNS (10, 13).
TABLE 1 | The table indicates the main RNA and protein markers described for macrophage populations in the distinct CNS compartments in mice at steady state
(homeostasis) and in different disease model.

Murine Models Circulating Monocytes BAMs
(general markers)

lpMs pvMs cpMs MdMs

Location ! Blood CNS borders Leptomeninges Perivascular
Spaces

Choroid Plexus CNS

Origin ! Bone Marrow Yolk Sac Yolk Sac Yolk Sac Bone Marrow/Yolk Sac Bone Marrow
Homeostasis Inflammatory cells:

LY6Chigh CCR2+

CX3CR1low (31)
Patrolling cells: LY6Clow

CCR2low CX3CR1high (31)
Shared markers:
CSF1R, GM-CSFR,
PECAM-1, b2, aM
integrins (32)

Apoe, Ms4af, MS4a6c,
Tgfbi, Mrc1 (16)
Dab2, F13a1, Mgl2,
Pf4 (24)
CX3CR1 (27) CD11b,
IBA1, CSF1R, F4/80
(25)

Pf4, Cbr2, Ms4a7,
Stab1, Fcrls, Siglec1
(27)
P2rx, Egfl7, Clec4n,
Clec10a, Folr2, Lyve1
(16)
Certain populations:
Cxcl2, Nfkbiz (27)
CD163high CD206high

(33–34)
SAS
LYVE1lowMHCIIhigh

Pial LYVE1highMHCIIlow

(15)
CX3CR1low LYVE1+

CD38+ (15, 16)

Mrc1, Ms4a7, Cbr2,
Pf4, Stab1, Lyve1
(27)
MHC-II (35)
CD163high (35)
CD36 (14, 36)
CD38 (15)

Mrc1, Ms4a7, Pf4, Stab1,
Cbr2, Fcrl
(27)
Lilra5, Ttr (16)
Kolmer´s Epiplexus Ms:
Sall1, Cst7, Gm1673,
Clec7a (16)
LYVE1+ MHCII negative

LYVE1negativ eMHCII+

LYVE1+ MHCII+ (15)
CCR2 (16, 37)
CD163+MHCII+ (38, 39)
Bone marrow derived
resident Ms: MHCIIlow

Yolk sac derived resident
Ms: MHCIIhigh

(16)Dural Ms
Yolk Sac and Bone
Marrow
Lyve1lowMHCIIhigh

(majority)
Lyve1lowMHCII+

(minority) (15)
EAE CD11b, CSF1R,

CD163, CD206
(21)
MHCII, CD44, PDL1,
CD117, SCA-1 (15)

Ccl5, H2-Ab1, H2-Aa,
H2-Eb1, Cd74 (27)
LYVE-1 (27)
IBA1high (40)

Ccl5high Cd74high

Lyve1low Ctsdlow (27,
41)
OX6, SILK6, CD40,
CD80, CD86
ICAM-1, VCAM-1,
CCL2, CCL3 (42)

Ctss, Il1b, S100a9, S100a8,
Ngp (27)

Mrc1, Fn1, Cd44,
Mertk, Cd206
(27)
Saa3+, Cxcl10+
(43)
C1qa, C1qc (44)
CCR2+ Ly6Chigh

(44)
MMP2, MMP9
(45, 46)
CD44 (26)
iNOS, Arginase-1
(44)
F4/80high (26)
ChP MdMs:
Cd209, MertK
(27)
CD74, LY6Chigh

(27), CCR2 (37)
TBI/SCI
Models

LY6Chi

CX3CR1lowCCR2hi

LY6Clo

CX3CR1highCCR2lo

(47)

LYVE1+ (48) LYVE1+ (48) CD163+ HO-1+

(49)
CCR2+ (50)

PD Models CCR2+ (51) CD206+

(52)
CD163+

(53)
AD Models CX3CR1+LY6Clow (54) SR-B1 (55)

CCR2 (56)
CD36 (57)

TREM2+ (58) CD45high

CD11bhigh CCR2+

(59)
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Importantly, the CSF permeating the SAS also fills the
perivascular spaces of parenchymal vessels, with complex
exchanges at the level of penetrating arteries surrounded by a
layer of pial cells (108). The CSF also collects antigen-rich
interstitial fluid from the CNS parenchyma (106), although the
extent of this process remains the subject of debate. Accordingly,
intra-CNS administration of drugs or tracers [e.g., intra-
ventricular injection of clodronate particles (109)] leads to
targeting of both lpMs and pvMs (88, 95), an often-overlooked
phenomenon in BAM literature.

Altogether, both pvMs and lpMs continuously surveil CSF
composition and thus indirectly examine the CNS at a molecular
level (12). Given the high local production of immune-regulatory
molecules such as TGFb2 and IL13, the CSF can also influence
the phenotype of resident SAS cells (110).

Long-lived lpMs originate in the yolk sac and seed the SAS
embrionically (14). Similarly to pvMs, lpMs show an impaired
potential for self-renewal following drug-induced inhibition of
Csf1r, at least compared to fast-proliferating microglia (16).

LpMs constitute approximately 1/3 of the cells collected from
human CSF (111) but are also found in high densities in the
subpial layer above the parenchyma (38). Within the SAS, they
are often located nearby fibroblast-like leptomeningeal cells (14).
Morphologically, lpMs have been described as sessile elongated
cells following leptomeningeal vessels (100). Recent intravital
observations showed, however, that lpMs are heterogenously
able to remain stationary with continuous ameboid movement or
to crawl within the SAS (14).
Frontiers in Immunology | www.frontiersin.org 5
As other BAMs, lpMs are CD163highCD206high sentinels for
pathogens and inflammation (33, 34, 49) and important sources
of the chemoattractant CXCL12/SDF-1, a key factor in the
migration of immune cells and neuronal and oligodendrocyte
precursors (112, 113). On a transcriptional level, homeostatic
lpMs express high levels of Pf4, Cbr2, Ms4a7, Stab1, Fcrls, and
Siglec1, with certain subpopulations expressing Cxcl2 and Nfkbiz
(27). A different scRNA-seq study also indicated high expression
of P2rx7, Egfl7, Clec4n, Clec10a, Folr2, and Lyve1, with a
comparable expression pattern from birth to adulthood (16).
Among these, Lyve1, a hyaluronic acid receptor highly expressed
in lymphatic vessels (114), has emerged as a marker for
MHCIIlow lpMs close to the pia mater (15), as opposed to its
low expression in MHCIIhigh lpMs in the SAS (115).

Interestingly, the SAS hosts a small population of
CX3CR1lowLyve1+CD38+ lpMs (15, 16) which might have
escaped characterization in studies discriminating BAMs based
on CX3CR1 positivity (14, 27).

Resident Dural Macrophages
The dura mater is the outermost component of the meninges,
containing a high density of collagen and blood vessels that lack a
BBB (104, 116). Differentiating this compartment from the rest
of the CNS and similar to peripheral organs, the dura displays
lymphatics running along major venous sinuses (93) and thus
cannot be considered a CNS immune barrier (13, 28).
Furthermore, the dura remains delineated from the SAS by a
functional BCSFB containing intercellular tight junctions, the
TABLE 2 | The table indicates the main RNA and protein markers described for macrophage populations in the distinct CNS compartments in human samples at
steady state (homeostasis) and upon development of different CNS pathologies.

Human Circulating
Monocytes

BAMs
(general markers)

lpMs pvMs cpMs MdMs

Location ! Blood CNS borders Leptomeninges Perivascular
Spaces

Choroid Plexus CNS

Homeostasis CD14high CD16-

CD14+ CD16high

CD14high CD16+

(32, 60, 61)

Stab1, Ch25h
(62)

Iba1+CD68+MHCII+

(majority)
MHCIInegative Iba1+

cells (minority)
(63, 64)

MS CD14+ CD16high

(65)
CD14highCD16high

(66)

Yolk Sac derived:
CD68+ (67)
CSF monocytes (bone marrow derived)
Cd9, Cd163, Egr1, Btg2, C1qa, C1qb, Maf, Csf1r,
Stab1, Ch25h, Lyve1, Trem2, Tmem119, Gpr34 (62)
Cd16+

CCR5high CD64+ CD86+CD14high

(68)
HLA-G (69)
HLA-DR+ CD33+ Lyve1+

(70)
CD14+ FCGR3A/CD16intermediate (62)

CD68, CD64,
CD40, CD32,
MHCII
CD163, CD206
(71, 72)

Iba1+CD68+MHCII+

(majority)
MHCIInegative Iba1+

cells (minority)
(63, 64)

Pv
MdMs:
Nrf2 (73)

TBI CD163+ (74) CD14+

(75)
PD CSF monocytes:

MHC-II+ (76)
CD206+ (52) CD163+

(77)
CCR2+

(78, 79)
AD TREM2+ (80) CD163+

(77)
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impermeable arachnoid membrane (13, 104, 116). While the
possible transit of immune cells from the dura to the CNS
parenchyma remains unclear, different interchanges between
dura and SAS can occur and remain an active area of study
(97). Recent investigations have highlighted direct venous
connections allowing neutrophils and potentially other myeloid
cells to transit between the brain dural vasculature and the skull
bone marrow (117, 118).

