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Abstract: Sinusoidal obstruction syndrome (SOS) is a potentially life-threatening complication after
hematopoietic stem cell transplantation (HSCT) or antineoplastic treatment without HSCT. Genetic
variants were investigated for their association with SOS, but the evidence is inconclusive. We
performed a systematic literature review to identify genes, gene variants, and methods of association
analyses of genetic markers with SOS. We identified 23 studies after HSCT and 4 studies after
antineoplastic treatment without HSCT. One study (4%) performed whole-exome sequencing (WES)
and replicated the analysis in an independent cohort, 26 used a candidate-gene approach. Three
studies included >200 participants (11%), and six were of high quality (22%). Variants in 34 genes
were tested in candidate gene studies after HSCT. Variants in GSTA1 were associated with SOS in
three studies, MTHFR in two, and CPS1, CTH, CYP2B6, GSTM1, GSTP1, HFE, and HPSE in one study
each. UGT2B10 and LNPK variants were identified in a WES analysis. After exposure to antineoplastic
agents without HSCT, variants in six genes were tested and only GSTM1 was associated with SOS.
There was a substantial heterogeneity of populations within and between studies. Future research
should be based on sufficiently large homogenous samples, adjust for covariates, and replicate
findings in independent cohorts.

Keywords: sinusoidal obstruction syndrome; genetic polymorphism; pharmacogenomic variants;
genetic predisposition; genetic association studies; whole-exome sequencing; candidate gene analysis;
hematopoietic stem cell transplantation; antineoplastic agents; systematic review

1. Introduction

Sinusoidal obstruction syndrome (SOS) of the liver is a serious, potentially life-
threatening complication occurring usually within the first 30 days after hematopoietic stem
cell transplantation (HSCT) [1] or after treatment with some antineoplastic agents without
HSCT [2]. Diagnostic criteria are based on clinical and laboratory findings including weight
gain/ascites, hyperbilirubinemia, and hepatomegaly/right upper abdominal quadrant
pain (Seattle criteria [3] and Baltimore criteria [4]). These were revised more recently to
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better reflect different forms of SOS presentation [5]. Depending on which criteria are used,
the frequency of patients diagnosed with SOS might differ by two-fold [6]. Risk factors
after HSCT include underlying disease (thalassemia major, leukemia, hemophagocytosis),
pre-existing liver disease or injury, iron overload, laboratory markers (increased biliru-
bin and transaminases before HSCT), previous treatment with gemtuzumab ozogamicin,
previous allogeneic HSCT, high-intensity conditioning regimens, and total body irradia-
tion [5,7,8]. Children are twice as likely to develop SOS after HSCT than adults [9] and
even higher within the first two years of life [5]. Antineoplastic agents associated with SOS
without HSCT are alkylating agents, platinum agents (particularly oxaliplatin [10,11]), and
purine analogues [12–14]. SOS was also reported after acute lymphoblastic leukemia (ALL)
induction treatment [13] and treatment with actinomycin D for nephroblastoma [15].

The pathogenesis of SOS is complex and includes damage to endothelial cells and
hepatocytes. Cytotoxic agents and their metabolites lead to the activation of stress response
mechanisms, and loss of integrity of the endothelial lining in the liver sinusoidal space [16].
Cytokines released by the damaged tissues further enhance the damaging process and
activate the coagulation cascade leading to thrombi in the liver microvasculature [17]. All
of these processes result in sinusoidal obstruction, liver cell injury, and hepato-renal syn-
drome associated with kidney failure, and death [18]. Obstruction of the sinusoidal spaces
was found to be secondary to endothelial damage with inflammation and locally activated
coagulation with an increase in procoagulant factors and a decrease in antithrombotic
proteins. Subsequently, venous outflow obstruction of the liver causes damage to the liver
cells [19,20]. The molecular mechanisms thought to affect SOS include the cytochrome
P-450 enzymatic system, which plays an important role in the clearance of toxic metabolites
of chemotherapeutics (e.g., cyclophosphamide) and the glutathione pathway, which is
involved in metabolizing busulfan. Inflammatory response and activation of coagula-
tion with release of von Willebrand factor, plasminogen activator inhibitor-1 (PAI1), and
thrombomodulin were reported to contribute to disease progression [21].

Defibrotide is the only approved treatment for severe SOS. Defibrotide stabilizes
endothelial cell homeostasis by reducing endothelial-cell activation and damage. It also
reduces the plasma levels of plasminogen activator inhibitor-1 (PAI-1), and results in the
restoration of the thrombo-fibrinolytic balance [20]. Defibrotide has been successfully used
as prophylaxis in patients deemed to be at an increased risk for SOS due to pre-existing liver
disease, an underlying condition, or treatment factors [9]. Prophylactic ursodeoxycholic
acid has shown efficacy in the reduction in SOS and mortality [1].

