
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
5
2
3
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
8
.
5
.
2
0
2
4

Reinforced-LSTM Trajectory Prediction-Driven
Dynamic Service Migration: A Case Study

Zhongliang Zhao , Negar Emami , Hugo Santos , Lucas Pacheco, Mostafa Karimzadeh,

Torsten Braun , Senior Member, IEEE, Arnaud Braud, Benoit Radier , and Philippe Tamagnan

Abstract—Predicting user behavior is the cornerstone of
intelligent services and applications for providing and optimizing
services over mobile networks. In modern edge computing
scenarios, contents and services will be ordered close to end-users
and will be highly sensitive to user mobility. Deep Learning
models have had significant success in performing prediction
tasks. However, providing reliable predictions for real-world
networks in scale requires the Neural Architecture Search to be
optimized on a user basis. In this work, we present an LSTM-
based mobility predictor to improve the trajectory prediction
accuracy. To speed up the model convergence rate, we employ a
reinforcement learning technique to automate the selection
procedure of the best neural network architecture. To further
accelerate the reinforcement learning environmental search
procedure, we transfer the architecture knowledge learned from a
teacher LSTM to a student LSTM via a transfer learning
framework. Furthermore, we showcase the possible improvements
of edge-computing enabled networks, in the form of a predictive
handover algorithm that applies the prediction information to
reduce the handover-failure rate, as well as handover-triggered
service migration in edge computing layer of the network.
Experiment results prove the efficiency of the proposal, its impacts
on improving ping-pong handover, and the service migration.

Index Terms—Service migration, handover optimization, trajec-
tory prediction, recurrent neural network, reinforcement learning,
transfer learning.

I. INTRODUCTION

UPCOMING generations of mobile networks, such as

Beyond-5G (B5G) and the 6th Generation of Mobile

being decided, it is clear that Artificial Intelligence (AI) plays

a significant role in network management and user behavior

prediction. Mobility predictors have been used in a wide range

of applications, from targeted advertising to network manage-

ment. Forecasting user behavior is crucial for networked sys-

tems to allocate resources and to provide users with a high

Quality of Service (QoS) for their applications. While the

mobility information of the users may be given in terms of

their connection points in the network, we can obtain such

information in a finer granularity in next-generation networks,

which are characterized by more dense Base Station (BS)

deployment and a smaller coverage area for each BS. Thus,

user mobility not only can be described by the sequence of

small cells the users connect to in their trajectory, but the fre-

quency of connection and disconnection from base stations

(i.e., handovers) is greatly increased. However, the denser

deployment of BS incurs in the more frequent execution of

Handovers (HOs), causing a signaling overhead to the net-

work, as well as frequent disconnections from the contents

and services being consumed. In this context, alternative

mobility management techniques can be proposed for next-

generation networks leveraging the opportunity of learning

and making predictions over the users’ behavior (e.g. the

mobile network can predict the user mobility to detect incom-

ing HOs events and allocate and release resources in a more

optimal manner). In this context, not only the network access

is much more distributed than in previous generations, but the

computing power as well. Thus, services and applications

must be designed accordingly to such paradigm shift. Based

on this knowledge, Intelligent Transportation Systems (IT)

enable efficient techniques for smart cities to manage city traf-

fic, accidents and suggest safer, shorter, or less congested

routes to citizens or tourists [1], [2].

In this context, modern applications have very strict require-

ments in terms of storage, computing, latency, and bandwidth.

Applications such as Autonomous Driving and Driving Assis-

tance, Extended Reality (XR), Immersive Holographic com-

munications, and others impose the need for the network

infrastructure to provide high-quality access to edge servers

which will support such applications. In this direction, various

heterogeneous services will be offloaded from the cloud to serv-

ers located at the edge of the network, which are closer to end-

users, constituting another challenge from the mobility manage-

ment standpoint, constituting the notion of Multi-access Edge

Communications (6G) are already being discussed in industry
and academia. While design and implementation details are

https://orcid.org/0000-0002-0979-9272
https://orcid.org/0000-0002-0979-9272
https://orcid.org/0000-0002-0979-9272
https://orcid.org/0000-0002-0979-9272
https://orcid.org/0000-0002-0979-9272
https://orcid.org/0000-0003-1699-9907
https://orcid.org/0000-0003-1699-9907
https://orcid.org/0000-0003-1699-9907
https://orcid.org/0000-0003-1699-9907
https://orcid.org/0000-0003-1699-9907
https://orcid.org/0000-0002-3189-0291
https://orcid.org/0000-0002-3189-0291
https://orcid.org/0000-0002-3189-0291
https://orcid.org/0000-0002-3189-0291
https://orcid.org/0000-0002-3189-0291
https://orcid.org/0000-0001-5968-7108
https://orcid.org/0000-0001-5968-7108
https://orcid.org/0000-0001-5968-7108
https://orcid.org/0000-0001-5968-7108
https://orcid.org/0000-0001-5968-7108
https://orcid.org/0000-0003-2444-7483
https://orcid.org/0000-0003-2444-7483
https://orcid.org/0000-0003-2444-7483
https://orcid.org/0000-0003-2444-7483
https://orcid.org/0000-0003-2444-7483


Computing (MEC). Since the edge computing paradigm is geo-

graphically distributed, its services are sensitive to users’ mobil-

ity. As users move to different areas in the city, the services

being consumed in an edge server can be disrupted, or be

located many hops away from the user, reducing the QoS of

applications. Furthermore, the computing power at the edge of

the network is still inferior to traditional cloud computing and

must be carefully managed. Service migration is one of the

most used approaches for keeping critical services close to users

even as they move through the scenario, thus improving QoS

levels for the applications they consume. User mobility in these

edge-enabled scenarios raises the need for services to be

migrated to keep QoS requirements for each service under

acceptable levels. However, since service migrations typically

occur in a reactive manner after HO events, this can cause dis-

connections and interruptions to user services. An efficient ser-

vice migration scheme must perform the necessary migration

operations in a predictive way to guarantee service continuity

for end-users. This requires the usage of an efficient and robust

mobility prediction scheme to enable proactive service migra-

tions to a user’s future locations.

Service migration highly depends on other mobility man-

agement aspects of the network, such as HO executions. In

mobile networks, HO is caused primarily by user mobility,

and the handover process can be optimized for better QoS for

the end-user with a prediction mechanism in place. In this con-

text, the network can offer predictive resource allocation and

release, as well as optimize the users’ connection points and

routes with a predictive view of the users’ trajectories. HO

decision is a crucial task for maintaining a good QoS and ser-

vice continuity for end users. When the user moves to differ-

ent areas, the network has to react to routes and topology

changes and adapt it to assure service continuity. The HO pro-

cedure demands several signaling protocols between the

mobile user, source/target BS, and core networks. Naturally,

more frequent HOs might increase delay, decrease throughput,

and cause signaling overhead. Instead, a proactive HO mecha-

nism can be designed by integrating mobility prediction and

knowledge of the user’s next location into the decision. With

this design, source and target BS exchange messages before

the mobile user switches the connection [3]. Mobility manage-

ment, and especially the HO procedure impacts the users’

experience and the metrics of services being consumed by

mobile users. Intelligent mobility management approaches

can make use of Artificial Intelligence (AI) top guarantee ser-

vice continuity with high QoS.

Modern networks face a vast stream of data continuously

produced by users and the network itself, such as location

data, users’ movement patterns, and even the services being

consumed by end users. Recently, data analysis, pattern recog-

nition, and prediction tasks are mainly based on Machine

Learning (ML), which have improved accuracy due to their

advanced algorithms. The dynamic features of mobile user

movements, the spatio-temporal dependencies of the urban

environment, and time-varying traffic patterns create several

challenges in adapting ML algorithms for mobile user location

prediction. An ML predictor can learn in terms of the spatio-

temporal dependencies and statistical characteristics of the data

frommobility traces. Recurrent Neural Networks (RNN) and its

variant Long Short TermMemory (LSTM) have shown the out-

standing performance in time-series prediction such as Natural

Language Processing (NLP) and mobility prediction [4]. How-

ever, Deep Learning (DL)-based approaches’ performance

mostly relies on the design of Neural Networks (NN) architec-

ture and choice of hyper-parameters. Hence, Reinforcement

Learning (RL) can be an alternative for human search to find

the most suitable architecture [5]. Such approaches are not

exclusive and can be used in combination with one another, as

presented in this article, including for means of mobile networks

optimization.

RL is an unsupervised learning approach that attains the best

combination of hyper-parameters by rewarding the high-per-

formance architectures and punishing the low-performance

ones. To speed up the convergence rate of the RL-based predic-

tor, we need an accelerating mechanism to optimize the process

of finding the best architecture. We found that Transfer Learn-

ing (TL) can significantly speed up architecture optimiza-

tion [6]. TL transfers available knowledge (i.e., architecture

hyper-parameters, and weights) learned from a trained predic-

tor to a newly suggested architecture. This helps the new archi-

tecture to avoid initializing neural weights from scratch, and,

subsequently, the training phase can be done faster. Conse-

quently, a robust mobility predictor developed based on both

DL and RL techniques can provide a proactive HO mechanism

guaranteeing high QoS and service continuity for network

applications such as service migration.

The main contributions of this article are as follows:

� We propose an individual user trajectory predictor

unaware of geographical coordinates of anonymous

mobile users and BSs to estimate user’s future BS con-

nection by applying an LSTM predictor. To automate

NN design and hyper-parameter selection, we design an

RL-based technique. We also propose a TL scheme to

speed up the convergence rate of the proposed Rein-

forcement Learning based LSTM (RL-LSTM) solution

reducing the the training time by up to 3.5 when com-

pared to state-of-the-art algorithms.

� We introduce a service migration framework for edge

computing scenarios, which takes advantage of the pro-

posed RL-LSTM solution. Experiments using a real-

world dataset attest the efficiency of the scheme in net-

work operation and optimization for delay-sensitive

services on a MEC environment.