Dural resident macrophages are characterized as a dense
Lyve1lowMHCIIhigh population, with few Lyve1highMHCII+

cells present (15) in a different relative proportion compared to
the SAS (119). These cells dynamically surveil the local
environment while sensing distal gut biome changes (16).
Displaying a mixed embryonic and bone marrow origin (6),
dural macrophages account for the vast majority of blood-
derived myeloid elements found in CNS preparations during
homeostasis, together with CCR2+ macrophages within the ChP
stroma (26). During inflammation, further blood-borne
monocytes are locally recruited (97), while dural macrophages
can regulate lymphoangiogenesis through the release of VEGF-
C (120).

Resident Choroid Plexus Macrophages
ChPs are located within the third, fourth, and lateral ventricles of
the brain and host a functional barrier for immune cell
trafficking, the BCSFB. Separating peripheral circulation from
the CSF, this barrier consists of a monolayer of epithelial cells
connected through tight and adherens junctions (13) and
expressing regulatory factors such as macrophage migration
inhibitor factor (MIF) (121). On the basolateral side of this
layer, a basement membrane and a thin stroma divide the BCSFB
from fenestrated blood vessels (122, 123).

Producing the CSF and maintaining its chemical balance, the
ChP has been considered as “the kidney of the CNS”, indispensable
for homeostatic equilibrium (124–126). Furthermore, the ChP
plays roles in brain development, neurogenesis, metabolism (108,
127, 128) and secretes immunomodulatory microRNAs (129). The
CSF itself has mechanical and signaling roles exerted through
bioactive molecules and physical/chemical properties such as pH,
osmolarity, and flow speed (130).

Different macrophages populate the ChP, albeit at a lower
density compared to other CNS interfaces (26). ChP macrophages
have been historically described as stromal phagolysosome-rich
CD163+MHCII+ antigen presenters (38, 39). Recent studies,
however, indicate that the ChP hosts a highly heterogeneous
population of yolk sac-derived long-lived stromal macrophages
(ChPMs), CCR2+ blood-borne macrophages, and Sall1+ Kolmer/
epiplexus cells situated on the apical side of epithelial cells and thus
beyond the BCSFB (16).

The dynamic movement of ChPmacrophages has been recently
described by in vivo two-photon imaging following deep-brain
cannula implantation: while epiplexus cells display different kinetic
patterns on the apical side of epithelial cells, stromal macrophages
continuously surveil ChP vasculature with highly motile processes,
efficiently phagocytosing blood-borne fluorescent dextran (131).

Unique among BAMs, epiplexus macrophages share ontogeny,
local self-renewal upon depletion, and transcriptome with
Frontiers in Immunology | www.frontiersin.org 6
parenchymal microglia (16). Analysis of the ChP via scRNA-seq
identified three macrophage clusters sharing high expression of
BAM signature genes Mrc1, Ms4a7, Pf4, Stab1, Cbr2, and Fcrls
(27). Another scRNA-seq study also described three ChP clusters
sharing signature expression of Lilra5 and Ttr and identified as
Cst7+Gm1673+ Clec7a+ epiplexus cells, MHCIIhigh and MHCIIlow

ChPMs, the latter two likely corresponding to yolk sac- and bone
marrow-derived resident ChPMs, respectively (16). In parallel,
mass cytometry indicates equal numbers of Lyve1+MHCII negative,
Lyve1negativeMHCII+, and Lyve1+MHCII+ ChP macrophages, in a
proportion which differs from the one observed at other CNS
barriers (15).

Interestingly, MHCII expression in ChP macrophages is
affected by microbiome alterations likely sensed via proximal
fenestrated capillaries (16). Unfortunately, the effect of gut flora
alterations has not been convincingly investigated in other BAMs.
CIRCULATING MONOCYTES, BORDER
TRESPASSERS UPON INFLAMMATION

Origin, function and classification of blood monocytes have been
reviewed elsewhere (32, 132–134). Briefly, following monopoiesis,
monocytes are mobilized by a CCL2-dependent mechanism from
the bone marrow and from splenic secondary reservoir (135) and
enter the circulation displaying a half-life of approximately 1–2 days
inmice and of 1–7 days in humans, depending on the cellular subset
(22, 136–138). In the mouse, two major types of blood monocytes
can be described as Ly6ChighCCR2+CX3CR1low “classical”
inflammatory monocytes and Ly6ClowCCR2lowCX3CR1high “non-
classical” patrolling cells (31), with the latter originating from the
former both in lymphoid organs and in the periphery (133). While
Ly6ChighCCR2+CX3CR1low cells show fast CCR2-mediated
recruitment toward inflamed tissues (139), patrolling monocytes
mostly participate in endothelial homeostasis within the lumen
(137, 140, 141). In humans, a parallel classification exists with
“classical” monocytes characterized as CD14highCD16negative, non-
classical cells as CD14+CD16high and transitional intermediate
monocytes as CD14highCD16+ (32, 60, 61). A more complex
categorization of monocyte subtypes is, however, possible and
advisable both for mice and human studies (142–145).

Despite their population-specific differences, all circulating
monocytes express high levels of Csf1R and the receptor for
granulocyte-monocyte colony stimulating factor (GM-CSFR),
platelet endothelial cell adhesion molecule 1 (PECAM-1), and
b2 and aM integrins, among others (32, 132).

Monocytes sense inflammation and damage via cytokines,
chemoattractants, and damage-associated molecular patterns
(DAMPs) which contribute to their tissue recruitment (146),
with extravasation leading to differentiation to monocyte-derived
macrophages (MdMs) (147). Depending on the specific context
and highlighting their plastic potential, monocytes can, however,
also differentiate into monocyte-derived DCs (148–150) or even
to other cellular fates (151).

Dynamic interaction with endothelial cells in the vascular
lumen involves a selectin-dependent rolling, a chemokine-
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dependent arrest and adhesion, and an integrin-mediated
crawling eventually resulting into diapedesis (152). Extracellular
matrix molecules such as heparane sulfate proteoglycans expressed
by the CNS vasculature can also mediate monocyte interaction
with endothelial cells (153). Given a differential expression of
interaction molecules and chemokine receptors, monocyte
subtypes display intrinsic variance in this multistep process
(132). Cell deformability through cytoskeletal reorganization and
membrane stiffness changes are also regulators of trafficking (154).
During trans-endothelial migration, monocytes interact with the
endothelial molecules CD99, PECAM1 and CD155 (155) and,
following diapedesis, cross the vascular basement membrane and
interact with other perivascular cells (144, 156).

Within inflamed tissues, MdMs display substantial differences
compared to monocytes. Upregulation of cell differentiation and
trafficking genes starts during the first luminal contact with
endothelial cells (144, 157, 158), with transmigrated monocytes
showing significant changes in metabolism, chemotaxis, survival,
inflammatory response (159), and rearrangement in subcellular
structures leading to an augmented size (134). Altogether, through
the recruitment process, monocytes can acquire distinct pro- or
anti-inflammatory polarizations, substantially contributing to
pathogen eradication/tissue destruction or to the regulation of
inflammation/promotion of tissue regeneration, respectively.
MACROPHAGE PRO- AND ANTI-
INFLAMMATORY FUNCTIONS

The acquisition of a functional phenotype by tissue macrophages
and MdMs is a highly dynamic process which integrates several
local cues and thus remains challenging to define in vivo. While
these functional adaptations can be modeled and described in
high detail in vitro (160) through a variety of techniques (161),
the signaling pathways and functional activations observed in
vitro and in vivo may diverge significantly depending on the
model and the context (162).

Macrophage gene expression displays an inherent plasticity
influenced by local signaling, chemical changes and physical
confinement (163, 164). While pro-inflammatory macrophages
mainly contribute to damage and neurotoxicity by the secretion
of chemokines, inflammatory cytokines, and reactive oxygen and
nitrogen species, anti-inflammatory cells extensively contribute
to neuroprotection by debris scavenging and by releasing tissue
regeneration intermediates and growth factors. Functional
specifications are also reflected by divergent metabolic
adaptations, with pro- and anti-inflammatory polarizations
distinctively characterized by differential ATP production and
oxygen consumption rates (165). Notably, the acquisition of a
specific macrophage phenotype varies substantially also between
different mouse strains (166).