While the underlying molecular mechanisms are still incompletely understood, ge-
netic variants have been postulated to influence the incidence of SOS for the last two
decades [22]. Various pathways have been assessed for their association with SOS. A recent
systematic review looked at the influence of glutathione S-transferase genes on pharma-
cokinetic parameters of busulfan and SOS incidence [23]. To our knowledge, there is no
systematic review that summarizes the evidence for all postulated germline genetic predic-
tors for sinusoidal obstruction syndrome. This systematic review describes all identified
publications that investigated gene variants associated with SOS in patients of any age who
underwent HSCT or were exposed to antineoplastic agents without HSCT. We describe
genes and gene variants that were identified and the respective association analyses that
were used.

2. Materials and Methods
2.1. Study Design

We performed a systematic literature review following the Preferred Reporting Items
for Systematic Review and Meta-Analysis (PRISMA 2009) statement [24] (Supplementary
Table S1). We pre-registered the research protocol on PROSPERO (CRD42020215568).
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2.2. Study Selection: Eligibility Criteria

We included studies reporting on humans of any age undergoing (allogeneic and
autologous) HSCT or treatment with antineoplastic agents without HSCT. We defined
antineoplastic agents as all treatments targeting malignant neoplasms including steroids,
antihormones, and monoclonal antibodies. We did not use language restrictions. We
included studies published from 1 January 1980 to 24 September 2020.

We selected observational studies and longitudinal interventional trials. We initially
retained reviews to screen references and then excluded them from the final analysis if
no original data were reported. We also excluded opinions, commentaries, conference
abstracts, case reports or case series reporting on less than 20 participants, and all reports
without original data. We further excluded studies reporting on animal and cell models,
and in silico (computer-model) analyses only.

2.3. Outcome Definition: Sinusoidal Obstruction Syndrome

We searched for studies with SOS as either the main outcome or outcome with a
dedicated association analysis. For patients undergoing HSCT, we included studies with
the outcome “sinusoidal obstruction syndrome” as defined by the authors and identified
those using established criteria (using the Seattle, ref. [3,8] Baltimore, ref. [4] or new EBMT
guidelines [5]). We included patients exposed to antineoplastic agents with the outcome
“sinusoidal obstruction syndrome” as defined by the authors. We evaluated the criteria
used to diagnose SOS and attributed quality scores (see below: Quality assessment and
risk of bias).

2.4. Exposures: Genetic Variants

We searched for studies that reported germline genetic variants and their effect on SOS
occurrence (i.e., that compared patients with a specific genetic variant to those without).

2.5. Identification of Studies

A systematic literature search was performed using (a) PubMed, (b) EMBASE, (c) Web
of Science (Core Collection), (d) Cochrane, (e) CINAHL (EBSCO), and (f) Google Scholar.
We searched (g) clinicaltrials.gov for registered studies and searched for published results.
We performed a search of the references of identified manuscripts to retrieve further
literature. We removed duplicates in the process using the citation manager EndNote
(version X8) and Rayyan (https://rayyan.qcri.org; accessed on 1 October 2020) [25].

The search strategy was built for all databases using Medical Subject Headings (MeSH)
and Title/Abstract (TiAb) terms. We restricted the population of interest to “humans”. For
the outcome, we searched for “sinusoidal obstruction syndrome”, and related terms. For the
exposure, we used “hematopoietic stem cell transplantation” or “antineoplastic agents” and
related terms. For the prognostic factor, we used “genetic variation“, “pharmacogenomic
variants”, “pharmacogenetics”, and related terms (see Supplementary Table S2 for the
detailed search strategy). We performed the last search update on 24 September 2020. We
did not search for unpublished data.

2.6. Study Selection

Two authors independently evaluated the eligibility for the inclusion of the identi-
fied manuscripts by (i) screening all titles and abstracts, excluding obviously not fitting
manuscripts, and then (ii) performing a full-text review of the remaining manuscripts to
check for eligibility. For all manuscripts with a discordant assessment of eligibility, the two
authors sought agreement through discussion, and where no agreement was reached, a
third author judged on eligibility. We used Rayyan for the screening of titles and abstracts.

2.7. Data Extraction

One author extracted data from texts, tables, and graphs. A second author checked
the accuracy and completeness of data. Any disagreements were resolved by discussion,

clinicaltrials.gov
https://rayyan.qcri.org
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and where no agreement was reached, by arbitration of a third author. Unclear or missing
data were requested from the corresponding author of the respective manuscripts. We
designed a data collection form that included information on the authors; the manuscript;
the methodology of germline DNA sequencing and associated quality measures; the study
population; the statistical analysis; and results including the strength of association such
as relative risks, odds ratios, and hazard ratios. The form was developed and discussed
within the review group before full data extraction.

2.8. Quality Assessment and Risk of Bias

The quality assessment was performed by two authors independently using an
adapted scoring table based on a previously published scoring system [26] that used
the STrengthening the REporting of Genetic Association Studies (STREGA) guidelines [27],
an extension of the STROBE Statement [28]. We based the assessment on the reporting,
external and internal validity, confounding bias, selection bias, and study power. A study
that scored 6 or more out of the 12 points was regarded as high-quality (Supplementary
Table S3).