� We conduct experiments with an anonymized real-world

dataset from a mobile network operator. Results validate

the performance of our predictor and its impacts on

improving HO and service migration applications.

The rest of this work is organized as follows. Section II

reviews related works. Section III describes the dataset that is

used. Section IV develops a service migration scheme coupled

with an intelligent edge-enabled scenario that improves migra-

tion performance. Section V describes in detail a recurrent

NN-based LSTM trajectory predictor, which is optimized

through RL and TL techniques. Section VI examines how the



HO in a mobile network can be improved by mobility predic-

tion. Section VII presents the evaluation methodology and

assesses the performance of the mobility predictor and its

applications in an edge-enabled network. Section VIII summa-

rizes the contributions of this work.

II. RELATED WORK

A. Real-World Mobility Datasets

Mobility datasets collected by network operators are impor-

tant information sources to infer users’ mobility patterns. The

datasets normally include information of millions of users dis-

tributed over geographical areas. The basic information usu-

ally stores an user’s identification, the timestamp of the event,

the BS identification related to an event [7], [8]. Custom fea-

tures added to basic information are provided in terms of event

granularity, event duration, type of the application (e.g., call

detail records and mobility data), collection period, etc.

Previous real-world Call Detail Records (CD) datasets

explore the mobility pattern of individuals logged whenever

an user made/received a call or a text message [7], [8]. Gonza-

lez et al. [7] analyze two datasets with more detailed informa-

tion of users, such as an average service area of 3 km2 and

30% of BSs covering smaller areas up to 1 km2. Chen et al.

[8] provide mobility trajectory reconstruction with GPS coor-

dinates of BSs as well. However, both works rely on users’

GPS data, which might pose considerable privacy risks. The

storage of user sensitive event data, such as BS identification

and the geographical position is not likely to be provided for

privacy concerns. The Orange dataset, discussed in more

details in Section III, protects user privacy by anonymizing

users and BS identifiers, as well as removing GPS data of

users and BSs. Therefore, user trajectory prediction becomes

more challenging due to the lack of geographical coordinates.

B. Service Migration

The decision-making of service migration on MEC environ-

ments brought significant challenges in terms of large-scale

experiments and more involvements with AI techniques [9].

Therefore, performing service migration of anonymous

mobile users lacking geographical coordinates provides higher

accuracy on how edge-enabled scenarios can occur than AI

techniques considering more detailed information of users and

mobile infrastructure positions. Pure LSTM-based approaches

normally take long period of time to adjust layers to improve

accuracy, as proposed by Jing et al. [10] for accurate predic-

tion of cloud resources for service migration purposes.

Many works focus on service pre-migration in vehicular

scenarios, such as Yu et al. [11], which propose a migration

decision executed offline for services in mobile edge comput-

ing. The work uses a mobility prediction scheme to minimize

the average latency of the service in the long term. The algo-

rithm, while finding an optimal solution, may have limitations

if being used in real-time, as the processing is assumed to be

complex. Zhang et al. [12] proposes a deep-belief network for

prediction of tasks in a cloud computing environment. The

authors argue that traditional prediction techniques are far too

simplistic for modern networking scenarios. Thus, modern

5 G and edge computing networks require a robust predictor

in order to offer satisfactory network performance. Concern-

ing predictive migration for an edge computing-enabled sce-

nario, some works have proposed solutions with certain

limitations. Liang et al. [13] showcases the opportunities for

optimizing resource allocation in a wireless-access edge com-

puting network. The authors propose a joint computing and

communication resource management in order to achieve high

QoS for end-users. Integer programming is used to provide an

optimal solution for the allocation of computation and com-

munication resources, and simulation results achieve near-

optimal performance. However, complex optimization proce-

dures are not feasible to be executed in real-time network

management, and in real systems are often substituted for

lightweight heuristics without significant decrease in QoS.

Furthermore, Zhang et al. [14] propose a genetic algorithm-

based task migration solution for pervasive cloud computing.

However, such solution must be re-evaluated for modern B5G

edge computing scenarios. Li et al. [15] propose a joint service

migration and caching for a SDN-enabled edge network. In

this context, the proposed mechanism focuses on providing

reliable multimedia streaming for users at the edge of the net-

work based on a Q-Learning decision policy which dynami-

cally learns a caching strategy. However, the system does not

make usage of predictive mobility information about the

users’ connection points or geographical position, which could

provide the system with proactive management capabilities

and increase the perceived QoS for users.

Ouyang et al. [16] tackle the problem of keeping services

close to users in edge computing scenarios, where user mobil-

ity is unpredictable. The system does not need prior informa-

tion about user mobility statistics, as it applies real-time

optimization in order to reduce the complexity of the problem.

The solution aims to reduce overall migration costs with spe-

cialized mobility models. Also, Gao et al. [17] propose a heu-

ristic-based migration algorithm to serve users with varying

deadlines, considering user-generated data and the contact pat-

terns between the nodes. Despite employing mobility models

in the decision, the proposed solution lacks QoS and radio

resources support for applications and services.

C. Handover Optimization

Xu et al. [18] propose a delay oriented cross-tier HO skip-

ping scheme, i.e., a handover algorithm that minimizes the

number of HOs in order to maximize the performance of low

latency applications in ultra-dense networks. Their work

derives an analytical expression for users’ adequate capacity

during the HO execution and proposed a resource allocation

scheme in target BSs to reduce blocking probability. It does

not employ predictive schemes or mobility information into

the decision, which may improve the decision quality and pos-

itively impact user Quality of Experience (QoE).

Other works have also applied a prediction-based HO algo-

rithm to mobile scenarios with some success. Gong et al. [19]



propose a multi-criteria HO algorithm for heterogeneous net-

works. Considering multiple criteria in the decision process

can be a complex process, and some techniques were developed

to balance the parameters based on degrees of importance, such

as the one applied by the authors: Analytic Hierarchical Process

(AH) attributes weights to each parameter based on predefined

degrees of importance. Based on these schemes, the cross-tier

HO performance is improved in terms of failure probability

and ping-pong rate (i.e., when a user disconnects and connects

multiple times from a BS or a group of BSs in a short period of

time). To make the decision more reliable and avoid unneces-

sary HOs, the authors also consider previous measurements in

the process; however, this makes the proposed solution not as

fast-reactive as necessary on challenging scenarios. Mandour

et al. [20] also provide a prediction-based HO optimization

mechanism. The authors choose a scheme based on the refer-

ence signal received power, reference signal received quality,

and mobility parameters for mobile users. The work aims to

eliminate excessive and redundant HOs during a user’s path in

a small cell network. However, when considering a small cell

network, a higher number of HOs is expected to keep service

and coverage continuity for the users, thus simplifying mobility

prediction and a mechanism to avoid HO execution may not be

suitable for all scenarios. In such a case, a more accurate and

reliable prediction is essential for a good HO algorithm.

In [21], authors propose a group-based pre-handover authenti-

cation schemes for 5 G high-speed rail networks.

D. User Mobility Prediction

Mobility prediction is a critical component in intelligent cit-

ies and transportation services. Future trajectory prediction of

mobile users (either pedestrians or vehicles) can significantly

improve urban traffic management, efficient navigation, route

recommendation, and safety. Simultaneously, location predic-

tion services are also deployed in many network applications

and have enabled proactive mobility management, HO optimi-

zation, content migration, and resource management. In gen-

eral, trajectory prediction can be categorized into two classes:

physics-based and maneuver-based models [22]. Physics-

based prediction models are mainly based on statistical models

such as the family of Bayesian filters and Kalman Filters (KF).

The authors in [23] implement KF to predict future trajectories

of mobile users. On the other hand, maneuver-based predic-

tions are mainly based on ML algorithms [24]. Heuristic-based

classifiers [25], Markov models and Random Forest (RF) clas-

sifiers are all examples of maneuver-based trajectory predic-

tions through different ML algorithms. Recently, it was shown

that RNN and their variants including Gated Recurrent

Units [26] and LSTM [27] are best fitting DL approaches for

trajectory prediction from mobility data, which is considered

as a form of time series data type. Both of the LSTM and

GRU models address the RNNs’ vanishing gradient problem.

LSTMs have more sophisticated architecture and achieve

more accuracy in longer sequence predictions whereas GRUs

perform faster operations and consume less memory. There-

fore, LSTMs are more preferred for applications that require

accurate trajectory prediction. Authors in [28] use LSTM

RNNs to estimate the pedestrian future trajectory. Alahi et al.

[29] present a social LSTM that combines physics and maneu-

ver-based estimation algorithms to forecast human motions in

crowded spaces.

Despite many efforts on RNN-based predictors, designing an

efficient NN architecture remains an open challenge. The

above-mentioned DL predictors have designed neural networks

heuristically, which does not guarantee the optimal perfor-

mance. Hyper-parameter optimization is mostly addressed

through searchmethods such as grid search, random search [30],

and Bayesian search [31]. However, these techniques are too

naive to guarantee the optimal performance. For instance, grid

search requires an immense amount of computational power to

try all possible combinations of the search space or random

search cannot guarantee the optimal neural architecture since

the technique randomly eliminates some states of the search

space. In this direction, Zoph et al. [5] show for the first time

how RL can be used as a more robust optimization and search

method with respect to above-mentioned naive methods. Zoph

et al. [5] apply a RNN-based RL to automate the NN’s architec-

ture design for the field of image classification.

In this paper, we propose a Q-learning-based RL for the task

of mobility prediction for the first time. Our proposed mobility

predictor could automatically learn the best NN architecture

and optimize the NN hyper-parameter selection, which is

applicable for real-time applications, where the future location

prediction is of essential importance.

III. ORANGE DATASET

A. Description

This work is based on a real-world dataset provided by the

French Orange SA telecommunications company. The Orange

dataset is a large-scale dataset that includes nearly 1,300,000

anonymized mobile users’ cellular connection information with

131 base stations during 63 days (from July 2019 until Septem-

ber 2019) near the city of Paris. For each user, this dataset holds

information regarding user Global eNB id as the anonymized

unique ID of a connecting BS, start and end time of the user con-

nection to a BS, and anonymized IMSI as the user ID. Note that

we pick the connections’ starting time as user time stamps.