To describe the spectrum of macrophage functions,
researchers have largely made use of the M1/M2 dichotomy, a
jargon introduced in the 1990s to indicate the outcomes of
cellular stimulation with IL-4 or lipopolysaccharide (LPS)/
IFNg, respectively (167). Unfortunately, the application of the
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binary M1/M2 nomenclature to extremely diverse in vitro and in
vivo contexts was unable to properly define multifaceted cellular
actions (162, 163, 168). The limitations of this dichotomy were
also evidenced when studying microglia/macrophage activation
in several pathological contexts, including traumatic and
neurodegenerative diseases and disease models (165). While
some efforts of clarification in macrophage nomenclature have
been made (25, 168–170), a generally accepted consensus is still
missing. As suggested by experts in the field (170), we support a
jargon describing cellular phenotypes via the in vitro stimuli used
or, in complex in vivo scenarios, via the observed pro- or anti-
inflammatory roles of the described populations.

Besides nomenclature issues, however, differentially polarized
macrophage and monocyte subsets from mice and humans
possess distinct migratory properties, for example, toward
plasminogen (171). Notably, their CNS-invading trajectories
and the anatomical site in which they acquire their differential
function remain an undeveloped area of study.
MONOCYTE TRAFFICKING THROUGH
THE CNS AT STEADY STATE

While accumulation of peripheral immune cells at CNS borders
is a hallmark of CNS diseases (172), rapid recruitment of
monocytes to perivascular CNS spaces is also observed upon
peripheral inflammation, such as in endotoxemia (173). While
this highlights the potential for active CNS surveillance by blood-
borne myeloid cells notwithstanding the absence of local
damage, CNS interfaces at steady state host only a limited
number of bone marrow-derived immune cells (89, 174, 175).
Recruitment of these cells drastically depends on local tissue
accessibility, with interfaces such as the dura mater and the ChP
hosting fenestrated vessels and a concomitant higher density of
monocytes (16).

Importantly, stromal accumulation of blood-borne leukocytes
in the ChP might serve as an intermediate step for reaching the
CSF by crossing the BCSFB (176, 177). Analysis of human CSF
indicates that approximately 1/3 of the cellular compartment
comprises monocytes (178), with a vast majority of blood-borne
CD16high cells (68). The homeostatic recruitment of these cells,
potentially extravasating at the ChP or directly through
leptomeningeal vessels as shown upon CNS damage (47, 112),
is, however, unknown.

Given the secluded intraventricular location of ChPs, in vitro
models have contributed significantly to our understanding of
local cell trafficking (179). Using primary ChP mouse epithelial
cells, we recently showed that MdMs can migrate through the
BCSFB epithelium also in absence of inflammation (37). This
transmigration pathway seems possible also for other myeloid
cells (180).

Within the CNS parenchyma, basal immunesurveillance is
exerted by microglia and pvMs, without apparent contributions
by MdMs (14). The ability of MdMs to surveil these border areas
at steady state has been historically overestimated due to the
absence of tools discriminating yolk sac- and bone marrow-
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derived myeloid cells and due to the experimental use of
chemotherapy or gamma irradiation, artificially increasing BBB
permeability and CNS chemokine production (15, 16, 22).

In general, the concept of peripheral immunesurveillance
implies that patrolling antigen-presenting cells scan their target
organ and, upon infection, move toward secondary lymphoid
organs to trigger antigen-specific lymphocyte activation. Key to
its relative immune privilege, however, the CNS shows limited
afferent routes for cell-mediated antigen drainage (1). Antigen-
rich CSF drains to peripheral venous blood via arachnoid villi
and granulations and to the lymphatic system along nerve roots
and nasal and dura lymphatics (12, 181). Notably, the relative
importance of these pathways is still under debate (181, 182).
Through these exit routes, CNS antigens can accumulate in
peripheral lymph nodes (182, 183), potentially via DCs
trafficking from CNS borders to peripheral organs (28, 184).
Whether monocytes and MdMs can also participate in this
afferent arm of CNS immunity in a comparable manner to that
observed in peripheral tissues (185) is, however, unclear (175).

MYELOID DWELLERS AND
TRESPASSERS AT CNS INTERFACES
UPON AUTO-AGGRESSIVE CNS
INFLAMMATION

Macrophages constitute the predominant cell type in the damaged
CNS of multiple sclerosis (MS) patients, independently from
clinical course (169) and lesion subtype (186, 187). Accordingly,
MS disease-modifying therapies strongly affect monocyte/
macrophage functions as part of their therapeutic action (169,
188–190).

MS is a chronic inflammatory disease of the CNSwith unknown
etiology and a heterogeneous pathological course, including
relapsing-remitting (RRMS), primary and secondary progressive
forms (191). Histopathologically,MS is characterized bymultifocal
BBB damage and leukocyte infiltration in lesions displaying
demyelination and neuronal death (192, 193). To date, whether
neurodegeneration is the primary cause or rather the secondary
consequence of auto-aggressive inflammation remains
debated (194).

Blood monocytes isolated from MS patients show altered
expression of microRNAs (195), microvescicle release (196),
cytokines (197), norepinephrine (198), and enhanced CCL2-,
CCL5-, and CXCL1-driven migration (188, 199) compared to
cells from healthy controls. The relative proportions of
circulating classical, intermediate, and nonclassical monocytes
varies across studies, with some indicating a substantial increase
in nonclassical CD14+CD16high monocytes (65), while recent
work shows an increase in CD14high and CD16high monocytes
specifically in RRMS patients with inactive disease (66).

Within the CNS parenchyma, resident and invading
macrophages play complex roles both preclinically and in
established lesions (71). Monocyte invasion might, however,
vary at different disease stages, with less MdM infiltrates
observed in progressive MS compared to RRMS (200).
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Inflammatory macrophage functions range from tissue
destruction (103) to beneficial roles (201, 202), a continuum
reflecting their unique transcriptional plasticity (163, 170). While
microglia actions during MS fall in the same context-dependent
classification, slowly expanding lesions from progressive MS
patients display high density of pro-inflammatory markers in
perilesional microglia, showing how these cells can contribute to
disease progression (203). In general, however, it remains unclear
whether distinct microglia/macrophage actions are preferentially
associated with different phases of lesion evolution, or whether
they co-exist at every clinical timepoint or even within the same
cells (72, 169).

Albeit heterogeneous, the distribution of MS lesions often
follows an expected pattern (204), potentially shaped by routes of
leukocyte entry and local antigen presentation (205).

To mimic the multifaceted pathological aspects of MS, several
inducible and spontaneous animal models have been established.
Among these, experimental autoimmune encephalomyelitis
(EAE) has been the main tool to study disease mechanisms
and to develop and test MS disease-modifying therapies (169),
despite its intrinsic limitations as an MS model (206).

As in MS, inflammation in EAE is characterized by a high
density of activated macrophages at CNS interfaces and within
parenchymal lesions (Figure 2) (44). Given the overlapping
expression of key markers including CD11b, Csf1R, CD163, and
CD206 (21), the relative pathological contributions of MdMs and
resident macrophages has remained unaddressed for decades, but
technical advancements finally allow us to define their respective
roles (169). Upon induction of EAE, BAMs increase their
expression of MHCII, CD44, the immunomodulatory molecule
PDL1, CD117 (c-KIT), and Sca-1 (Ly6a) (15). Despite convergent
morphological and expression changes, resident macrophages and
MdMs remain transcriptionally separate (208) and can be
distinguished through mass cytometry (15) and scRNAseq
techniques (27). The survival dynamics of recruited MdMs
remain, however, unclear, with previous work indicating an
inability of invading macrophages to persist as microglia-like
cells (209) and recent reports showing the opposite (21, 210, 211).

During the active phase of EAE, MdMs substantially outnumber
BAMs at CNS interfaces (15). Compared to circulating monocytes,
CNS-recruited MdMs upregulate glycolytic enzymes and
production of inflammatory molecules (44). While experimental
MdM removal by apoptosis reduces disease burden (212), MdM
accumulation directly correlates with neurodegeneration (208),
likely through an increased production of reactive nitrogen and
oxygen species (ROS/RNS) (213, 214). Altogether, monocyte
infiltration into the CNS parenchyma parallels EAE clinical signs
and exerts a significant influence on glial cells (215, 216), at the same
time contributing to tissue regeneration (217, 218).