3. Results
3.1. Study Identification and Selection

We identified 708 unique citations after the removal of duplicates and excluded
677 manuscripts after the title and abstract screening. After assessment of the full text,
two reports on subpopulations [29,30] of larger studies were excluded as well as one that
assessed HSCT donor genotypes [31] and one review without original data [23]. Finally,
we retained 27 manuscripts (Figure 1).
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Figure 1. PRISMA Flowchart of the literature review and selection process for genetic predictors for
sinusoidal obstruction syndrome after hematopoietic stem cell transplantation and antineoplastic
treatment exposure.

3.2. Characteristics of Included Studies
3.2.1. Study Characteristics

Of the 27 retained manuscripts, 23 were original articles (85%), 2 were short reports
(7%) [13,32], and 2 were letters (7%) [22,33]. The study populations (for summary statistics,
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see Table 1) were collected from retrospective cohort studies (n = 23, 85%), two prospective
trials (7%) [12,13] and two case-control studies (7%) [22,32]. Eleven manuscripts included
patients from Europe (41%), nine from the US or Canada (33%), four from Asia (15%), two
from Israel (7%), and one from Turkey (4%). Twenty studies reported data from a single
institution (74%), six from multiple sites (22%) and one did not specify clearly (4%).

Table 1. Summary characteristics of studies reporting on genetic predictors of SOS (n = 27).

Characteristics n Proportion (%)

Centers included

monocentric 20 74.1
multicentric 6 22.2

unclear 1 3.7

Location

Europe 11 40.7
North America 9 33.3

Asia 4 14.8
Others 3 11.1

Study design

cohort 23 85.2
prospective trial 2 7.4

case-control 2 7.4

Sample size

median, IQR (n) 84 65–142
0–50 3 11.1

51–100 13 48.1
101–150 4 14.8
151–200 4 14.8

201 and more 3 11.1

Age group at treatment

children and adolescents only 10 37
children, adolescents, and adults 11 40.7

adults only 6 22.2

Treatment exposure

allogeneic HSCT, busulfan-based 10 37
allogeneic HSCT, various regimens 9 33.3
autologous and allogeneic HSCT 4 14.8

non-HSCT 4 14.8

Outcome

incidence cohort-based samples (mean %, range %) 16.5 2.3–42.9
(modified) Seattle criteria 15 55.6

Baltimore criteria 5 18.5
other criteria/unspecified 7 25.9

Association analysis

candidate gene analysis 26 96.3
genome/exome wide analysis 1 3.7

Legend: HSCT, hematopoietic stem cell transplantation; IQR, interquartile range; n, number.

3.2.2. Population

Overall, 3150 genotyped patients were included among all the studies. The study pop-
ulation size varied from 18 to 351 with a median of 84. Three studies (11%) included more
than 200 genotyped patients [12,13,34]. Eleven studies reported on a mixed population
of children, adolescents, and adults (41%); 10 studies reported on children/adolescents
(37%); and 6 reported on adult patients (22%). The median age of participants ranged



J. Pers. Med. 2021, 11, 347 6 of 24

from 4 to 62 years. The proportion of females ranged from 28% to 61% (average 52%). The
ethnicity of the study populations was only described in 14 manuscripts (52%), rendering a
classification into ethnic groups of the whole population impossible.

3.2.3. Treatment Exposure

Twenty-three studies reported on patients who underwent HSCT (85%). Of those,
19 restricted the exposure to allogeneic HSCT (83%), while four also included autolo-
gous HSCT (17%) [22,35–37]. Four studies included only HSCT from a sibling donor
(17%) [38–41], the others included various donor types. A wide array of underlying
diagnoses were included in most studies on HSCT (n = 18, 78%), whereas five studies
included only selected diagnoses (two included only acute myeloid leukemia [33,37], two
thalassemia [41,42], and one different types of leukemia [40]). Standardized prophylactic
treatment was used in four studies (17%) [33,37,43,44], while seven (30%) studies used
prophylactic treatment for SOS only in a subgroup: one mentioned ursodeoxycholic acid
only (4%) [43]; one heparin only [44]; one defibrotide only [45]; two studies mentioned ur-
sodeoxycholic acid and heparin (9%) [33,37]; one ursodeoxycholic acid and defibrotide [46];
and one study all three prophylactic treatments [47]. It is unclear whether studies not
mentioning SOS prophylaxis did not administer prophylaxis or did not describe its use.

Four studies included participants exposed to antineoplastic agents without HSCT
(15%). All studies focused on a single underlying disease: two studied acute lymphoblastic
leukemia (50%) [12,13], one acute myeloid leukemia (25%) [32], and one colorectal cancer
(25%) [48]. No prophylactic treatment was described.