The main challenges regarding data preparation are the

immense data size and to discriminate characteristics of the

dataset. In the following, we summarize some of the Orange

dataset’s particular characteristics, which makes it challenging

to apply NN algorithms. The Orange dataset has a size of

600 GB, including information of more than a million users,

which are not homogeneous in terms of the data sampling rate.

The collected mobility traces do not include equally-sized

granularity of time, which means that sometimes there is only

one sample per minute, and there are many samples within

another minute. In other words, users frequently change their

cellular connections and bounce among surrounding BSs.

However, short connection times (few seconds) with BSs might

not be caused by user mobility. This behavior could be due to the

fact that users connect to more than one of the surrounding BSs



or perform ping-pong HOs between neighbor BSs due to varying

received signal strength. In this work, we consider a ping-pong

HO, according to the definition of Tartarini et.al. [32], as a dis-

connection and re-connection to a BSwithin 4 seconds. Fig. 1(a)

illustrates how users suffer from ping-pong HOs among sur-

rounding BSs within the same minute. Fig. 1(b) shows how

sometimes users hop back to the first BS within a short time

period, forming a cycle of connections. The reason behind the

frequent ping-pong HOs and bounces in the Orange dataset is

unknown to us due to the lack of precise locations of users and

BSs, signal power, speeds, and direction of users movements.

Since the Orange dataset does not provide location and GPS

coordinates of BSs, to visualize the BSs’ distribution, we extract

the relative topology from the mobility traces to re-construct the

relative BS topology. From each user’s trace data, we detect

unique visited BSs and then for each unique BS, we extract all

consecutive connections and assume them as the BS’s neighbor

nodes. Finally, we assign relative coordinates to all the nodes

(BSs). Fig. 2 shows an example of a re-constructed topology

from the trace data of a random user within 30 days. During this

period, the user has moved among 101 different BSs.

B. User Filtering

To implement and test our mobility predictor, we need to

pick a group of users, which represents the characteristics of

the total dataset, but, at the same time, are containing the mini-

mum amount of required data samples to train a NN. The

Orange dataset contains users with heterogeneous data quality.

Some users possess a large number of data samples, while

others have a small number. We cluster users based on their

number of data samples into two classes of good and bad qual-

ity users and then randomly select a group of users from the

class of good quality users. However, NNs are designed to

work with data of different level quality; users with more data

samples have more chances to achieve higher prediction accu-

racy. To identify the good quality users, we set the minimum

threshold equivalent to 1600 data samples per user over a total

of 63 days. This threshold is selected empirically based on the

specific characteristic of the dataset. In this dataset, we fre-

quently observe the appearance of the same BS in consecutive

timestamps. In such cases, we keep the first unique sample

(BS) and remove redundant ones. Therefore, the threshold on

the number of data samples is chosen in such a way that after

cleaning duplicated successive BSs, there are still enough data

for training the LSTM NN. After applying the threshold on

the number of user samples, we lose almost 86.2% of users,

meaning that only 13.8% of users contain enough data to be

trained and achieve acceptable accuracy.

The achieved percentage of 13.8% corresponds to 180,000

good quality users out of the total 1.3 millions users. This per-

centage is considered as our sample space for training and test-

ing the mobility predictor. After filtering the good quality

users, the Orange dataset keeps a notable proportion of users

compared to two well-known studies, which kept only 0.45%

and 1.67% of the total data respectively [7].

C. User Selection

In the good quality subset, we choose a group of 100 random

users. Within the chosen group, different users have different

mobility patterns. Some users travel more often per day, on

average, and switch between BSs more frequently while others

move less or are quite stationary. Some users show periodic

behavior in their trace history while others have irregular pat-

terns. Some users contain data for all days during the total 63

days of the dataset, while others miss data during some days.

This article demonstrates how the proposed mobility predictor

applies for any users with high or low quality, periodicity, and

mobility patterns and achieves reasonably high accuracy.

Furthermore, to better infer users’ mobility characteristics and

extract the most effective features on prediction accuracy, we

evaluated the total number of BSs, the number of days that a

user contains data, and the average and standard deviation of

daily visited unique BSs. From the analysis we understood that

the average number of daily visited BSs is the most relevant

attribute of each user’s achieved prediction accuracy. We

observed that selected 100 random users visited a different num-

ber of BSs per day, ranging from 1 to 24. For each user we

defined a correlation ratio between the achieved prediction accu-

racy and the mean number of daily visited unique BSs. After-

wards, we cluster users as four groups of very-high-mobility,

high-mobility, medium-mobility, and low-mobility users by

defining four empirical thresholds that evenly divide the spec-

trum of correlation ratios.

IV. RL-LSTM-BASED SERVICE MIGRATION FRAMEWORK

A. Overview

This section discusses the service migration strategy, so

called Reinforcement Learning based Service Migration

Fig. 1. User HO and mobility pattern.

Fig. 2. Re-constructed topology of an user’s connected base stations.



(RLSM), driven by the user mobility prediction. RLSM relies

on individual user mobility prediction to perform proactive

service migrations, and guarantees service continuity. Further-

more, we consider the likelihood that User Equipment (UE)

will connect to a certain BS in the future to infer the best edge

server to serve the user. We consider a framework with two

steps: monitoring and assignment.

We assume an edge-enabled network such as shown in

Fig. 3. We see that users access the network through BSs with

different coverage areas and follow some mobility pattern.

Such BSs are directly connected to edge servers that are capa-

ble of providing low-latency computing to the users affiliated.

However, edge servers are limited in computing power and

cannot support many users at the same time. Thus, edge serv-

ers are placed a level above in the hierarchy and can be

accessed with decreased latency compared to traditional cloud

data-centers. We consider that computing nodes can be

accessed close to the end-users, in what we call the Fog Server

Pool. We assume that prediction models for users are pre-

trained in the Fog Server Pool and are accessible to all other

servers in the network after training.

B. Framework Operation

RLSM considers an edge-enabled network scenario, where

users can consume services running on edge servers. As shown

in Fig. 3, users move and perform HO operations, the topology

of the network may change, and the routes from user to service

may be sub-optimal. These services are orchestrated and allo-

cated to an appropriate server. Therefore, we consider an orches-

trator entity with knowledge of the network deployment,

servers’ QoS and resources, as well as users’ historical and

future mobility information. In this work, we assume a service-

agnostic approach in which services are encapsulated in VMs or

containers, according to the EdgeIoT paradigm [33]. In such sce-

narios, the conditions of the back-haul and access networks are

highly dynamic. User mobility and BS connection fluctuations

with edge servers and network resources may induce errors and

decrease QoS for end-users. For this reason, the network must

monitor user QoS levels and perform the necessary operations,

such as migration. This requires continuous re-evaluation of the

best edge server to ensure service continuity and perform the

necessary migration operations.

Service migrations can be triggered by user mobility or

when the user’s current server is no longer capable of main-

taining appropriate QoS levels for them. In such cases, a

migration procedure is started on the server by a controller

based on the user’s future location and the server’s QoS per-

formance. To define the servers’ QoS performance, we must

consider the type of application being considered in terms of

QoS requirements. The server lists the delivered QoS statistics

it achieved for applications with the same requirements and

feeds these values into an Exponential Moving Average com-

ponent, which attributes more weight to recent measurements

to reflect the recent network conditions according to (1),

where Qt is the QoS average at a time t, and Qs is defined as

the QoS score achieved by the server s at the time of the mea-

surement. The number of the measurement is given by vari-

able n, and a 2 ½0; 1� is a decay factor. We define the QoS

parameter Qs for the server as whether it is able to provide the

applications it is serving with the necessary requirements.

Server QoS Qs is defined as the fraction of applications run-

ning in the server provided with their minimum requirements.

Qt ¼ Qs; if n ¼ 1
aQs þ ð1� aÞQt�1; if n > 1

�
(1)

The algorithm functions as follows: considering an UE u in

the set of UEs U , u may be associated with a mobility predic-

tion model that can be applied to find when a HO will be trig-

gered for a given UE. This is achieved in conjunction with the

HO algorithm operating in the network, which must report

imminent HOs to the service migration framework. Each time

the UE u moves, there is the possibility that a HO will be trig-

gered. Thus, the orchestrator predicts the user’s next HOs.

The prediction is a forward propagation task. Therefore, it is

not so computationally expensive and may be executed regu-

larly. The prediction outputs the user’s next BS. Given this

information, RLSM performs a lookup to find the edge servers

associated with u’s next BS.
RLSM Monitoring: The first decision of RLSM is whether a

migration is necessary or not. Migration may be necessary

because of mobility, as the service becomes more distant from

the server, and the latency increases or the servers can no lon-

ger support the application QoS requirements. The monitoring

collects the user’s predicted position in a given time window

and checks whether a user is likely to connect to another BS.

If the current server can not meet QoS requirements, a migra-

tion process is triggered. Algorithm 1 presents the RLSM

monitoring process.

RLSM Assignment: The essential characteristic of the assign-

ment is whether the target server can provide the latency and

computation requirements and if so, the migration can be made

promptly. RLSM assumes that each edge server can assess the

Fig. 3. Multi MEC RLSM Scenario.



bandwidth of the link to every other edge server and uses this

available bandwidth between the edge servers to estimate the

time it would take to migrate the UE session to candidate edge

servers. The bandwidth available between two servers is probed

periodically, and the values are used to estimate the time to

migrate a service between such servers. RLSM has relatively

low complexity. The algorithm’s complexity is proportional to

the product of the number of UEs and the number of edge serv-

ers. As soon as RLSM detects that a migration is necessary, the

algorithm must evaluate all available servers in the user’s future

location about the server’s resources and the time to migrate the

service to that specific server. Algorithm 2 shows RLSM

Assignment of an edge server to which an UE session shall be

migrated.