The overall complexity of macrophage phenotypes during
EAE is exemplified by the differential expression of the enzymes
iNOS and arginase-1 in CCR2+Ly6Chigh MdMs (44). While
iNOS+ MdMs revealed higher glycolytic rates, expression of
matrix metalloproteinases (MMPs), chemokines (e.g., Ccl5),
and pro-inflammatory cytokines, arginase-1+ MdMs showed
increased expression of scavenging receptors, complement
March 2021 | Volume 11 | Article 609921

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ivan et al. Macrophage Actions at CNS Borders
proteins and oxidative phosphorylation enzymes (44). Notably
and beside iNOS+ and arginase-1+ cells, a recent study described
two Saa3+ and Cxcl10+ monocyte populations substantially
contributing to tissue damage within the CNS parenchyma (43).

Before reaching the white or graymatter, MdMs are increasingly
recruited to the ChP stroma (37) and need to cross CNS barriers as
shown by accumulation within perivascular cuffs at the BBB (45,
46) or in the CSF, extravasating from the ChP and/or from
leptomeningeal vessels. Notably, massive monocyte/macrophage
accumulation at CNS borders does not directly lead to clinical
symptoms in absence of parenchymal infiltration (219). Passage
Frontiers in Immunology | www.frontiersin.org 9
through these interfaces allows, however, monocytes to adapt to the
border microenvironment, acquire distinct functional polarizations
and, in turn, regulate the evolution of the disease. Hence, the
description of MdM migratory routes and the definition of the
parallel role of BAMs represent a fundamental milestone in our
understanding of auto-aggressive CNS inflammation.

Macrophages at the BBB During MS
and EAE
BAMs efficiently sense the peripheral environment via bidirectional
communication with their milieu and in particular with endothelial
A

B C

FIGURE 2 | Macrophages populating CNS barriers and parenchyma during autoimmune CNS inflammation. The figure shows the mouse CNS following induction of
EAE and disease development. The magnified inlets illustrate schematic representations of the anatomical CNS interfaces containing functional barriers and blood-
borne MdMs. (A) The mouse meninges. Top to bottom, the dura mater hosts yolk sac-derived (green), blood-borne CCR2+ macrophages (orange), and several
activated MdMs (red). Different monocytes/MdMs (red) infiltrate the SAS and the subpial space either extravasating at the level of leptomeningeal vessels or crossing
the distal ChP BCSFB, thus reaching the CSF. MdMs can invade the CNS parenchyma while yolk sac-derived microglia (green) increase in number. (B) Schematic
representation of the perivascular space at the level of post-capillary CNS venules, hosting yolk sac-derived pvMs (green) and invading MdMs (red) collectively
forming a perivascular inflammatory cuff. After crossing the glia limitans, MdMs (red) accumulate in parenchymal lesions. (C) Schematic representation of the ChP
within a CSF-filled brain ventricle lined by ependymal cells. The ChP stroma is enlarged compared to steady state and hosts a combination of yolk sac-derived cpMs
(green) and different populations of blood-borne inflammatory CCR2+ macrophages (orange/red) increasingly extravasated from stromal vessels lacking a BBB.
Monocytes circulating within vascular lumens are shown in yellow. The epithelial cells of the BCSFB show decreased density of apical microvilli and are represented
as darker and lighter cells to model the ultrastructural alterations previously reported (207). Next to each panel, gray boxes illustrate the main protein markers
identifying CNS-resident macrophages in the distinct anatomical compartments, and the main markers commonly expressed by MdMs during CNS inflammation.
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cells (220), scanning for potential distal danger and reacting to it
promptly (100, 221). Experimental evidences from both MS and
EAE indeed suggest that pvMs become activated even before
development of clinical symptoms and infiltration by peripheral
cells (222, 223). Accordingly, pre-clinical CNS lesions observed in
marmoset EAE models correlate with increased Iba1+ pvMs (224).
CNS inflammation leads to a sudden increase in pvM density and
to augmented antigen-presenting capabilities (225). These pvMs
also increase in number in EAE (42, 226) via a local proliferation
lasting until the chronic disease phase (14). The observed
proliferation rate is, however, minor compared to the one
described for microglia (27).

Nearby MS lesions, pvMs express CD68, CD64, CD40, CD32,
and MHCII, as well as the signature proteins CD163 and CD206
(71, 72). During their activation, pvMs also upregulate
expression of interacting molecules such as ICAM-1 and
VCAM-1 and chemoattractants such as CCL2/MCP-1 and
CCL3/MIP-1a (42). Notably, in both EAE and MS, pvMs
appear highly phagocytic and take up substantial amounts of
iron, directly linked to demyelination (227, 228).

Surprisingly, however, scRNA-seq analysis indicates that
pvMs undergo only mild modifications to their overall
transcriptional profile during EAE, compared to their steady
state (27). Among the few significantly regulated genes, an
increased expression of Ccl5, a T cell chemoattractant, of the
MIF receptor Cd74 (41) and a decreased expression of Lyve1 and
Ctsd (Cathepsin D, a bactericidal protein) was observed (27).

In parallel, neuroinflammation correlates with massive
recruitment of peripheral monocytes which cross the BBB
drastically increasing the cellularity of perivascular spaces.
Monocyte mobilization from peripheral reservoirs is regulated
by several factors including GM-CSF (149), a cytokine playing
key roles in both EAE and MS (229).

MdM recruitment results in the formation of perivascular
cuffs, a MS pathological hallmark where lymphocytes intersperse
with a majority of CD16high myelin-laden MdMs (208, 230). At
least in EAE, perivascular MdMs appear morphologically smaller
than activated resident pvMs (27). A series of DAMPs/alarmins
including HGMB1, IL33, and ATP participate in the recruitment
of monocytes (146). In turn, both in vitro (68) and in vivo data
(45) indicate that MdM perivascular accumulation enhance
recruitment and parenchymal invasion of lymphocytes.

Perivascular inflammatory cell cuff formation is often associated
with BBB disruption, a multifaceted concept entailing exogenous
and endogenous mechanisms (231). Even though BBB damage aid
monocyte extravasation, immune cells can cross endothelial
barriers showing intact intercellular tight junctions (3, 37, 190).
Monocyte diapedesis is aided by the release of inflammatory
molecules such as tissue transglutaminase 2, oncostatin M,
histamine, superoxide, GM-CSF, and TNFa (232–235). Contact
with endothelial cells involves interactions between monocyte
integrins such as VLA-4/LFA-1 and endothelial integrin-binding
molecules such as VCAM-1/ICAM-1 (169), homophilic
interactions through Ninjurin1 (236) and expression of the
constitutively expressed adhesion molecule CD166 (237).
Mechanistically, contact of monocytes with the BBB allows
Frontiers in Immunology | www.frontiersin.org 10
release of tissue plasminogen activator from endothelial cells
following activation of the NMDA receptor NR1, allowing, in
turn, monocyte diapedesis (238, 239). Perivascular cell cuff
formation is also dependent on the local expression and
accumulation of chemokines, including CCL2 (240), CCL3,
CXCL12 (46), and potentially of the constitutively expressed
CCL19 (241).

In particular, CCL2 actions have been extensively studied in
MS and EAE (242). This chemokine can exert distinct roles
depending on its astrocytic or endothelial source (240). CCL2
regulates CCR2+ monocyte adherence and chemotaxis by acting
on monocyte integrin conformation and clustering (243–246).
Following tissue invasion, CCR2 expression is downregulated
contributing to CNS retention of inflammatory MdMs as
observed in vivo (44) and in vitro (37). Signaling through
CCR1 and CCR5 can similarly regulate monocyte multistep
accumulation in the perivascular spaces, collectively guiding
disease development (185, 247).

Despite its intrinsic pathological consequences, the accumulation
of MdMs in perivascular cuffs also constitutes an efficient checkpoint
mechanism ensuring that cells do not indiscriminately enter in
contact with neuronal cells. To infiltrate the CNS parenchyma
from the perivascular space, immune cells need to additionally
cross the parenchymal basement membrane and the glia limitans
(45). Notably, during neuroinflammation, BBB disruption induces
expression of tight junctions in astrocytic end-feet in both EAE (248)
and MS (249). Crossing of this second barrier crucially requires
expression of MMPs and of MMP regulatory proteins such as
CD147 (169). In this process, MMP2 and MMP9 participate in
the lysis of perivascular chemokines such as CXCL12, that increase
retention of MdMs preventing parenchymal infiltration (45, 46).