3.2.4. Genotyping

Most studies used a candidate gene approach genotyping based on pre-specified
genes (n = 26, 96%), only one recent study employed exome-wide sequencing. This is also
the only study that attempted to replicate findings in an independent cohort [47]. Six (22%)
studies reported on the quality of genotyping by mentioning the number of successful
genotyping attempts or cross-validation with a different technique and 11 (41%) took into
account Hardy-Weinberg equilibrium when reporting the results.

3.2.5. Outcome

SOS incidence across all cohort-based studies was 16.5% (range 2.3% to 42.9%). The
definition of SOS was based on the Seattle or modified Seattle criteria in half of the studies
(n = 15, 56%), and the Baltimore criteria in five (19%). Various other criteria were used in
six studies (22%): two used either clinical criteria or histopathological criteria [22,32], one
only histopathological criteria [48], one the National Cancer Institute Common Toxicity
Criteria (CTC) versions 2 and 3 [49], and two other clinical criteria based on previously
published data [13,44]. One study did not clearly specify the criteria used (4%) [50].

3.3. Quality of Studies and Publication Bias

Using an adapted scoring based on the STREGA guidelines, we identified six (22%)
studies that we ranked of high quality. The median score of all studies was 5 (range:
2–9 points, Supplementary Table S4). Most studies (n = 25, 93%) described clearly their
population with exposure and outcome definitions. While all studies reported on the
origin of the study population, only two (7%) studies stratified results by study popu-
lation origin/ethnicity [13,35]. Two studies (7%) performed a power analysis [46] (one
of them performed this post hoc [13]). One study replicated the findings in an indepen-
dent cohort [47]. Clinical characteristics potentially associated with the outcome were
described in 15 studies (56%) and 11 (41%) adjusted the genotype-phenotype analysis for
clinical variables.
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3.4. Investigated Genes for Association with SOS after HSCT
3.4.1. Glutathione S-Transferase

In the 23 studies that included patients with SOS after HSCT (Table 2), variants in
34 different genes were tested, including eight genes identified in the discovery dataset for
the WES analysis and tested in the independent replication cohort [47]. The most frequent
genes were from the glutathione S-transferase family: GSTA1 and GSTM1 (9 studies each),
GSTP1 (7 studies), and GSTT1 (6 studies). Other members of the glutathione S-transferase
family were only investigated in one study each (GSTO1, GSTO2, and GSTZ1). GSTA1
and GSTM1 variants were inconsistently associated with SOS: two pediatric studies by
Ansari et al. from 2017 and 2020 (replication cohort) reported associations with a slow
metabolizer haplotype group of GSTA1 diplotypes (as defined by the presence of any
combination with the *B1b haplotype, *B1a*B1a, or *B2*B1a) [47,51] with odds ratios (OR)
of 9.0 (95%-confidence interval [CI] 2.6–31) and 3.1 (CI 1.2–8.0), respectively. The study
by Curtis et al. from 2016 performed a gene–gene interaction study with CTH but also
compared the GSTA1*B*B diplotypes to *A*A/*A*B diplotypes and reported an OR of 10.9
(CI 2.3–51.3) [46]. The *B haplotype, corresponding to the rs3957357 (C > T) or −69 variant,
was not found to be associated with SOS in two studies with 84 and 55 adult patients [36,52],
and three pediatric and one mainly adult study with 29 to 77 participants [37,41,53,54].

The homozygous deletion of GSTM1 often referred to as “null genotype” was asso-
ciated with SOS after allogeneic HSCT with a busulfan-based conditioning regimen in
pediatric beta-thalassemia patients (OR 4.3, CI 1.5–12.5, p = 0.008) published by Srivas-
tava et al. [42]. This association was not replicated in subsequent studies in predominantly
adult [36,37,40,52] and pediatric cohorts [41,51,54], with one pediatric study by Zwavel-
ing et al. showing possible evidence of association (no OR reported, p = 0.07) [53]. The
GSTP1 rs1695 (A > G) variant was associated with SOS in a study by Krivoy et al. [37] of 63
adult patients undergoing HSCT for acute myeloid leukemia (no OR reported, p = 0.05)
but not in other predominantly adult [36,40,52] or pediatric studies [51,53,54]. The GSTP1
rs1138272(C > T) variant was tested in two studies and the rs614080 (A > G) variant in one
study without showing evidence for an association. The GSTT1 “null genotype” was not
associated with SOS in two pediatric [42,53] and four mainly adult [36,37,40,52] studies.
GSTO1, GSTO2, and GSTZ1 variants were not found to be associated with SOS [36].