The protocol for the execution of the migration algorithm is

described inmore detail in terms of the sequence diagram shown

in Fig. 4. We can see the mobility predictor as an entity that

receives the current connected BS for a given user and reports to

the user and their current BS. After the handover and a migration

decision have been executed, the source edge server and the

target edge server must negotiate the migration procedure in

terms of resource allocation, the transfer of the VM or container

with the service and session information. After such transfer has

been completed, the memory pages and application context that

have changed since the start of the process are sent to the target

edge server. In the final stage, the resources in the source server

can be released and a ready to serve another UE, as the migrated

user connects to the new server and the process is completed.

V. TRAJECTORY PREDICTION THROUGH

SELF-LEARNING LSTM

A. Problem Statement

In this section, we present a DL-based trajectory predictor

based on the combination of LSTM, RL, and DL algorithms.

The NN design procedure is quite complex despite the high

accuracy and robustness of RNN (e.g., LSTM) predictors for

time series data. The architecture of a NN refers to the number

of hidden layers, the number of neurons per layer, the way they

are connected, and the other DL design hyper-parameters. As

expected, the task of hyper-parameters selection requires a sig-

nificant amount of human effort and time. Previous works have

determined the NN architecture in a heuristic way, which does

not guarantee optimal performance. Hence, to address this issue,

we take advantage of RL and TL approaches to automate and

speed up the NN architecture design procedure. In this work, we

refer to the Neural Architecture Search (NAS) framework [5],

where the RL-based controller suggests various architectures to

the predictor. Afterwards, the algorithm’s output is fed back as a

reward and is used to update the controller to generate better

architectures over time. Our proposed Transfer Learning and

Reinforcement Learning based LSTM (TL-RL-LSTM) mobility

predictor is described by the following three steps:

Algorithm 1: RLSM Monitor.

input:Mobility prediction model for each user in the network.

output:Migration decision for each user.

1: while user is connected do

2: Perform mobility prediction;

3: Estimate when HOs will be triggered based on the predicted

user trajectory;

4: if HO is eminent then

5: Perform migration decision;

6: Measure QoS;

7: if QoS is below the threshold then

8: Perform migration decision;

Fig. 4. Sequence Diagram for Migration Procedure.

Algorithm 2: RLSM Assignment.

input: User not provided with minimum requirements, list of avail-

able servers.

output: ID of the best server for the user, migration operations.

Data:Minimum requirements of the service

1: List available servers;

2: Remove servers lacking resources for the UE application from

list;

3: for Each available edge server do

4: Get QoS for the server;

5: while Server has not been chosen do

6: Get the closest server to the UE’s future location;

7: Estimate migration time;

8: ifMigration can be done before the UE’s arrival and Server

QoS is above threshold then

9: Choose this server as target;

10: else if Current connected server QoS is below threshold and

Server QoS is above threshold then

11: Choose this server as target;

12: else

13: Remove this server from list;

14: Perform migration;



i) Student LSTM predictor aims to fulfill high accuracy

for the mobility prediction task.

ii) Q-learning controller as a RL agent proposes better

architectures for the student LSTM to maximize the

overall expected prediction results.

iii) Knowledge transfer from a previously trained LSTM

model (teacher LSTM) to a new architecture (student

LSTM) accelerates the architecture search process.

B. LSTM Predictor

Mobility trace data are considered as time-series data that

have been collected at different points in time. Time series

prediction can be generalized as a process that extracts useful

information from historical records and estimates future val-

ues. Within the DL framework, RNNs have been extensively

applied for time-series prediction [4]. However, conventional

RNN suffers from a lack of long-term memory to capture and

remember long-term dependencies of time series data. Thus,

optimal prediction accuracy is not guaranteed by them. In this

work, a specific kind of RNN predictor, so-called LSTM, has

been proposed to solve the problem of long time-dependen-

cies. An LSTM network is composed of multiple copies of

basic memory blocks, and each memory block contains a

memory cell and three gates (input gate, output gate, and for-

get gate). Fig. 5 shows an overview of a LSTM NN architec-

ture through a chain of memory cells known as stacked

LSTM. The memory cell is the critical component of long-

term memory and is responsible for transferring the informa-

tion at different time steps. Each of the three gates contains a

sigmoid layer in order to decide how much information passes

through memory blocks. The input gate controls which part of

the input will be utilized to update the cell state. The forget

gate controls which part of the old cell state will be thrown

away. The output gate determines which part of the new cell

state will be output.

In our predictor design, we consider multiple layers of basic

LSTM cell units to form a stacked LSTM network. The intui-

tion is that the deep LSTM network can better understand the

temporal dependencies of the users’ locations. The LSTM unit

of each layer extracts a fixed number of features passed to the

next layer. An NN with enormous depth (e.g., a large number

of neural hidden layers and neurons of each layer) improves the

accuracy of the prediction task, which is done by the last fully

connected layer. Hence, hyper-parameters have a significant

impact on the performance of ML-based prediction algorithms.

The optimal choice of the number of hidden layers, neurons per

layer, and other NN hyper-parameters requires expert knowl-

edge and takes a long time to be explored. Usually, the hyper-

parameters of the LSTM-based mobility predictor e.g., number

of hidden layers including LSTM, dense, and droput layers,

number of neurons per each layer, and order of layers, have

been determined in empirical and heuristic ways, which is not a

optimal solution. To improve this, we propose a RL-based

approach to automate the process of NN architecture selection.

C. Automation of LSTM Architecture Design Through RL

It is required to fine-tune the NN architecture and choose the

best possible combination of hyper-parameters to have a highly

accurate LSTM predictor. We implement an RL agent on top

of our LSTM predictor to automatically optimize the NN

design process without human intervention. RL learns what to

do and how to map states to actions to maximize the reward sig-

nal. The RL agent is not told which actions to take, but instead,

it must find out which actions would harvest the most reward

by exploring and exploiting various possible scenarios. The

learning process can be modeled as closed-loop as follows:

i) The agent receives state st from environments at time t.
ii) Being on state st, the agent decides to take a specific

action based on the predefined policy and reference

table.

iii) With action at, the agent updates to a new state stþ1.

iv) Environments return a reward rt to the agent.
v) The reference table gets updated by the reward corre-

sponding to the chosen action.

vi) The agent learns to take the best actions over time based

on the accumulation of reward during the explore-

exploit process and updated values of the reference table.

In our research, RL automatically adapts the NN hyper-

parameters to optimize the performance of the mobility pre-

diction. If RL is applied to NN architecture design search, an

NN with a particular architecture is trained to achieve satisfy-

ing accuracy. At the end of each episode or iteration, the net-

work (e.g., accuracy, precision, and recall) is a reward signal

for the RL controller. An episode corresponds to one complete

sequence of taking an action, updating the state, and receiving

the reward. Utilizing the reward for each suggested architec-

ture, the controller would generate improved architectures

over time. In this work, we create a Q-learning-based RL con-

troller that seeks to learn the policy to maximize the total

reward in order to find the high-performance LSTM architec-

ture. To learn the best policy, the learning agent needs to

explore the search space, including Action space and Parame-

ter space, and afterwards learns the best state corresponding

to the best action. However, searching through the immense

search space is extremely time-consuming, and due to the lim-

ited computational resources, a mechanism to speed up the

convergence process is demanded. Therefore, we limit the

search space to a finite but still large space of possible archi-

tectures to be searched by the RL controller.

On action space, we define some restrictions on learning

agents from taking certain actions. For instance, we allow the

RL controller to terminate the predefined total number of iter-

ations sooner if the suggested LSTM has already reached a

satisfying prediction accuracy (e.g., 80%). Otherwise, the

Fig. 5. Stacked LSTM network architecture.



process will terminate when the learning agent has explored

the whole defined search space. Besides, we force the learning

agent to have a dropout layer [34] after each hidden layer to

prevent over-fitting as a serious issue in ML algorithms. On

parameter space, we define a range of possible hyper-parame-

ters (e.g., number of hidden layers, number of neurons in each

hidden layer, and dropout ratio) that the learning agent is

allowed to try. We define the number of hidden layers as an

integer value in an interval of ð0; 5Þ. The number of neurons

in each hidden layer might be chosen from discrete list of

f20; 40; 60; 80; 100; 150g. Candidate values for dropout ratio

fall down in the set of f0:1; 0:3; 0:5; 0:7; 0:9g. Besides, we use
Rectified Linear Unit (ReLU) as non-linearity functions [35]

of each NN dense layer.

After illustrating an appropriate search space, the learning

agent trains through random exploration, slowly converges,

and selects higher-performance architectures. To summarize

the learning process, on each iteration, from the predefined set

of iterations t 2 f0; 1; 2; . . . 150g, the Q-learning agent in state
s 2 S takes an action a � AðsÞ and moves toward next state

s0 2 S. In this loop, the reward (rt 2 R) corresponding to the

action-state is generated, and the Q-table (reference table) is

updated. In subsequent iterations, the agent starts learning and

suggests better architectures over time. In the beginning, the

Q-table is randomly initialized. However, after each episode,

it gets updated from the reward signal corresponding to the

taken action and the state. The state-action values are denoted

as Q-values or Qðs; aÞ within the Q-table.

In mobility predictions, taking an action means suggesting

an NN architecture to predict the future trajectory, and passing

to a new state means estimating the performance of the predic-

tor corresponding to the proposed architecture. At the end of

each iteration, the reward signal defined as trajectory predic-

tion accuracy feeds back to the Q-learning agent whose ulti-

mate goal is to maximize the total cumulative rewards. In RL,

the maximization of the total expected reward is often defined

as a recursive problem within Bellman’s Equation. In this arti-

cle, we employ the �-greedy strategy as our explore-exploit

policy [36]. In the exploration phase, the learning agent ran-

domly suggests a new architecture to the LSTM predictor.