Are perivascular MdMs functionally polarized during anti-CNS
responses? While interacting with endothelial cells, transmigrating
monocytes encounter several activation signals. GM-CSF, shown to
augment monocyte diapedesis at the BBB, can induce a hybrid
inflammatory phenotype similar to the one observed in MS tissues
(232). GM-CSF can also be released by endothelial cells (250, 251)
upon stimulation by Il-1b, an inflammatory cytokine released by
invading monocytes and indispensable for their infiltration (251),
in a looping mechanism potentiating MdM activation between
BBB and parenchyma (252). Furthermore, feedback regulation by
reactive species-mediated quorum-sensing might play a key role in
phenotype adaptation (30). MdMs within the perivascular space
can have an iNOS+ or Arginase-1+ phenotype; furthermore, in vivo
imaging indicated that MdMs acquired a pro-inflammatory state
immediately following diapedesis and before entering the CNS
parenchyma (44). Accordingly, perivascular accumulation of
glycolytic phagocytes has been observed in both EAE and MS,
with recruited MdMs reducing their rate of glycolysis once in the
parenchyma (253). Inhibition of glycolysis and of lactate secretion
reduced macrophage invasion, both in vivo and in vitro (253).
MdMs in perivascular cuffs were strongly positive for Nrf2, a
transcription factor involved in protection against oxidative stress
and highly expressed in acute MS lesions (73). Moreover, in both
MS and EAE, these cells upregulate expression of the extracellular
matrix components lectican versican V1 and chondroitin sulfate
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glycosaminoglycans, molecules able to enhance MdM migration
and secretion of inflammatory cytokine and chemokines (254).
Finally, pvMs in active demyelinating MS lesions also show strong
reactivity for TGFb (255), an anti-inflammatory molecule with
controversial roles (256).

Taken together, the perivascular space thus appears like a key
compartment able to shape the pathological role of recruited
monocytes in their migration toward the inflamed parenchyma.

Macrophages in the SAS During MS
and EAE
Meningeal inflammation is common in MS clinical manifestations,
including primary progressive forms (67, 257), often correlating
with neurodegeneration (258). The meninges of MS patients can
also host lymphoid follicle-like structures rich in B lymphocytes,
potential drivers of disease (259).

However, histological analysis reveals that CD68+ myelin-
laden phagocytes are the most represented cell type in the
inflamed SAS (67). Collection of CSF via lumbar puncture
allows analysis of non-adherent SAS phagocytes and indicates
significant variations in CSF cellularity depending on the MS
subtype. Compared to healthy donors, the CSF of RRMS patients
shows a relative decrease in CD16+ monocytes and an increasing
proportion of CCR5highCD64+CD86+CD14+ monocytic cells
(68). The described decrease in CD16+ monocytes is not
observed in primary progressive patients, potentially reflecting
different recruitment mechanisms (68). Other studies have
shown an increased presence of monocytes expressing HLA-G,
an immunosuppressive non-classical MHC molecule (69).
Notably, a recent scRNA-seq analysis of the CSF of MS
patients identified a majority of monocytes expressing HLA-
DR and the lectin CD33 and a small population of HLA-
DRhighCD33midLyve1+ macrophages identified by the authors
as “microglia” due to their expression of Trem2 and Olr1 (70).
This jargon is, however, misleading, as no evidence of
parenchymal microglia crossing the glia limitans toward the
CSF exists. In another study, a comparable population (named
“Mono2”) showed expression of BAMmarkers such as Stab1 and
Ch25h and of inflammatory genes such as Cd9, Cd163, Egr1,
Btg2, C1qa, C1qb, Maf, and Csf1R (62).

Notwithstanding their controversial classification, SAS lpMs
clearly play a key role in MS/EAE by producing inflammatory
molecules such as CCL5, CXCL9, CXCL10, and CXCL11, in
turn, recruiting further leukocytes into the CSF (112, 260).

In EAE, lpMs increase their Iba1 immune reactivity several days
before clinical onset of disease, thus indicating a role in the
initiation of local inflammation (40). LpMs are highly dynamic
dwellers and interact extensively with invading T cells, increasing
their proliferation rate during the acute EAE phase (27, 112). This
increase in number drops during the chronic phase of disease,
paralleled by local appearance of apoptotic lpMs (27). Notably,
similar to pvMs, lpM activation in EAE does not lead to dramatic
transcriptome changes compared to homeostatic conditions (27).

In MS and EAE, monocytes/MdMs also accumulate in large
numbers in the SAS following extravasation from the leptomeningeal
vasculature or from the ChP and CSF-filled ventricles. Infiltration
Frontiers in Immunology | www.frontiersin.org 11
through leptomeningeal vessels follows increased intraluminal
monocyte crawling and expression of the enzyme tissue
transglutaminase 2 (261), known for its involvement in cell
adhesion to fibronectin, a glycoprotein released by endothelial cells
and pericytes (262).

MdM and lpM dynamics in the SAS during EAE have been
extensively explored by intravital imaging (223). Preclinically,
lpMs cluster around leptomeningeal vessels following leakage of
plasma fibrinogen, which, in turn, triggers ROS production
(222). Studies in rats have demonstrated that meningeal
phagocytes can present both self and non-self antigens and
thus activate infiltrating T cells in a multistep process requiring
chemokine signaling (112, 263–265).

Long-lasting contacts seem to occur preferentially between
lymphocytes and blood-borne CCR2+ monocyte-derived cells,
rather than with resident BAMs (27).

Surprisingly, however, meningeal macrophages do to play an
essential role in antigen presentation during EAE. A series of recent
reports convincingly demonstrated that expression of MHCII in
CD11c+ classic DCs but not in CX3CR1+ macrophages is
indispensable for disease induction (28, 266, 267). Nonetheless, the
frequency of lpM and MdM contacting lymphocytes suggests the
existence of further regulatory roles shaping EAE. In our work,
the majority of SASMdMdisplayed strong expression of arginase-1+

in striking contrast to the iNOS+ dominated nature of parenchymal
lesions, potentially indicating an anti-inflammatory function of lpMs
(44). The differential representation of MdM phenotypes in the SAS
and in other CNS compartments might also be related to distinct
sensitivity toward chemoattractants, as shown in vitro using
differentially polarized human cells (268, 269), either as a result of
differential chemokine receptor expression or a differential receptor
response to transduction.

From the SAS, activated MdMs can reach the CNS parenchyma
and participate in the formation of subpial demyelinating lesions,
an histological hallmark of progressive MS forms (191). The
contribution of MdMs, however, depends on the type of lesion,
with so-called leukocortical plaques showing a high number of
activated macrophages and purely subpial cortical lesions mostly
devoid of inflammatory infiltrates (257). In EAE, subpial white
matter demyelination is commonly described in the spinal cord, but
cortical gray matter pathology, as observed in MS, is rare. The latter
type of lesion can, however, be modeled in mice through cortical
injections of TNF and IFNg (270, 271) or by peripheral injection of
b-synuclein-specific T cells (272).

To reach the CNS parenchyma from the SAS, meningeal MdMs
need to transverse the pia mater, the parenchyma-associated
basement membrane and, eventually, the glia limitans (10). In
vivo imaging has shown that cells within the SAS might move
toward the parenchyma by crawling on the external surface of
leptomeningeal vessels entering the parenchyma (273). However,
the permeability of the pia mater to immune cell trafficking
remains debated, and the required interaction molecules are
unknown (104, 107, 260).

Migration of MdMs from the meninges to the parenchyma
can be downregulated by the administration of CXCR7
antagonists, impeding CXCL12 signaling and resulting in
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meningeal accumulation (274). Retention of phagocytes in the
SAS was paralleled by loss of VCAM-1 on astrocytes, thus
highlighting a potential role of these cells as interactive
partners in the invasion process (275).

To summarize, even though anatomical differences between
the meningeal system in rodents and humans impede a fully
coherent discussion, several reports have evidenced the central
part played by leptomeninges in initiation and evolution of
autoimmune CNS inflammation. Nonetheless, many unsolved
questions exist regarding macrophage functions and trafficking
routes. A detailed anatomical description of these compartments
and the creation of transgenic animals allowing visualization of
defined meningeal layers (116) remain crucially needed for the
progress of the field.

Macrophages in the ChP During MS
and EAE
In the context of auto-aggressive CNS inflammation, the ChP has
been proposed as the first CNS gateway for autoreactive
lymphocytes prior to BBB disruption, subsequently triggering a
secondary leukocyte CNS infiltration driving disease progression
(40, 260, 276).

Rather than a sealed barrier, the BCSFB is considered an
active yet highly regulated exchange surface (108) showing a
differential expression of tight junctions compared to the
BBB (123).

Immune cell trafficking at the BCSFB seems to be regulated by
IFNg-dependent activation in immune surveillance and repair
(277). Both CCL20 and CX3CL1 are constitutively expressed at
the ChP and might guide recruitment of CCR6+ (278) and of
CX3CR1+ leukocytes, respectively (279). The BCSFB is highly
sensitive to systemic inflammation. Thus, peripheral LPS
administration leads to local TNF and IL1b secretion,
upregulates CXCL1 and CCL2 (280, 281), and triggers release
of destabilizing MMP8 and MMP9 (282) and impairment of
tight junction barrier properties, an overall reaction suggesting
higher trafficking of immune cells.