3.4.2. Cytochrome P450

Cytochrome P450 family genes were the second group of genes frequently assessed
in included studies. CYP2B6 is an important enzyme in the bioactivation of cyclophos-
phamide and the *6 haplotype corresponding to rs3745274(G > T) and rs2279343(A > G),
was associated with SOS in a study by Rocha et al. (OR 3.5, CI 1.1–10.9) [40]. This
study included predominantly adult leukemia patients undergoing HSCT with differ-
ent regimens, which included cyclophosphamide in 82%. Two other studies includ-
ing mostly patients treated with cyclophosphamide-containing regimens [36,43] did not
find the same association in the CYP2B6*6 haplotype or other assessed variants (*5A
haplotype = rs3211371(C > T), rs2279344(A > G), rs2099361(A > C), rs8100458(C > T),
rs2014141(A > G)). Further variants assessed by Rocha et al. [40] were not associated
with SOS (*2A haplotype = rs8192709(C > T), *4 haplotype = rs2279343(A > G), *5 hap-
lotype = rs3211371(C > T)). Variants in CYP2C19 [34], which is an important enzyme in
cyclophosphamide metabolism, and CYP2C9 [34,36,43], which has a possible role in busul-
fan metabolite metabolism, were investigated in a number of studies but no associations
were identified. Variants in the ATP-binding cassette subfamily B, member 1 (ABCB1), also
called multidrug resistance-1 (MDR1) gene, were included in two predominantly adult
studies without association [37,40].
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Table 2. Summary of 23 studies on genetic variants and their association with sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation. Publications are
listed in chronological order of publication.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

Duggan C, et al.
Bone Marrow

Transplant.
1999. [22]

Candidate-gene;
case-control

St James’s
Hospital and

Trinity College
Dublin, Ireland

Unclear diagnoses,
median age 29 years

(range 4–55)

AlloHSCT and
autoHSCT with

various regimens (Bu,
Cy, Mel, TBI, others)

22/287 (7.7%),
genotyped:

15/51 (29.4%)

F2 rs1799963(GA
vs. GG) - p = 0.05

F5 rs6025(GG vs.
AG/AA) - p = 0.05

Pihusch M, et al.
Transplantation.

2004 [44]

Candidate-gene;
cohort

José-Carreras
transplantation

unit Munich,
Germany

Various malignant
and non-malignant
diagnoses; median

age 43 years
(range 14–62)

AlloHSCT with
various regimens (Bu,
Cy, Mel, TBI, others)

3/89 (3.4%)

F2 rs1799963(G > A) “no effect” -

F5 rs6025(G > A) “no effect” -

MTHFR rs1801133(C > T) “no effect” -

ITGB3 rs591(C > T) “no effect” -

FGB rs1800790(G > A) “no effect” -

SERPINE1 rs1799889
(4G allele)

(83.3% vs.
55.1%) NS

ACE rs1799752
(D allele) “no effect” -

Srivastava
A, et al. Blood.

2004 [42]

Candidate-gene;
cohort

Hôpital Robert
Debré, Paris,

France

Beta-thalassemia
major; median age 6
years (range 2–16)

Busulfan–
cyclophosphamide-

based
alloHSCT

33/114 (28.9%)

GSTM1 “null
genotype” ‡

OR 4.3
(1.5–12.5) † p = 0.008 †

GSTT1 “null
genotype” ‡

OR 0.6
(0.2–1.9) † p = 0.4 †

Kallianpur
AR et al. Bone

Marrow
Transplant.
2005 [35]

Candidate-gene;
cohort

Multicentric,
two centers in

Nashville,
Tennessee, USA

Various
hematological and
solid neoplasms;

mean age 44 years
(range 19–64)

AlloHSCT and
autoHSCT with

various regimens (Bu,
Cy, TBI, others)

30/166 (18.1%)

HFE rs1800562(A > G)

RR 3.7
(1.2–12.1); RR

1.7 (0.4–6.8) for
heterozygotes;

RR 8.6 (1.5–48.5)
for

homozygotes †

p = 0.01 †

CPS1 rs7422339(CC
vs. AC/AA) - p = 0.038
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

Elmaagacli
AH, et al. Bone

Marrow
Transplant.
2007 [34]

Candidate-gene;
cohort

University
Hospital of

Essen, Germany

Various
hematological
neoplasms incl.

lymphomas; median
age 41 years

(range 17–67)

AlloHSCT with
various regimens (Bu,

Cy, TBI, others)
20/286 (7%) CYP2C19

Poor vs.
intermedi-

ate/extensive
metabolizers

(rs4244285(AA
vs. AG/GG)

rs4986893(AA
vs. AG/GG))

- NS

Goekkurt
E, et al.

Anticancer Res.
2007 [52]

Candidate-gene;
cohort

University
Hospital

Hamburg,
Germany

Various
hematological

malignancies and
non-malignant

diagnoses; median
age 39.5 years
(range 16–59)

Busulfan–
cyclophosphamide-

based
alloHSCT

36/84 (42.9%)

GSTA1 * B vs. * A
haplotypes - NS

GSTM1 “null
genotype”‡ - NS

GSTP1 rs1695(A > G) - NS

GSTT1 “null
genotype”‡ - NS

MTHFR rs1801133(C > T) - NS

rs1801131(A > C) OR 9.4
(1.1–81.9) † p = 0.048 †

Kim I, et al.
Annals of
Hematol.
2007 [38]

Candidate-gene;
cohort

Seoul National
University
College of

Medicine, South
Korea

Hematological
malignancies and
aplastic anemia;

median age 36 year
(range 16–52)

AlloHSCT with
various regimens (Bu,

Cy, TBI)
11/72 (15.3%)

MTHFR rs1801133(C > T) - p = 0.4

rs1801131(A > C) - p = 0.48

Lee KH, et al.
Haematologica.