Afterwards, the agent notices high-performance architectures

from high rewarded values of the Q-table and begins converg-

ing, which refers to the exploitation phase. The controller on

each iteration explores (suggests a random LSTM architec-

ture) with probability � and exploits with probability 1� �, so

that 0 � � � 1.
The Q-learning agent’s design process with epsilon-greedy

policy includes choosing the following parameters: the proba-

bility of epsilon �,Q-learning rate a, and discount factor g cor-

responding to Bellman’s Equation. In the first episodes, we set

� ¼ 1:0 to guarantee the exploration phase for an agent, and

then gradually, we reduce � to 0.01 to move towards the exploi-

tation phase. Q-learning rate denoted as a 2 ð0; 1� determines

the weight given to new information over old information, and

discount factor denoted as g 2 ð0; 1� determines the importance

given to immediate rewards over future rewards.

D. Expedition of RL-LSTM Through TL

The RL agent suggests possible architectures from the

search space to the LSTM predictor to be explored. Although

the way RL explores the search space is remarkably faster

than grid searching, yet it is very time-consuming. Therefore,

in RL scheme, it is not efficient to train each proposed NN

architecture from scratch. Therefore, in this section, we pres-

ent a TL framework, which offers a way to transfer knowledge

from the previously trained LSTM predictor (denoted as

teacher LSTM) to a newly suggested LSTM predictor (denoted

as student LSTM) in order to speed up the searching process.

In this way, at each iteration, the newly suggested student

LSTM can pass the learning phase faster. We apply TL in

case of similarities in architectures of teacher and student

LSTMs in terms of hidden layers, neurons per layer, and con-

nectivity. This means transferring the knowledge of similar

layers from teacher LSTM at iteration t� 1 to student LSTM

at iteration t. The knowledge here refers to the weights of the

teacher LSTM NN architecture that is saved and transferred to

the student LSTM to be initialized with. In this article, we

employ an adaptation of Net2Net research [37], where authors

attempt to transfer the pre-trained predictor’s knowledge at

iteration t� 1 to the new predictor at iteration t.
The teacher LSTM has n layers denoted as: L ¼ fl1; l2; . . . ;

lng, where the layers l1 and ln express the input and output layers
of the NN. We assume that the RL controller proposes a new

architecture to student LSTM, which is exactly the same as the

previous one, but contains an extra new layer l0i. This layer

would be implemented between layers with index n� 1 and

index n (output layer) as follows: ~L ¼ f~l1; ~l2; . . . ; ~ln�1; l
0
i;
~lng.

We define the function yðljÞ 2 N> 0 that represents the num-

ber of hidden neurons of each layer lj, so that 1 � j � n. Fur-
ther, we define a weight function vðljÞ 2 Rn�m, where n;m
2 N> 0, in order to build the weight matrix corresponding to

NN. We assume that the teacher and student LSTMs have the

same number of neurons in each of the layers if: L
T

~L :¼
fli j yðliÞ ¼ yð~liÞg for i ¼ 1; . . . ; n� 1. Thus, we can transfer

knowledge from li to ~li for i ¼ 1; . . . ; n� 1. Transferring

knowledge means carrying and copying the first n� 1 layers’

neurons weights from the teacher to the student LSTM as:

vð~liÞ :¼ vðliÞ; 8i ¼ 1; . . . ; n� 1. Fig. 6 shows a high-level

system design of the proposed LSTMmobility predictor.

Fig. 6. RL-LSTM predictor system design with knowledge transfer.



VI. RL-LSTM-BASED HANDOVER OPTIMIZATION

A. Overview

This section details a HO algorithm called Reinforcement

Learning-based Handover for Edge Computing (RL-HEC), a

service-aware HO algorithm based on a DL mobility predic-

tion. RL-HEC takes advantage of the individual prediction

models trained for users to avoid ping-pong HOs, and maxi-

mize service continuity. The proposed scheme considers the

services being consumed by end-users and connection informa-

tion to avoid link failures and service disruptions caused by the

HO. This is achieved by assuming knowledge of the service

instances’ locations being consumed by users, since HO execu-

tions may require rerouting of such services, compromising

service requirements. The proposed scheme performs better

than state-of-the-art algorithms.

RL-HEC takes as inputs mobility prediction models of each

user and the location of the services in terms of where the ses-

sion is located in the network topology. We define a ping-

pong HO as disconnection and reconnection to a certain BS

within an interval of 4 seconds [32]. The prediction model for

a given user can forecast with significant accuracy the next

connection of a user, such as described in Section V, and thus

can be used to predict the occurrences of ping-pong HO and

also service migration patterns. We divide the HO procedure

into three phases: (i) measurement, (ii) decision, and (iii) exe-

cution. In traditional signal-based HOs, the measurement

phase comprises the user devices reporting the signal from all

the neighboring BSs they can detect. However, this a purely

reactive approach i.e. when the user moves from one coverage

area to another, they switch BSs accordingly.

At the borders of BSs’ coverage areas, signal fluctuations

tend to trigger network events such as the LTE A2, A4, and

A3 events [38], which are used in traditional HO decisions.

This causes unnecessary HOs, such as ping-pong HOs, which

are characterized by consecutive disconnections and re-con-

nections within a group of two or more BSs. RL-HEC takes

advantage of the future connections predicted by the individ-

ual LSTM models to employ a reliable ping-pong avoidance

mechanism capable of reducing ping-pong HOs by as much to

almost zero, as shown in Section VII-D.

B. Scenario Description

We consider a mobile network, such as the one represented

by the dataset used in our experiments, described in more

detail in Section III-A. In it, we assume the presence of N
UE’s, each connected to one of the C BSs present in the sce-

nario. Users move through the scenario and trigger HO events

according to the HO algorithm. A given UE n 2 N may or

may not have an LSTM modelm associated with it, depending

on the quality of the data available for the UE, as described in

Section III-A, and each model m 2 M has an accuracy level

known by the network. Overseeing the HO process, we con-

sider a HO Manager similar to the 4 G Mobility Manager

Entity (MME) or the 5 G Access and Mobility Manager Func-

tion (AMF). This HO Manager has access to the individual

prediction models for users and their connection history for

ping-pong detection.

C. Measurement Phase

The measurement phase of the algorithm is responsible for

receiving the necessary inputs for the execution. In the case of

RL-HEC, these inputs are the mobility prediction model for

the respective user being considered, the location of the serv-

ices being consumed by the user, and signal measurements.

RL-HEC must then assess the quality of the prediction model

received, as a low accuracy model can impact the overall per-

formance of the network. We assume that trained models are

located within a centralized entity and can be accessed by

BSs. Here we must define a threshold Th as model accuracy,

below which the model is not used in the algorithm. If the

accuracy is above the threshold, the algorithm uses the trained

model for the user. For practical purposes, we use the value of

0.8 as the threshold, as it means that in the vast majority of

cases the prediction will be valid, and in the few cases, where

it might be wrong, the other parameters of the decision can

offer more reliability for the HO decision.

D. Decision Phase

The decision phase in RL-HEC happens within the HO

Manager, which is located in the user’s serving BS. The HO

Manager is a distributed entity running in every BS of the net-

work. Therefore, each BS performs the HO decisions for its

users. The algorithm’s decision phase can occur independently

for each user, as it is a distributed process. Let us consider the

case for a single user with a mobility prediction model associ-

ated with it. The HO manager assesses the next HO predicted

for the given user. In order to avoid ping-pong HO executions,

the HO manager checks if the HO in question is a ping-pong

HO. After a series of ping-pong HOs, mobile users will usu-

ally have a more stable connection in a given BS’s coverage

area, thus, we must detect in which BS the user will remain

connected. Then, before the HO is actually executed, the HO

algorithm must notify the RLSM migration algorithm about

the upcoming HO, so that any necessary service migrations

can be performed in advance. This is possible, because HOs

usually occur within overlapping coverage areas of two or

more BSs. Thus, the UE’s previous BS may still be available

for a short period of time.

E. Execution Phase

We consider that a sudden HO execution can be a disruptive

event for user applications, as the changes in routes can

increase the end-to-end latency between the service’s location

and the end-users. For this reason, in the execution of RL-

HEC, the algorithm waits for any pending service migrations

to be finished, thus, improving service continuity. However,

there are cases in which a disconnection occurs before pending

migration is finished. In such case, the HO must be executed

as soon as possible, and a discontinuity for the service being

consumed may be inevitable.



For users with a poor prediction model or without a predic-

tion model at all, a normal signal-based HO decision is made

since these users cannot benefit from mobility prediction.

However, the performance of the ping-pong avoidance system

depends heavily on the accuracy of the models. The model

accuracy on the evaluation dataset is discussed in Section VII-

C. For now, we assume that for each model, the accuracy at

the time of the prediction is known and then compared with

the threshold set. The complete function of the algorithm is

given in detail by Algorithm 3. We consider that not all user

models have the minimum accuracy in performing a good HO

decision based on the predictions, so we define the existence

of a threshold accuracy for each UE. In the algorithm, the case

in which a user has a sufficiently accurate model is shown.

The ping-pong HO avoidance mechanism can be accom-

plished by extrapolating the mobility prediction to the desired

depth and checking if the predicted HOs are ping-pong HOs.

After a HO has been predicted, the best BS is selected as the

user’s “stable connection”, the one in which the UE converges

after the ping-pong HOs. After that, a handover is scheduled.

VII. EXPERIMENTS AND EVALUATION

In this section, we discuss the setup details of TL-RL-LSTM.

We also examine the performance of our predictor using the

Orange Dataset. Furthermore, we evaluate the impact of loca-

tion awareness on service migration performance in terms of

QoS and QoE metrics and the number of ping pong HOs and

throughput.

A. Trajectory Predictor Design Details

The design and the evaluation of the suggested TL-RL-

LSTM are inspired from the unique characteristics of Orange

dataset. The gathered Orange dataset does not include GPS

coordinates nor acceleration information of users’ movements

due to privacy issues. Therefore, the inputs of the designed

LSTM trajectory predictor are the sequences of BS IDs and

time stamps of the connections. The trajectories can be defined

from the data traces based on time or space. Trajectories can

include the whole or a fraction of trace duration depending on

data collection for each user.

As we explained in Section III, Orange dataset includes

mobility data of only 2 months. Therefore, the achieved accu-

racy of the suggested predictor is limited to the dataset quality.