In the ChP of MS patients, the tight junction protein claudin-
3 is downregulated compared to healthy controls (283). Reports
of its role in EAE models are, however, controversial, with its
deletion increasing numbers of CSF-infiltrated MdMs in one
study (283) and to a lack of BCSFB impairment in a recent
report (284).

Interestingly, interaction molecules such as ICAM-1 and
VCAM-1 are specifically expressed on the apical side of the
BCSFB epithelium, facing the CSF (285). During EAE, their
increased expression and a de novo apical expression of
MAdCAM-1 can be observed (207). Notably, while leukocytes
crossing the BCSFB toward the CSF utilize ICAM-1 in the last
steps of diapedesis (286), the apical location of these molecules
seemingly indicates that leukocytes can also migrate backward
from the CSF to the ChP stroma (286, 287).

As shown by 2-photon microscopy, ChP macrophages readily
respond to peripheral LPS injections by moving toward nearby
vessels, with focal ChP damage leading to spatial reorganization
of epiplexus cells around the injury site. In both scenarios not all
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macrophages responded to the danger stimuli, again highlighting
the heterogeneity of ChP dwellers (131).

Compared to steady state, induction of EAE leads to the
appearance of disease-associated ChPMs (27). These activated
cells show significantly increased expression of antigen
presentation molecules, chemokines and cytokines such as Il1b,
with one cluster strongly positive for MHCII genes and for Ctss
(encoding for Cathepsin S), and the other showing high
expression of the antimicrobial products S100a9, S100a8, and
Ngp (27). The presence of CCR2+ MdMs in the ChP appears
substantially enriched throughout the disease, with a minor
proportion of these cells locally expressing iNOS and/or
arginase-1 (37).

ChP MdM populations also show high CD74 positivity and
can be divided in three different cellular clusters composed of
Ly6Chigh monocyte-like, Cd209+ DC-like and MertK+

macrophage-like cells (27).
Beside observations in EAE, not much is known about ChP

macrophages in MS. Analysis of human ChP tissue revealed a
high density of CD68+MHCII+ macrophages and a minor
proportion of MHCIInegative Iba1+ cells, with these cells present
within the stroma, intercalated between epithelial cells or lying
on the apical side of epithelial cells (63, 64). However, the densities
of these cells appeared comparable between progressive MS
patients and healthy controls (64).

Do MdMs really access the CSF via the ChP during autoaggressive
neuroinflammation? In non-autoimmune disease models, monocytes/
macrophages were indeed shown to cross the BCSFB toward the
CSF (47, 288, 289). Using in vitro BCSFBmodels, we could recently
confirm that functionally polarized mouse macrophages can
actively migrate through the BCSFB monolayer (37). Apparently
migrating MHCII+CD68+ macrophages have also been described
interspersed between epithelial cells in the ChP of MS patients (63),
yet these cells might represent DC surveillants bridging across the
BCSFB (290).

To summarize, while in MS the gateway function of the ChP
remains unsupported by direct evidence, an active role of the
BCSFB in MdM recruitment to the CNS is highly plausable and
this CNS interface should become a focus of attention in
neuroinflammatory research.
MONOCYTE/MACROPHAGES AT CNS
INTERFACES IN TRAUMATIC CNS INJURY

Despite shielding by bones, meninges, and CSF, traumatic
damage to the CNS parenchyma is a common pathological
occurrence leading to neurodegeneration and to an innate
immune response promoting further tissue damage (291, 292).
Physical insults can occur to the brain (traumatic brain injury,
TBI) or to the spinal cord (spinal cord injury, SCI), with these
two compartments showing the evolution of distinct pathologies
(293). Depending on their severity, mechanical injuries to the
CNS result in local death, DAMP release, activation of BAMs and
to different degrees of MdM infiltration (146). Interestingly,
compared to brain lesions, physical damage to the spinal cord
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generally results into a higher activation of CNS macrophages,
stronger BBB damage, and denser MdM accumulation (293).

Spinal Cord Injury
Following SCI, perilesional microglia proliferate creating a
protective “microglial scar” in concert with astrocytes (294).
Communication between microglia and infiltrating MdMs
influences their reciprocal polarization as well as lesion evolution
(215). While removal of microglia in SCI models proved
detrimental, the role of BAMs in SCI was not convincingly
addressed. One report showed that pvMs and lpMs do not
participate in the disease process, nor do they proliferate
extensively in response to SCI (294). The seemingly minor role
of BAMs in SCI evolution is supported by observations in
demyelinating models: following intra-parenchymal injections of
lysophosphatidylcholine, Lyve1+ lpMs and pvMs do not penetrate
into demyelinated spinal cord lesions (48). Nonetheless, more
research is crucially needed to clarify BAM participation in SCI.

Upon injury, spinal cord endothelial cells upregulate the
expression of VCAM-1 and ICAM-1 allowing first neutrophils
and later monocytes to accumulate in the damaged region (295).
Interestingly, these myeloid cells originate mostly from the
spleen reservoir pool rather than from the bone marrow, a
pattern likely related to the acuteness of the disease (135, 296).
Similar to what is observed in EAE models, sensing of CCL2 and
CXCL12 and production of MMP9 are required for monocyte
migration from the BBB to the parenchyma upon SCI (297, 298).
CCL2 and other chemokines released by glial cells such as
astrocytes might also contribute to the acquisition of a
functional phenotype by invading and local macrophages
(299). Local TNF-a production increases MMP-9 expression
highlighting a complex interplay of cytokines and proteases.
Once in the parenchyma, MdMs follow a gradient of C5a
molecules toward the lesion epicenter in a mechanism
regulated by IRF8-purinergic receptor axis, all leading to
enhanced tissue repair (300). Accordingly, MdMs in SCI have
been described as beneficial (146). Conditional ablation of
CD11c+ phagocytes during the first week after SCI resulted in
worsened clinical recovery, however, did not affect the pathology
when induced 2 weeks following damage (301). The beneficial
effect of MdMs was attributed to their expression of anti-
inflammatory IL-10 at the lesion margin (301). Notably, a
follow-up work showed that while Ly6ChiCX3CR1loCCR2hi

monocytes infiltrated the parenchyma in a CCL2-dependent
manner via leptomeningeal vessels proximal to the lesion, anti-
inflammatory Ly6CloCX3CR1highCCR2lo cells entered the CNS
trafficking through the BCSFB (47). In this study, monocyte
migration at the ChP relied on VLA4/VCAM-1 interactions as
well as on the expression of the adenosine-catalyzing enzyme
CD73. Intriguingly, it has been postulated that these polarization
differences could be related to the cellular constituents of the two
barriers, epithelial cells for the BCSCF and endothelial cells for
leptomeningeal vessels (47).

Nonetheless, the net contribution of MdMs to SCI appears
time- and location-dependent (302–305). Indeed, one report
described locally recruited MdMs as pro-inflammatory players
surrounded by anti-inflammatory microglia distal to the injured
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area (306). Acquisition of an anti-inflammatory phenotype is
also affected by the activation status of nearby astroglial cells
(299). In another work, inhibition of monocyte infiltration (via
splenectomy) accordingly resulted into an ameliorated clinical
phenotype (307). Lastly, other studies have observed that MdMs
in the lesioned parenchyma show co-expression of pro- and anti-
inflammatory markers, once more highlighting the non-binary
role of MdMs in CNS injury and indicating complex local
functions upon recruitment (308, 309).

Traumatic Brain Injury
Similar to SCI, TBI shows a long-term pathological evolution
involving excitotoxicity, cytokine release, ROS/RNS production,
and infiltrating myeloid cells with neurotoxic as well as
neuroprotective functions (310). Beside the extensively investigated
role of microglia (50), an involvement of BAMs upon TBI has been
suggested by both human and animal studies.

In TBI patients, CD163+ microglia/macrophages are
increased in both the lesion and perivascular spaces indicating
a potential participation of CD163+ pvMs to damage evolution
(74). CD163+ cells are also increased in a rat TBI model two days
post TBI, however, mainly within the lesion (49). Importantly,
most CD163+ cells co-expressed heme oxygenase-1 (49), a key
enzyme in heme catabolism (311) exerting anti-inflammatory
effects (312, 313) likely promoting neuroprotection following
TBI. Nonetheless, in these studies, the peripheral or resident
nature of pvMs was not convincingly defined.