2007 [39]

Candidate-gene;
cohort

Seoul National
University

Hospital, South
Korea

Hematological
malignancies incl.
lymphomas and
aplastic anemia;

median age 40 years
(range 16–70)

AlloHSCT with
various regimens (Bu,
Cy, Mel, TBI, others)
from HLA-matched

sibling donors

19/152 (12.5%) P2RX7 rs3751143(A > C) - p = 0.78
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

Zwaveling
J, et al.

Therapeut Drug
Monitor. 2008

[53]

Candidate-gene;
cohort

Multicentric,
pediatric Leiden

and Utrecht
University

Medical Centers,
Netherlands

Hematological
malignancies and

non-malignant
diagnoses; median

age 5 years
(range 0.2–23)

Busulfan-based
alloHSCT with

various other agents
(Cy, Mel, others)

15/77 (19.5%)

GSTA1 rs3957357(C > T) - -

GSTM1 “null
genotype” ‡ - p = 0.07

GSTP1 rs1695(A > G) - -

GSTT1 “null
genotype” ‡ - -

Johnson L, et al.
J Clin

Pharmacol.
2008 [54]

Candidate-gene;
cohort

University of
Minnesota, USA

Malignant and
nonmalignant

diagnoses; median
age 5.6 years

(range 0.1–18.3)

Busulfan-based
alloHSCT with

various other agents
(Cy, others)

3/29 (10.3%)

GSTA1 * B vs. * A
haplotypes - NS

GSTM1 “null
genotype” ‡ - NS

GSTP1 rs1695(A > G) - NS

rs1138272(C > T) - NS

Rocha V, et al.
Leukemia.
2009 [40]

Candidate-gene;
cohort

Hôpital Saint
Louis, Paris,

France

Acute and chronic
leukemia; median

age 35 years
(range 3–56)

AlloHSCT with
various regimens (Bu,
Cy, Mel, TBI, others)
from HLA-matched

sibling donors

15/107 (14%)

CYP2B6 * 2A haplotype - NA

* 4 haplotype - NA

* 5 haplotype - NA

* 6 haplotype OR 3.49
(1.12–10.88) † p = 0.03 †

GSTM1 “null
genotype” ‡ - NA

GSTP1 rs1695(AA vs.
AG/GG) NA

GSTT1 “null
genotype” ‡ - NA

ABCB1 rs1045642(CC vs.
CT/TT) - NA

MTHFR rs1801133(CC vs.
CT/TT) NA
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

VDR Apal (rs7975232) - NA

BsmI
(rs1544410) NA

TaqI (rs731236) - NA

Elbahlawan
L, et al. J Ped
Hem Oncol.

2012 [49]

Candidate-gene;
cohort

St Jude
Children’s
Research

Hospital, USA

Malignant and
non-malignant

diagnoses; median
age 10.1 years
(range 1–19.6)

AlloHSCT with
various regimens (Bu,
Cy, TBI, others) from
HLA-matched donors

5/76 (6.6%) IL1B rs16944(A > G) - p = 0.18

Sucak GT, et al.
Ann

Hematology.
2012 [50]

Candidate-gene;
cohort

Gazi University,
Ankara, Turkey

Malignant and
non-malignant

diagnoses; median
age 27.5 years
(range 16–64)

AlloHSCT with
various regimens (Bu,

Mel, TBI, others)
22/102 (21.6%) HFE rs1799945(C > G) - p > 0.05

Krivoy N, et al.
Curr Drug

Safety. 2012 [37]

Candidate-gene;
cohort

Technion-Israel
Institute of
Technology;
Haifa, Israel

Acute myeloid
leukemia; median

age 39.2 years
(SD 12.3)

Busulfan–
cyclophosphamide-

based autoHSCT and
alloHSCT

8/63 (12.7%)

ABCB1 rs1045642(C > T) - NS

rs2032582
(G > T/A) - NS

GSTA1 rs3957357(C > T) - NS

GSTM1 “null
genotype” ‡ - NS

GSTP1 rs1695(A > G) - p = 0.05

GSTT1 “null
genotype” ‡ - NS

Uppugunduri
CRS, et al. Phar-
macogenom J.