In this work, due to the short duration of the dataset, we have

considered each user’s whole trace of a few months within all

days of the week as his/her input trajectory.

In RL’s exploration phase, where the system suggests dif-

ferent NN architectures and searches the most accurate one,

we train and test each user’s data based on a 10-fold cross-val-

idation approach for few epochs. Splitting data to K folds and

then applying cross-validation guarantees that all observations

from the dataset find the chance to be trained and tested.

Cross-validation is the best solution for datasets with limited

data and strengthening the network against overfitting. After-

wards, on each fold, we train 70% of the user’s trace data and

use the rest 30% to validate the performance of the suggested

LSTM. After the RL exploitation phase, when the best archi-

tecture has converged, we train the discovered LSTM for 200

epochs to evaluate the performance of the chosen architecture.

Furthermore, we apply the Early Stopping approach to

speed up the training process. Early Stopping terminates the

training if accuracy optimization gets stabilized sooner than

defined epochs. Other hyper-parameters of the TL-RL-LSTM

predictor are set as follows. The batch sizes are set to 200, and

the predictor’s initial learning rate is set to 0.002. To schedule

the portion of immediate reward concerning the distant future

reward of RL, the Q-learning rate ðaÞ and discount factor ðgÞ
are set to 0.01 and 1, respectively. In this work, since the goal

is optimizing the neural architecture, the Q-learning rate and

discount factor values are not treated as hyper-parameters.

In this research, the predictors are trained and evaluated on

a High-Performance Computing Cluster at the University of

Bern in Switzerland (HPC Cluster - UBELIX 1) on an eight-

core machine of Intel(R) Xeon (R) E5-2630 v2 @ 2.60 GHz

with 4 GB RAM process environment. The building model

uses a single core for each user enabling parallel execution of

the predictor for multiple users.

B. Evaluation Metrics

Weuse accuracy andMLbuildingmodel time, in other words,

the time it takes for the search to converge to an architecture for a

given user, as evaluationmetrics to examine the proposed trajec-

tory predictor’s performance. Accuracy is defined as the ratio

between predictor’s correct predictions to its overall number of

predictions to measure predictor’s performance. The building

model time in NN predictors refers to the neural architecture

search time plus the training time, while, in non-NN predictors,

it refers only to the training time. The ML building model

time is an important measure for the scalability of a predictor.

Algorithm 3: RL-HEC Algorithm.

Data: Prediction depth

1: for each connected UE do

2: if UE has prediction model then

3: if Prediction accuracy is above threshold then

4: Perform mobility prediction;

5: if Handover is expected then

6: if Next HO is a ping-pong HO then

7: Define best BS as BS in which the client will stay the

longest;

8: else

9: Define the best BS as the predicted BS

10: Notify migration algorithm;

11: while HO not executed do

12: Wait for service migration to finish;

13: if Disconnection is imminent then

14: Perform HO to best BS;

15: Return HO status;

16: Perform HO to best BS;

17: Return HO status;

1 https://docs.id.unibe.ch/ubelix



C. Trajectory Predictor Experimental Results and

Performance Comparison

In this section, we present the experimental results and eval-

uate the performance of the proposed TL-RL-LSTM predictor.

The implemented RL controller searches for the best LSTM

architecture for each single user. According to our experi-

ments, the complexity of each suggested architecture is

affected by the type of user movement. So, users with large

numbers of visited BSs (heterogeneous movement) and less

periodic behavioral history have been suggested architectures

with deeper hidden layers. In contrast, users with a few num-

bers of visited BSs (homogeneous movement) and predictable

movements got simpler architectures. Table I exposes RL’s

suggested LSTM NN architectures of 4 different users, from

the chosen 100 random users, with different mobility patterns

including 2 random heterogeneous and 2 random homoge-

neous users, respectively.

To illustrate the advantages of our proposed predictor, we

compare the TL-RL-LSTM mobility predictor against state-

of-the-art prediction techniques, namely: J48 predictor with

non-parametric supervised learning method for regression

with decision trees, regressive RF predictor that has a random

subset of features from the training data points to create multi-

ple decision trees, and Grid Search optimized LSTM (GS-

LSTM) neural network. J48 and RF are non-NN predictors

and thus, do not require neural architecture search schemes.

TL-RL-LSTM and GS-LSTM are two automated NN-based

predictors that search for the best neural architecture before

training the individual dataset. Unlike RL, which tries to find

the best architecture while minimizing the search space, grid

search is a computationally expensive and slow algorithm

since, it fully trains all possible architecture combinations and

then selects the best available choice. However, RL is by

nature an optimised architecture search method with respect

to naive search approaches, yet it requires a remarkable train-

ing time to discover the best neural architecture. Thus, we

implemented a TL approach on top of the RL algorithm to fur-

ther accelerate and optimise the RL-LSTM’s searching and

training process.

Fig. 7 shows the average accuracy achieved by each of the

compared algorithms on the tested dataset. We can see that

TL-RL-LSTM achieved 69.7% accuracy, 3.2% better than

GS-LSTM in average. Further, TL-RL-LSTM also achieved

7.1% and 11.9% superior performance than the non-NN meth-

ods: RF and J48. This is due to the fact that deep learning-

based methods can better capture the complex spatio-temporal

dependencies.

Fig. 8 compares the performance of our suggested RL-

LSTM predictor with and without TL. It can be observed that

transferring the knowledge of a pre-trained LSTM layer

(teacher-LSTM) to a newly-suggested LSTM layer (student-

LSTM) helps the RL agent to converge sooner. So that, TL-

RL-LSTM is stabilized, on average, at about the 75th episode

(out of 100 episodes), while RL-LSTM starts to stabilize

around 90th episode. It can also be observed that RL-LSTM

with TL has less bouncing in prediction accuracy during the

exploration time than the RL-LSTM without TL. This indi-

cates the benefit of transferring knowledge in accelerating the

search process and narrowing down the search space toward

more optimal actions.

Fig. 9 demonstrates the Kernel Density Estimation (KD) of

the achieved accuracy for each of the tested predictors. KD is

defined in a non-parametric way and estimates the smoothed

Probability Density Function (PDF) of a finite number of sam-

ples of an unknown density. It can be seen that TL-RL-LSTM

has higher probability density (more users) across higher pre-

diction accuracy values, and the smallest accuracy is at least

10% better than other predictors. Moreover, the distribution of

the data for TL-RL-LSTM is also less dispersed than other

predictors, meaning a more consistent accuracy performance.

Fig. 10 shows the average ML building model time per user

for the different predictors. It can be observed that TL-RL-

LSTM takes on average 176 minutes, approximately, to search

the best architecture and train each user. However, in opti-

mized deployments, this time would further decreased by par-

allelization. Alternatively, GS-LSTM, for smaller search

space, takes on average 625 minutes to find the best architec-

ture and train each user. Thus, TL-RL-LSTM converged to

better neural architecture and respectively achieved higher

prediction accuracy in much less time compared to GS-

LSTM. In this context, a long ML building model time seems

to be one of the drawbacks of the NN approaches, as both the

RF and J48 algorithms took less than 1-hour on average to

train each user. However, a longer time to build a NN predic-

tion model in an offline manner aims the best prediction accu-

racy and less time to build the best NN prediction model when

compared to other NN approaches.

Over the course of the experiments, it has been observed that

the accuracy achieved by each user depends on the number of

visited BSs by each user. Users connecting to fewer BSs tend

to have more accurate prediction models. Fig. 11 presents

users average accuracy for different predictors, grouped by

TABLE I
LSTM ARCHITECTURES SUGGESTED BY RL AGENT FOR HETEROGENEOUS

AND HOMOGENEOUS USERS

Fig. 7. Average prediction accuracy of 100 users.



user mobilities. We define different levels of user mobility by

estimating each user’s average number of visited BSs per day.

From right to left of Fig. 11, groups are referred to very-high-

mobility, high-mobility, medium-mobility, and low-mobility

users. The very-high-mobility group contains 19-24 daily vis-

ited BSs, the high-mobility group contains 13-18 daily visited

BSs, the medium-mobility group contains 7-12 daily visited

BSs, and the low-mobility group contains 1-6 daily visited

BSs. As it is shown, for each of the defined groups, TL-RL-

LSTM predictor maintains the superior accuracy consistently.

Further, we can see the trend of diminishing accuracy for very-

high-mobility users. That is because the number of daily visited

BSs grows, the error probability grows respectively. For the

low-mobility users, the confidence interval of the predictors

overlaps to a larger extent. This is because these users contain

easier prediction scenarios. As it is discussed in Section III-C,

users within the same mobility group have a similar correlation

ratio which is defined as the ratio between the achieved predic-

tion accuracy and the mean number of daily BSs. The correla-

tion ratio of very-high-mobility users group is quite a small

value since the achieved accuracy is low and the mean number

of daily BSs is relatively high. Alternatively, the correlation

ratio of low-mobility users is quite a high value since the

achieved accuracy is very high, and the mean number of daily

BSs is low. The correlation ratios of other groups of high-

mobility and medium-mobility are smoother values. Overall, it

can be concluded that for users with medium and high mobility

patterns, the proposed predictor performs much better than

others, and their prediction accuracy is more similar to the aver-

age accuracy of total users introduced in Fig. 10.

D. Handover Optimization Evaluation

We implemented the RL-HEC algorithm in the NS-3.302

network simulator. RL-HEC was implemented on the LTE

stack of the simulator accordingly to the Orange Dataset sce-

nario, where 33 simulations have been performed using the

parameters described in Table II and the scenario of Fig. 3. In

each simulation, the random seed of the simulator was varied,

and different users from the dataset were chosen to populate

the scenario. Results are shown with a confidence interval of

95%. Each user in the scenario is equipped with a UDP-based

application. Users move according to real-world traces, and

each BS in the scenario is assigned with one device generating

a constant bit rate traffic of 1 Mbps.