Blood-borne MdMs play instead a recognized and context-
dependent role in TBI (314). Pro-inflammatory macrophages are
recruited early in the lesioned area, with CCR2+ MdMs following
gradients of chemokines released from activated parenchymal
cells (50). Notably, CCR2+ monocytes seem to mediate local
ROS/RNS production (315, 316) and might thus constitute
important pharmacological targets. Indeed, intravenous
injection of immunomodulatory nanoparticles reduced MdM
recruitment by affecting monocyte survival and sequestration
within the spleen (190), altogether leading to a strong reduction
of lesion volume (317).

Conversely, other studies have provided evidence for a beneficial
effect of monocyte recruitment after mild TBI, for instance by
reducing meningeal vascular damage (318), a pathological hallmark
associated to peripheral immune response (319). In the latter study,
while “classical” debris-scavenging monocytes were located at the
center of meningeal lesions, wound-healing “non-classical”
monocytes were localized peri-lesionally and promoted meningeal
angiogenesis via expression of MMP-2 (318).

How do MdMs access the CNS parenchyma following TBI?
Analysis of patient tissues suggests that CD14+ monocytes initially
migrate toward the perilesional perivascular space within the first
days following damage and then move toward the parenchyma
(75). These MdMs can remain in the perilesional area for weeks
(75). In a rat model of TBI, monocytes were instead shown to
enter the lesioned CNS parenchyma by crossing SAS microvessels,
subsequently accumulating near the injury site (320). SomeMdMs
appeared to move a short distance along perivascular spaces toward
the brain parenchyma (320). This trafficking route utilized by
MdMs (and neutrophils) requires cellular interactions that can
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also be mediated by JAM-A, a junctional adhesion molecule also
expressed by macrophages (321, 322).

A potential role of the ChP as a monocyte access gateway in
TBI models was suggested by the rapid increase in CCL2
production by the ChP ipsilateral to the lesion. The resulting
rise in CCL2 CSF concentration mirrors observations in the CSF
of severe TBI patients (323). BCSFB epithelial cultures indicated
that CCL2 is secreted across both the apical and basolateral side,
a bidirectional production necessary for leukocyte migration at
the BCSFB following TBI (288). Accordingly, the blocking of this
signaling reduced CCR2+ monocyte infiltration and lesion
volume (324) and improved neurological recovery after TBI
(315, 323, 325). Interestingly, lack of MdM infiltration
correlated with increased astrocyte proliferation and reduced
astroglial scar formation, thus suggesting a key role of
juxtavascular astrocytes in the interaction with MdMs (326).

Taken together, evidence for a potential involvement of BAMs in
traumatic CNS disorders remains sparse. Furthermore, experimental
approaches allowing selective investigation of yolk sac-derived
macrophages have not yet been utilized in this context. The
parallel role of CNS-infiltrating monocytes has been more
extensively described and appear extremely dependent on
recruitment timing, damage extent and lesion location. A better
definition of the role of MdMs would potentially aid the
development of novel therapeutics for patients suffering from Sor
TBI. and/or TBI.
MYELOID DWELLERS AND
TRESPASSERS AT CNS INTERFACES
IN NEURODEGENERATIVE DISEASES

Parkinson’s Disease
Parkinson’s disease (PD) is a progressive neurodegenerative
disorder characterized by neuronal loss in the substantia nigra
pars compacta (SNpc) and by chronic CNS inflammation in both
patients and animal models (327, 328). Histopathologically, brain
samples of PD patients show accumulation of Lewy bodies rich in
the neuronal protein a-synuclein (329). Post-mortem and imaging
analysis of PD patients revealed detrimental microglial activation
(330, 331) accompanied by upregulation of iNOS as well as
production of pro-inflammatory cytokines within the parenchyma
(332–334). Strong to moderate microglial activation is also
observable in the different animal models of PD (327, 335, 336).

However, the role of BAMs in disease progression has rarely
been addressed. In a viral model of synucleinopathy, degeneration
of neurons in the SNpc coincided with local CD206+ pvM
expansion, similar to what has been observed in post-mortem
samples of PD patients (52). Depletion of pvMs and lpMs by
clodronate liposomes resulted in a significant loss of dopaminergic
neurons within the SNpc after two weeks, suggesting that BAMs
exert a neuroprotective function in the pathology (52). Notably,
clodronate administration increased vascular expression of
VCAM-1, enhancing CNS accumulation of lymphocytes (52).
Absence of pvMs led to aggravated spreading of misfolded a-
synuclein (52), a pathological hallmark of PD (337). On the other
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hand, in a 6-hydroxydopamine-mediated PD model, no increase
in rod-like CD163+ pvMs was found in the striatum as opposed to
the recruitment from the blood stream of CD163+ “polygonal”
cells (53). Notably, these parenchymal CD163+ cells are also
described in the brain of PD patients in association with Ab
deposition and a damaged BBB (77). BBB impairments are
commonly observed in both patients and animal models (338).

Several studies have documented an augmented presence of
inflammatory cytokines in the CSF of PD patients (338), the
increased expression of MHCII in CSF monocytes (76), the
presence of a-synuclein at the BCSFB (282, 339) and a potential
beneficial role exerted by ChP epithelial cells in transplantation
experiments (340). Beyond this sparse evidence of a role of the
ChP and in general of BAMs however, the potential contribution
of these cells to PD evolution remains unexplored.

Conversely, several studies addressed monocytes/MdMs
functions in PD pathogenesis. The total number of blood
monocytes is not affected in PD patients (78), but these cells
appear less responsive to activation and more proliferative (341)
and show altered phagocytosis (78, 342). Furthermore, monocytes
from PD patients display an upregulated FAS/FAS ligand system
(78), potentially enhancing myeloid cell recruitment and release of
cytokines (343, 344). PD patients show increased CCL2 blood levels
and dysregulated CCR2+ monocytes responses (78, 79).
Transcriptionally, monocytes from PD patients show a specific
expression profile correlating with disease severity and indicating
enriched expression of genes related to migration and regulation of
inflammation (345).

Blood monocytes with pro-inflammatory features are also
increased in PD animal models (346) and seem to infiltrate the
degenerating substantia nigra by crossing the BBB (347, 348).
Accordingly, CCR2+ MdMs can be found in the brain of PD
mouse models early in the disease process, with astrocytes being
the main producer of CCL2 (51). Of note, while blocking
monocyte recruitment had no effect on dopaminergic neuron
survival, overexpression of CCL2 in astrocytes did increase
neuronal death and led to augmented infiltration of CCR2+

monocytes, together suggesting that MdMs contribute to
neurodegeneration (51). Notably, in the SNpc of a different
transgenic PD model, MdMs vastly outnumbered microglia
and could be engineered as a “Trojan horse” approach to
locally deliver neuroprotective factors (349).

While these studies imply trafficking of monocytes across the
BBB during PD, the potential contribution of meningeal and
ChP gateways to cell recruitment has never been addressed in the
literature. In summary, several evidences point toward an
involvement of recruited monocytes to PD pathogenesis,
setting the ground for future studies finally testing the
importance and the therapeutical value of these cells in PD.

Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by brain atrophy, synaptic loss, extracellular
deposition of amyloid-b (Ab) peptides and intracellular
accumulation of neurofibrillary tangles of phosphorylated Tau
protein (349–351). The controversial contribution of microglia
to AD pathogenesis is discussed by a growing body of literature,
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with molecules such as CX3CR1, APOE and triggering receptor
expressed by myeloid cells 2 (TREM2) showing a critical impact
on disease evolution by regulating phagocytosis and anti-
inflammatory signaling in macrophages/microglia (352–355).

In parallel, some studies have highlighted the multifactorial
contribution of BAMs to AD. Ab tends to accumulate with age in
insoluble depositions limiting drainage along perivascular
pathways and typically resulting into cerebral amyloid
angiopathy (104, 356). PvMs importantly participate in
clearing perivascular Ab, as shown in different mouse models
of AD in which ablation of pvMs resulted in augmented Ab
accumulation (88, 357). PvMs Ab clearance depended on
expression of the scavenger receptor class B type 1 (55) and of
CCR2 (56). These pvMs also express CD36 (57), one of the main
receptors for Ab (36). Notably, some studies have demonstrated
a CD36-dependent, Nox2-mediated production of ROS in
response to Ab phagomacrocytosis in pvMs, a phenomenon
ultimately augmenting vascular pathology and cognitive
dysfunctions (358, 359). Taken together, pvMs seem to play
both beneficial and detrimental roles in AD models, however,
their function in AD patients remains undefined.