2014 [43]

Candidate-gene;
cohort

CHU
Sainte-Justine,

Montreal,
Canada

Malignant and
non-malignant

diagnoses; median
age 6.9 years

(range 0.1–19.9)

Busulfan–based
alloHSCT with

various other agents
(Cy, Mel, TBI, others)

8/66 (12.1)

CYP2B6 rs3211371(C > T) - NS

rs3745274(G > T) - NS

CYP2C19 rs4244285(G > A) - NS

rs12248560(C > T) - NS

CYP2C9 rs1799853(C > T) - NS
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

rs1057910(G > A) - NS

FMO3 rs2266780(A > G) - NS

rs2266782(G > A) - NS

rs1736557(A > G) - NS

Efrati E, et al.
Bone Marrow

Transplant.
2014 [33]

Candidate-gene;
cohort

Technion-Israel
Institute of
Technology;
Haifa, Israel

Acute myeloid
leukemia; adult

cohort

Busulfan–
cyclophosphamide-

based alloHSCT (with
TBI in one)

9/62 (15%)

MTHFR rs1801133(CC
vs. CT/TT) - p = 0.0096

rs1801131(CC
vs. AC/AA) - p = 0.0002

Seifert C, et al. J.
Cancer Res.
Clin. Oncol.

2015 [45]

Candidate-gene;
cohort

Jena University
Hospital,
Germany

Malignant and
non-malignant

diagnoses; median
age 14 years,
(range 0–29)

AlloHSCT with
various regimens (Bu,

Cy, Mel, TBI)
12/160 (7.5%)

HPSE rs4693608(AA
vs. AG/GG) - p = 0.038

rs4364254(TT
vs. TC/CC) - p = 0.004

rs4693608(AA)
and

rs4364254(TT) †

4.06
(1.14–14.4) † p = 0.03 †

Ansari M, et al.
Bone Marrow

Transplant.
2016 [41]

Candidate-gene;
cohort

San Raffaele
Institute, Milan,

Italy

Thalassemia
intermedia (20.5%)

and thalassemia
major (79.5%);

median age 8 years
(range 1.5–17)

Busulfan–
cyclophosphamide-

based alloHSCT from
HLA-matched
sibling donors

1/44 (2.3%)

GSTA1

* B vs. * A
haplotypes

using
rs3957357(C > T)

- NS

GSTM 1 “null
genotype” ‡ - NS

Byun JM, et al.
PloS One.
2016 [55]

Candidate-gene;
cohort

Seoul National
University

Hospital, South
Korea

Hematological
malignancies incl.
lymphomas and
aplastic anemia;
median age 37.8
years (SD 12.5)

AlloHSCT with
various regimens (not

further specified)
10/177 (5.6%) MTHFR rs1801133(TT vs.

CT/CC) - p = 0.234
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

Huezo-Diaz
Curtis p, et al.
Pharmacoge-

nomics J.
2016 [46]

Candidate-gene;
cohort

CHU
Sainte-Justine,

Montreal,
Canada

Malignant and
non-malignant

diagnoses; median
age 6.4 years

(range 0.1–19.9)

Busulfan-based
alloHSCT with

various other agents
(Cy, Mel, others)

9/76 (11.8%)

CTH rs1021737(TT
vs. GT/GG)

OR 10.6
(2.2–51.5) p = 0.003

rs648743(C > T) - NS

GSTA1
* B* B vs. * A*

B/* A* A
haplotypes

OR 10.9
(2.3–51.3) p = 0.007

Ansari M, et al.
Oncotarget.
2017; [51]

→ includes all
patients from:
[29] and [30]

Candidate-gene;
cohort

Multicentric:
Geneva, Leiden,
Montreal, Paris,

Toronto

Malignant and
non-malignant

diagnoses; median
age 5.8 years (range

0.1–19.9)

Busulfan-based
alloHSCT with

various other agents
(Cy, Mel, others)

14/138 (10%)

GSTA1

Slow
metabolizer
haplotypes
(group IV)

OR 9.0
(2.6–31) † p = 0.001 †

GSTM1 “null
genotype” ‡ - NA

GSTP1 rs1695(A > G) - NA

rs1138272(C > T) - NA

Ansari M, et al.
Biology of Blood

and Marrow
Transplantation.

2020 [47]

Exome-wide
association

analysis with
replication in an

independent
sample; cohort

Discovery
cohort: CHU
Sainte-Justine,

Montreal,
Canada;

replication
cohort:

multicentric

Malignant and
non-malignant

diagnoses; median
age discovery: 7.4

years (range 0–23.5);
replication: 4.7 years

(range 0–21)

Busulfan-based
alloHSCT with

various other agents
(Cy, Mel, others)

Discovery:
12/87 (13.8%);

replication:
27/182 (14.8%)

UGT2B10 rs17146905A > G OR 8.4
(3.0–23.9)

p = 7 × 10−6

(replication
p = 0.0004 †)

KIAA1715
= LNPK rs2289971T > C OR 10.2

(3.3–31.9)

p = 3 × 10−6

(replication
p = 0.05 †)