For comparison purposes, we also implemented three other

state-of-the-art HO algorithms to test against RL-HEC. The

algorithms are the following: (i): PRED [20] is position pre-

diction-based HO algorithm based on the Reference Signal

Received Power (RSRP), Reference Signal Received Quality

(RSRQ) and some UE parameters like moving direction and

the position inside the BS used as HO decision criteria. (ii):

Received Signal Strength Indication (RSSI)-based [38], a stan-

dard HO algorithm based on signal events, meaning the events

when the serving BS’s signal quality drops below a threshold,

Fig. 8. Average prediction accuracy of 100 users with/without TL.

Fig. 9. Kernel density estimation accuracy.

Fig. 10. Average model building time of 100 users.

Fig. 11. Different predictors’ achieved accuracy grouped by average number
of daily visited BSs per User.

TABLE II
SIMULATION PARAMETERS

2 https://nsnam.org



and the events when a neighbor BS’s signal quality is a certain

threshold above the serving BS’s one. This algorithm uses sig-

nal quality in its decision, making it more sensitive to interfer-

ence and noise fluctuations. (iii): the strongest BS algorithm

Power Budget (PBGT) [38] uses a threshold value, i.e., a HO

is made if a neighbor BS’s signal strength becomes larger than

the serving BS’s one plus a threshold. This makes this algo-

rithm more robust to ping-pong HOs and interference as well,

but it can cause users to stay in overloaded macrocells.

Fig. 12 shows the percentage of ping-pongHOsmade in com-

parison with the total number of HOs in the simulations. Results

were averaged across all 33 simulations and are shown with a

confidence interval of 95%. Note that the amounts shown are

cumulative across all 20 devices in the scenario. As previously

defined, we consider a ping-pong HO as a disconnection and

reconnection to a BS within 4 seconds [32]. We can see that RL-

HEC achieves a near-zero number of ping-pong HOs, compared

to the average of 40% and 92% of the PRED and RSSI-based

algorithms, respectively. PRED maintains a relatively low num-

ber of ping-pong HOs, about 30 per user device, compared to the

RSSI-based algorithm. This is because the PRED algorithm’s

predictive approach uses parameters such as moving direction

and position inside the coverage area, which is not enough to

predict and avoid the occurrences of ping-pong HOs. The RSSI-

based algorithm performs a much larger number of ping-pong

HOs because it is more sensible to signal fluctuations, especially

when the coverage area of neighbor BSs and the serving BS

overlap. The PBGT algorithm did not cause ping-pong HOs at

all in the simulations. This is because it is executed with a signif-

icant hysteresis value that only allows a HO to happen, if the tar-

get BS’s signals strength is a threshold above the serving one’s.

The number of ping-pong HOs for each algorithm is propor-

tional to the total number of HOs executed. Fig. 13 shows the

raw number of HOs with different algorithms. RL-HEC

caused about 16 HOs per node during 100 seconds of simula-

tion, considering that, on average, each user in the simulation

passes through the coverage area of 66 BSs. However, this

does not mean that coverage areas do not overlap. RL-HEC

tends to maximize the staying time of a user in a certain BS,

i.e., the time the user remains connected to it, and then per-

forms a HO. Both RL-HEC and PBGT performed less than 20

HOs per node. This is because in the decision phase of RL-

HEC and PBGT the UE often only performs a HO when its

current BS is unavailable, avoiding fluctuations. RL-HEC’s

mobility prediction makes the BS choice more reliable and

connections more stable. In the PBGT algorithm, connections

are stable because most users are bound to the BSs with the

highest transmission power, ultimately increasing congestion

levels and compromising QoS. This showcases how in scenar-

ios with BSs of different transmission power value, traditional

HO algorithms may fall short in performance. Each node

under PRED performed on average one HO every 4 seconds.

In the case of the RSSI-based algorithm, which is more sensi-

tive to signal fluctuations, an excessive number of HOs is per-

formed. In our experiments, with the RSSI-based algorithm,

individual users perform one HO every 2 seconds.

Fig. 14 shows the impact of each HO algorithm in raw user

throughput. Our evaluation methodology for throughput con-

sists of empirical measurements. A variable bitrate UDP appli-

cation is installed on each user device sending data from the

UE to a remote host at the core of the network and measuring

the end-to-end throughput. Transmission power for the BSs is

set to 46 dBm using Multiple-Input Multiple-Output (MIMO)

transmission mode. It is important to notice that users in this

scenario do not have obstacles to their respective BSs, always

maintaining a clear line-of-sight. User throughput will be

heavily affected if the user is not connected to the most appro-

priate BS, due to factors like Signal to Noise Ratio (SINR),

user movement, and interference from neighbor BSs. We can

see that RL-HEC achieves a throughput of 12.9 Mbps, com-

pared to 8.75 Mbps for the PRED algorithm, 0.73 Mbps for the

RSSI-based, and 0.5 Mbps for the PBGT algorithm. This high-

lights that RL-HEC choses the best BSs most frequently com-

pared to the other tested algorithms. PRED’s throughput comes

closer to it, however, at higher costs in terms of ping-pong

HOs. The raw throughput achieved in the RSSI-based simula-

tion is several times lower than the one of RL-HEC, due to

excessive and sub-optimal HO executions.

Fig. 12. Percentage of Ping-Pong HOs for each algorithm. Fig. 13. Number of HOs for each algorithm.

Fig. 14. Average network throughput for each algorithm.



E. Service Migration Evaluation

We now evaluate the performance of the RLSM algorithm

proposed in this work. In this context, we consider each BS to

be associated with an edge datacenter capable of running

cloud-based services for users in the scenario. The algorithm

takes advantage of learning models at the edge of the network

to optimize the services being consumed at the network’s

edge. The architecture can take advantage of the user mobility

prediction scheme to perform service migrations proactively

to the next edge server the user shall connect to. Modern low-

latency applications are especially sensitive to user mobility

in this manner since the occurrence of HOs may cause the

services being consumed to be rerouted and increase the end-

to-end latency. Thus, edge services should always be close to

their user to some extent. Note that simply transferring the ser-

vice to the closest edge server ignores the dynamic nature of

edge-enabled networks, such as how the available resources

of the servers may be reserved by other users at the moment of

the migration request.

Users in the simulated scenario consume a cloud-based

application. For this work, we choose an Augmented Reality

(AR) application with the requirements as defined by Lau et al.

[39]. This application was selected as it is one of the emerging

applications in intelligent MEC scenarios. It will benefit from

the presence of ML models at the edge. Its requirements are

defined as low latency (generally agreed upon at 10 ms maxi-

mum), high bandwidth, and moderate to high priority when

compared with less demanding applications.

Many works in the recent literature tackle these problems,

some of which consider mobility prediction. However, we

found no other work that uses a next BS prediction for service

migration optimization. As seen in Section II, the majority of

state-of-the-art works do not consider the resources at the target

servers for their decisions, often resulting in migration failures

and increased latency. To compare RLSM with other works,

we chose three other algorithms found in the literature: (i):

Ouyang et al. [16] to represent the state-of-the-art in our simu-

lations proposes “Follow me at the Edge,” a baseline service

migration scheme for edge-enabled networks which applies a

Markov approximation to find a near-optimal behavior. (ii) A

greedy approach, in which the network tries to always keep

services in the edge server closest to the user consuming them.

However, this approach increases the chance of migration fail-

ures and dramatically decreases the number of available com-

puting resources at the network’s edge. Furthermore, at last,

(iii) a NoMigration approach in which services are allocated to

the edge, fog, and cloud servers at the beginning of the simula-

tion and are not migrated for the remaining of the simulation.

Simulations are conducted 33 times, with different random

seeds and users’ set from the dataset present in the scenario.

Table III shows the main parameters used in the simulations

and results are shown with a confidence interval of 95%.

In Fig. 15, we see the average latency across all users in the

network for the service being tested. When considering the

application’s latency requirements, RLSM is the only algo-

rithm that meets the application requirement threshold with

average latency below 10 ms. This is because, most times, all

users in the simulation are served by an edge or fog server. The

same approach is attempted by the greedy approach, lacking

proper resource management, causing many migration failures.

In the simulation for the algorithm by Ouyang et al., the end-to-

end latency for the application is 35 ms on average, with an

even larger average latency than the scenario where no migra-

tion occurs. This is because, in the No-Migration approach,

users remain served at the server they are first allocated to, thus

having a portion of users with low mobility remain connected

to their closest edge server. In our scenario, the latency to reach

a fog server is in the order of 10 ms, and the latency to reach an

edge server is in the order of 1 ms. The greedy algorithm has

the worst performance in terms of latency, as the many migra-

tion failures caused by the excessive number of migrations sig-

nificantly deplete network resources and performance.

The number of migrations performed by each algorithm

may also influence its performance, as shown in Fig. 16. In the

simulated scenario, RLSM performed, on average, about 60

migrations per simulation on the total, against 90, 105, and 0

for the algorithm by Ouyang et al., the greedy algorithm, and

TABLE III
SIMULATION PARAMETERS

Fig. 15. Average service latency.

Fig. 16. Number of service migrations attempted.



the No-Migration algorithm, respectively. Since migrations in

RLSM are made proactively, migrations tend to follow user

movement and are more robust to signal fluctuations. The

algorithm by Ouyang et al. and the greedy approach make a

reactive migration after the user moves to a new area, which

means that they can not reserve resources from the target serv-

ers proactively and may have to deal with migration failures,

increasing the end-to-end latency of the applications. The No-

Migration approach is configured not to perform any migra-

tions during the course of the simulation.

One important resource management metric is the migration

failure rate. We define a migration failure when migration is

requested to a server with the necessary resources to support

the applications, thus requiring another server to be chosen.

Fig. 17 shows the number of migration failures, on average, for

each algorithm. The no-migration approach did not perform

any migrations, so it has no failures. The greedy strategy has

the highest number of failures due to the lack of mobility pre-

diction and resource awareness. RLSM did not cause any

migration failures in the course of the simulations. This is

because a resource check precedes every migration decision.

Thus, migrations are only made to servers that can receive the

service with ease. In terms of failures, Ouyang et al. ’s algo-

rithm caused fewer failures than the greedy approach, as

expected, but still many more than RLSM.

