Pacheco, Lucas; Rosário, Denis; Cerqueira, Eduardo; Braun, Torsten (September 2021). Federated User Clustering for non-IID Federated Learning. In: International Conference on Networked Systems 2021 (NetSys 2021). Lübeck, Germany. 13-16 September 2021.
Text
GroupClustering_NetSys_Camera_Ready.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (561kB) |
Federated Learning (FL) is one of the leading learning paradigms for enabling a more significant presence of intelligent applications in networking considering highly distributed environments while preserving user privacy. However, FL has the significant shortcoming of requiring user data to be Independent Identically Distributed (IID) to make reliable predictions for a given group of users. We present a Neural Network-based Federated Clustering mechanism capable of clustering the local models trained by users of the network with no access to their raw data. We also present an alternative to the FedAvg aggregation algorithm used in traditional FL, which significantly increases the aggregated models’ reliability in Mean Square Error by creating several training models over IID users.
Item Type: |
Conference or Workshop Item (Paper) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Computer Science (INF) > Communication and Distributed Systems (CDS) 08 Faculty of Science > Institute of Computer Science (INF) |
UniBE Contributor: |
De Sousa Pacheco, Lucas, Braun, Torsten |
Subjects: |
000 Computer science, knowledge & systems 500 Science > 510 Mathematics 500 Science 600 Technology |
Language: |
English |
Submitter: |
Dimitrios Xenakis |
Date Deposited: |
22 Apr 2021 18:11 |
Last Modified: |
17 Aug 2023 07:03 |
BORIS DOI: |
10.48350/154992 |
URI: |
https://boris.unibe.ch/id/eprint/154992 |