The complex equilibrium between fluid drainage and Ab
deposition observed at the perivascular level in AD is also
detected within the ChP. Ab transporter proteins are expressed
at both the BBB and BCSFB contributing to a coordinated
clearance of Ab into the peripheral circulation (123, 360, 361).
Underscoring disease-specific defects in barrier transport
mechanisms, ChP tissue from AD patients shows substantial
deposition of Ab peptide and increased oxidative stress (362).
Within the ChP of AD patients, dense fibrillary phosphorylated
Tau can also be shown in calcified intracellular inclusion in the
proximity of TREM2+ stromal ChPMs (58, 80). These events
lead to significant changes in BCSFB permeability (130, 363) and
to a reduced ChP expression of trafficking and inflammatory
molecules including ICAM-1, VCAM-1, CXCL10, CCL2, and
IFNg, suggesting impaired monocyte migration via the BCSFB
and a exacerbatory impact on disease evolution (364).

Concerning meningeal macrophages, one recent report has
suggested a contribution of these BAMs to Ab pathology, yet
only within the dura mater and following experimental ablation
of lymphatic vessels leading to local accumulation of Ab and of
Iba1+ macrophages (365).

While the role of BAMs in AD remains underinvestigated, the
impact of MdM on disease development has been addressed in
several studies. In vitro, monocyte trafficking at the BBB
drastically increased in the presence of Ab and was mediated
by receptor for advanced glycation end products (RAGE) and
PECAM-1 expressed on endothelial cells (366). Furthermore,
both mouse and human microglia stimulated with Ab upregulate
their expression of CCL2, CCL3, CCL4, and CXCL2, suggesting a
substantial Ab-dependent recruitment of immune cells to diseased
brains (367–369). Accordingly, different CD45highCD11bhighCCR2+

macrophages accumulate in the brain of animal models of AD, with
CCR2 deficiency leading to the detrimental accumulation of Ab (59,
370). These earlier results indicated that MdMs might exert a
beneficial effect in the disease process (370, 371). Accordingly,
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parenchymal CD163+ microglia-like MdMs were described in the
brain of AD patients in association with Ab deposition nearby the
damaged BBB (77). Unfortunately, in most of these reports, full body
irradiation paradigms were utilized (372), artifactually leading to
long-term changes in glia activation and increase in myeloid cell
recruitment (56, 373). By shielding the mouse brain during
irradiation, it was subsequently shown that CCR2+ MdMs only
rarely infiltrate the CNS, thus redimensioning their role in AD (56).
This work also contradicted earlier results (367) by showing that
microglia accumulation close to Ab does not strictly depend on the
CCL2 system (56).

Nevertheless, monocytes might contribute to Ab removal
without leaving the vascular tree. A recent study has illustrated
the role of CX3CR1+Ly6Clow patrolling monocytes in crawling in
Ab+ brain veins and engulfing intraluminal Ab (54). However,
contradictory observations have been made in AD patients,
showing that circulating monocytes express reduced TLR levels
(374), are defective in Ab phagocytosis (375, 376) and are more
prone to apoptosis compared to monocytes isolated from control
patients (376).

In conclusion, in both mouse models and AD patients
monocyte/MdM functions remain somewhat elusive. Studies
on BAMs have, however, highlighted their complex role in Ab
removal and thus potentially suggested these cells as future
targets of therapeutical interventions.
CONCLUSION AND OUTLOOK

Aided by stimulating debates on functional CNS anatomy (13,
97, 106, 182), by technical advancements in reporter tools and
imaging (14, 44, 131) and by the recent “single-cell analysis
revolution” (16, 27, 28), the study of CNS borders finally
bloomed as a research field.

Long-lived dwellers of these CNS interfaces, BAMs mediate
systemic communication (4), regulate vascular permeability (91,
92), waste clearance (94), fluid drainage (88), and surveil CSF
composition (34). Often ignored and improperly ontogenically
and anatomically defined, BAMs can now be precisely identified
in contrast to blood-borne myeloid cells (14–16, 20, 22, 23), a
necessary advancement allowing to address specific cell functions
upon CNS damage. In this context, each CNS interface becomes
a complex battleground hosting a myriad of peripherally derived
trespassers. Even though the multidimensional interplay between
invading monocytes, BAMs and the cellular components of each
CNS gateway serves as a key checkpoint in disease evolution, a
convincing picture of macrophage dynamics at CNS borders is
far from existing.

What is the contribution of BAMs to pathogenesis of
CNS disease?

During autoimmune neuroinflammation, BAMs increase in
density, contact invading leukocytes and produce inflammatory
cytokines and chemokines (42, 112, 225, 260). Surprisingly,
however, these cells modify their overall transcriptional profile
only mildly compared to steady state (27). Upon TBI/SCI, BAM
actions seem beneficial but at the same time negligible (48, 49, 74,
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294). The same applies to PD (52, 53, 76), while AD studies
conversely indicate a disease-shaping role of BAMs (88, 357, 358,
365). Notably, the discussed results and recent data from brain
tumor models (24) seem to indicate a relatively minor
con t r ibu t ion o f BAMs to the evo lu t ion of mos t
CNS dysfunctions.

Conversely, during neuroinflammation, MdMs outnumber
BAMs at CNS interfaces and drive disease evolution (15).
Molecules such as GM-CSF (149, 229), CCL2 (240, 243–246),
and different MMPs (169) primarily orchestrate the overall
immigration of these cells into the CNS parenchyma, but the
actual route of invasion through different CNS gateways remain
remarkably speculative. Monocyte recruitment upon CNS trauma
shares similar mechanisms with MS/EAE including the role of
CCL2 and the need for MMP production by infiltrating cells (297,
298, 377). Lastly, monocyte trafficking to the CNS during
neurodegenerative disorders remain surprisingly understudied,
and its dependency on the CCL2-CCR2 axis controversial
(51, 56).

To summarize, despite various efforts to understand the
functional contribution of myeloid cells to CNS diseases, this
review underlines how the study of BAMs and of monocytic
invasion pathways is still at its infancy. Recent technical
advancements should finally allow understanding whether
BAMs, as long-lived dwellers of CNS interfaces, can become
relevant therapeutic targets to manipulate CNS dysfunctions.
Secondly, a renewed focus on CNS anatomy and barrier
functions will hopefully prompt scientists to investigate and
Frontiers in Immunology | www.frontiersin.org 16
describe invading trajectories of monocytes/MdMs in the
different disease models. A detailed definition of the infiltration
routes and of the polarizing influence of distinct CNS gateways
on trespassing monocytes will eventually allow designing
targeted strategies to regulate monocyte entry, thus modulating
the evolution of CNS pathologies.
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273. Caravagna C, Jaouën A, Desplat-Jégo S, Fenrich KK, Bergot E, Luche H, et al.
Diversity of innate immune cell subsets across spatial and temporal scales in
an EAE mouse model. Sci Rep (2018) 8(1):5146. doi: 10.1038/s41598-018-
22872-y

274. Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, et al.
CXCR7 influences leukocyte entry into the CNS parenchyma by controlling
abluminal CXCL12 abundance during autoimmunity. J Exp Med (2011) 208
(2):327–39. doi: 10.1084/jem.20102010

275. Gimenez MA, Sim JE, Russell JH. TNFR1-dependent VCAM-1 expression
by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol
(2004) 151(1-2):116–25. doi: 10.1016/j.jneuroim.2004.02.012

276. Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck
R, et al. Immune cell trafficking across the barriers of the central nervous
system in multiple sclerosis and stroke. Biochim Biophys Acta (2016) 1862
(3):461–71. doi: 10.1016/j.bbadis.2015.10.018

277. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, et al.
IFN-g-dependent activation of the brain’s choroid plexus for CNS immune
surveillance and repair. Brain (2013) 136(Pt 11):3427–40. doi: 10.1093/brain/
awt259

278. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al.
C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS
through the choroid plexus is required for the initiation of EAE. Nat
Immunol (2009) 10(5):514–23. doi: 10.1038/ni.1716

279. Mills JH, Alabanza LM, Mahamed DA, Bynoe MS. Extracellular adenosine
signaling induces CX3CL1 expression in the brain to promote experimental
autoimmune encephalomyelitis. J Neuroinflamm (2012) 9(1):193.
doi: 10.1186/1742-2094-9-193

280. Marques F, Sousa JC, Correia-Neves M, Oliveira P, Sousa N, Palha JA. The
choroid plexus response to peripheral inflammatory stimulus. Neuroscience
(2007) 144(2):424–30. doi: 10.1016/j.neuroscience.2006.09.029

281. Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH,
et al. Kinetic profile of the transcriptome changes induced in the choroid
plexus by peripheral inflammation. J Cereb Blood Flow Metab (2009) 29
(5):921–32. doi: 10.1038/jcbfm.2009.15
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