VIII. CONCLUSION

User mobility awareness plays an essential role in enhancing

network performance. In this article, we tackled the problem

how user mobility prediction can be used to deploy NN models

to optimize network performance. We designed an RL method

to automate the architecture search for the LSTM networks

with fast convergence rate. We validated our ideas on a real-

world large scale anonymized dataset collected from a telecom-

munication network operator. Experiment results show that our

predictor delivers better accuracy over state-of-the-art works.

Moreover, we designed and implemented a novel HO algo-

rithm and service migration scheme that benefit from mobility

prediction. Simulation results show that the proposed solutions

could reduce ping-pong HO rates to almost zero while increas-

ing measured network throughput by 1.5 times compared to

state-of-the-art solutions and lead to a much lower number of

migration attempts and failures.

REFERENCES

[1] J. K. Lee, Y. S. Jeong, and J. H. Park, “S-ITSF: A service based intelli-
gent transportation system framework for smart accident management,”
Hum.-Centric Comput. Inf. Sci., vol. 5, no. 1, pp. 34–42, 2015.

[2] W. Zheng, X. Huang, and Y. Li, “Understanding the tourist mobility using
gps: Where is the next place?,” Tourism Manage., vol. 59, pp. 267–280,
2017.

[3] A. Mohamed, O. Onireti, S. A. Hoseinitabatabaei, M. Imran, A. Imran,
and R. Tafazolli, “Mobility prediction for handover management in cel-
lular networks with control/data separation,” in Proc. IEEE Int. Conf.
Commun., 2015, pp. 3939–3944.

[4] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Graph convolutional recurrent neural
network: Data-driven traffic forecasting,”CoRR, 2017, arXiv:1707.01926.

[5] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, 2016, arXiv:1611.01578.

[6] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, no. Jul., pp. 1633–1685,
2009.

[7] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individ-
ual humanmobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 2008.

[8] G. Chen, A. C. Viana, M. Fiore, and C. Sarraute, “Complete trajectory
reconstruction from sparse mobile phone data,” EPJ Data Sci., vol. 8,
no. 1, p. 30, 2019.

[9] W. Zhang et al., “A survey on decision making for task migration in
mobile cloud environments,” Pers. Ubiquitous Comput., vol. 20, no. 3,
pp. 295–309, 2016.

[10] H. Jing et al., “LSTM-based service migration for pervasive cloud
computing,” in Proc. IEEE Int. Conf. Internet Things IEEE Green Com-
put. Commun. IEEE Cyber, Physical Soc. Comput. IEEE Smart Data,
2018, pp. 1835–1840.

[11] X. Yu, M. Guan, M. Liao, and X. Fan, “Pre-migration of vehicle to net-
work services based on priority in mobile edge computing,” IEEE
Access, vol. 7, pp. 3722–3730, 2019.

[12] W. Zhang et al., “Resource requests prediction in the cloud computing
environment with a deep belief network,” Softw. - Pract. Experience,
vol. 47, no. 3, pp. 473–488, 2017.

[13] Z. Liang, Y. Liu, T. M. Lok, and K. Huang, “Multi-cell mobile edge
computing: Joint service migration and resource allocation,” IEEE
Trans. Wireless Commun., vol. 20, no. 9, pp. 5898–5912, Sep. 2021.

[14] W. Zhang, S. Tan, Q. Lu, X. Liu, and W. Gong, “A genetic-algorithm-
based approach for task migration in pervasive clouds,” Int. J. Distrib.
Sensor Netw., vol. 11, no. 8, 2015, Art. no. 463230.

[15] C. Li, L. Zhu, W. Li, and Y. Luo, “Joint edge caching and dynamic ser-
vice migration in SDN based mobile edge computing,” J. Netw. Comput.
Appl., vol. 177, no. Jul. 2020, 2021, Art. no. 102966.

[16] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[17] Z. Gao, J. Meng, Q. Wang, and Y. Yang, “Service migration for dead-
line-varying user-generated data in mobile edge-clouds,” in Proc. IEEE
World Congr. Serv., Services, 2018, pp. 53–54.

[18] X. Xu, X. Tang, Z. Sun, X. Tao, and P. Zhang, “Delay-oriented cross-
tier handover optimization in ultra-dense heterogeneous networks,”
IEEE Access, vol. 7, pp. 21 769–21 776, 2019.

[19] F. Gong, Z. Sun, X. Xu, Z. Sun, and X. Tang, “Cross-tier handover deci-
sion optimization with stochastic based analytical results for 5G hetero-
geneous ultra-dense networks,” in Proc. IEEE Int. Conf. Commun.
Workshops, 2018, pp. 1–6.

[20] M. Mandour, F. Gebali, A. D. Elbayoumy, G. M. A. Hamid, and
A. Abdelaziz, “Handover optimization and user mobility prediction in
lte femtocells network,” in Proc. IEEE Int. Conf. Consum. Electron.,
2019, pp. 1–6.

[21] R. Ma, J. Cao, D. Feng, H. Li, and S. He, “FTGPHA: Fixed-trajectory
group pre-handover authentication mechanism for mobile relays in 5G
high-speed rail networks,” IEEE Trans. Veh. Technol., vol. 69, no. 2,
pp. 2126–2140, Feb. 2020.

[22] S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction and
risk assessment for intelligent vehicles,” Robomech J., vol. 1, no. 1, pp. 1–14.

[23] C. Barrios, Y. Motai, and D. Huston, “Trajectory estimations using
smartphones,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7901–7910,
Dec. 2015.

[24] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang, “Vehicle trajec-
tory prediction by integrating physics- and maneuver-based approaches
using interactive multiple models,” IEEE Trans. Ind. Electron., vol. 65,
no. 7, pp. 5999–6008, Jul. 2018.

Fig. 17. Number of service migration failures.



[25] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajec-
tory prediction based on motion model and maneuver recognition,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 4363–4369.

[26] J. Chung, C
̏
. G€ulçehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” CoRR, 2014,
arXiv:1412.3555.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, Nov. 1997.

[28] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable
intention prediction of human drivers at intersections,” in Proc. IEEE
Intell. Veh. Symp., 2017, pp. 1665–1670.

[29] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[30] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 281–305, 2012.

[31] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[32] L. Tartarini et al., “Software-defined handover decision engine for het-
erogeneous cloud radio access networks,” Comput. Commun., vol. 115,
pp. 21–34, 2018.

[33] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the Internet
of Things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.,
2010, pp. 807–814.

[36] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[37] T. Chen, I. J. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” CoRR, 2016, arXiv:1511.05641.

[38] 3GPP, “Evolved universal terrestrial radio access (e-utra); radio resour-
ce835control (rrc); protocol specification, 3gpp ts 36.331 v9.4.0 (2010-09),”
EvolvedUniversal Terrestrial RadioAccess (E-UTRA);RadioResource837-
Control (RRC);Protocol specification(Release 9), 2011.

[39] B. P. L. Lau et al., “A survey of data fusion in smart city applications,”
Inf. Fusion, vol. 52, pp. 357–374, 2019.

Zhongliang Zhao received the Ph.D. degree from the
University of Bern, Bern, Switzerland, in 2014. Since
2019, he has been an Associate Professor with Beihang
University, Beijing, China, and a Senior Researcher
with the University of Bern. His research interests
include machine learning, edge computing, and UAV
ad-hoc networks.

Negar Emami received the master’s degree in tele-
communications engineering from the Politecnico di
Milano, Milan, Italy. She is currently working toward
the Ph.D. degree with the Department of Computer
Science, University of Bern, Bern, Switzerland. Her
research interests include modeling mobility data for
network management and enhancing location-based
applications.

Hugo Santos received the graduation degree in com-
puter engineering and the master’s degree in electri-
cal enginering from the Federal University of Par�a,
Bel�em, Brazil. He is currently under a jointly Ph.D.
supervision with the University of Bern, Bern, Swit-
zerland. His research interests include cloud, fog and
edge computing, vehicular UAV networks, mobility,
multimedia, and quality of experience.

Lucas Pacheco received the undergraduate and mas-
ter’s degrees in electrical engineering from the Fed-
eral University of Par�a, Bel�em, Brazil. Since 2020,
he has been working toward the Ph.D. degree in com-
puter science with the University of Bern, Bern, Swit-
zerland. His research interests include mobility
management, prediction and management of cloud
resources, and the impact of urban mobility on cloud,
and edge services.

Mostafa Karimzadeh received the Ph.D. degree in
computer science from the University of Bern, Bern,
Switzerland. His research interests include computer
and communication networks, machine learning, and
deep learning optimization for network performance.

Torsten Braun (Senior Member, IEEE) received the
Ph.D. degree from the University of Karlsruhe, Karls-
ruhe, Germany, in 1993. From 1994 to 1995, he was a
Guest Scientist with INRIA Sophia-Antipolis, France.
From 1995 to 1997, he was a Project Leader and a
Senior Consultant with IBM European Networking
Centre, Heidelberg, Germany. Since 1998, he has been
a Full Professor of computer science with the Univer-
sity of Bern, Bern, Switzerland.

Arnaud Braud is currently an Architect and Data
Scientist with Orange Laboratories involved in AI
powered digital marketplaces research studies and
also 5G core data analytics functions assessment. He
is also contributing to the European Union Gaia-X
initiative.

Benoit Radier received the electrical engineering
Diploma from the Institut Sup�erieur de l’Electronique et
du Num�erique, Brest, France, and the Doctoral degree in
computer science from the Universit�e Pierre et Marie
Curie, Paris, France, in 2009. He is currently a Research
Engineer in informatics and telecommunication. In
2000, he joined France T�el�ecom Research and Develop-
ment Lannion, France. Since 2007, his research interests
has been include autonomic networking, generic auto-
nomic network architecture, context awareness, and
knowledge plane.

Philippe Tamagnan is currently an Architect with
Orange Laboratories involved in AI powered 5G core
with data analytic functions research studies and
assessment. He is also contributing to the 3GPP.


	1