BHLHE22 rs16931326G > A OR 8.9 (2.9–26.9)
p = 1.1× 10−5

(replication
p > 0.05 §)

HADH rs17511319A > G OR 30.5
(5.9–158.6)

p = 1.2× 10−5

(replication
p = 0.05)
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

ZNF608 rs75323508
C > T OR 9.9 (3.0–32.8)

p = 1.3× 10−5

(replication
p = 0.4)

AMPH rs2810T > C OR 8.9 (2.9–26.9)
p = 1.1× 10−5

(replication
p = 0.9)

FAT3 rs11823754G > T OR 10.7
(3.6–31.7)

p = 8.3× 10−7

(replication
p = 1.0)

AGPAT3 rs11537798A > G OR 9.9 (3.0–32.8)
p = 1.3× 10−5

(replication
p = 0.1)

GSTA1

Slow
metabolizer
haplotypes
(group IV)

OR 3.1 (1.2–8.0)
in replication

cohort †

replication
cohort
only:

p = 0.02 †

Terakura S, et al.
Int J Hematol.

2020 [36]

Candidate-gene;
cohort

Nagoya
University

Hospital, Japan

Hematological
malignancies incl.

lymphomas; median
age 38 years (21–67)

Busulfan–
cyclophosphamide

based autoHSCT and
alloHSCT

8/55 (14.5%)

CYP2B6 rs3745274(G > T) - NS

rs2279344(A > G) - NS

rs2099361(A > C) - NS

rs8100458(C > T) - NS

rs2014141(A > G) - NS

CYP2C9 rs1799853 - NS

rs1057910(A > C) - NS

CYP2C19 rs4986893
(G > A) - NS

rs4244285(G > A) - NS
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Table 2. Cont.

Lead Author,
Journal Year Study Design Location Population

(Diagnoses, Age) Exposure, Location n (SOS/Total) Genes/
Region

Variants
Investigated OR/ RR (CI) p-Value

GSTA1
* B vs. * A
haplotype

(rs4715326)
- NS

GSTM1 “null
genotype” ‡ - NS

GSTO1 rs4925(A > C) - NS

rs11191972(C > T) - NS

GSTO2 rs156697(A > G) - NS

rs2297235(A > G) - NS

GSTP1 rs1695(A > G) - NS

rs614080((A > G) - NS

GSTT1 “null
genotype” ‡ - NS

GSTZ1 rs2270423(A > G) - NS

Legend: bold font, significant association; †, after adjustment for clinical covariables (multivariable regression analysis); §, not retained in multivariable Cox regression model; ‡, “null genotype” is used for
genotypes with absence of enzyme activity; ALL, acute lymphoblastic leukemia; allo, allogeneic; AML, acute myeloid leukemia; auto, autologous; BM, bone marrow; Bu, Busulfan; CI, 95%-confidence interval; Cy,
cyclophosphamide; HSCT, hematopoietic stem cell transplantation; HLA, histocompatibility lymphocyte antigen; Mel, melphalan; n, number; OR, odds ratio; NA, not available; NS, not significant; RR, relative
risk; SOS, sinusoidal obstruction syndrome; TBI, total body irradiation. Gene names: ABCB1 = MDR, multidrug-resistance gene; ACE, angiotensin I converting enzyme; AGPAT3, 1-acyl-glycerol 3-phosphate
o-acyltransferase 3; AMPH, amphiphysin; BHLHE22, basic helix-loop-helix family, member 22; CPS1, carbamoyl phosphate synthetase I; CTH, cystathionine gamma-lyase; CYP2B6, cytochrome P450 B6; CYP2C19,
cytochrome P450 C19; CYP2C9, cytochrome P450 C9; F2, coagulation factor 2 = prothrombin; F5, coagulation factor 5; FAT3, Fat atypical cadherin 3; FGB, Fibrinogen B beta polypeptide; FMO3, flavin-containing
monooxygenase 3; GST, glutathione S transferase; GSTA1, glutathione S transferase A1; GSTM1, glutathione S transferase M1; GSTO1, glutathione S transferase O1; GSTO2, glutathione S transferase O2; GSTP1,
glutathione S transferase P1; GSTT1, glutathione S transferase T1; GSTZ1, glutathione S transferase Z1; HADH, 3-hydroxyacyl-CoA dehydrogenase; HFE, homeostatic iron regulator; HPSE, heparanase; IL1B,
interleukin 1-beta; ITGB3, integrin beta-3; KIAA1715 = LNPK, lunapark; MTHFR, methylenetetrahydrofolate reductase; P2RX7, purinergic receptor P2X, ligand-gated ion channel, 7; SERPINE1, plasminogen
activator inhibitor-1; TPMT, thiopurine S-methyltransferase; UGT2B10, uridine diphosphate glycosyltransferase family 2 member B10; VDR, vitamin D receptor; ZNF608, Zinc Finger Protein 608.
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3.4.3. Methylenetetrahydrofolate Reductase

Variants in the gene coding for the methylenetetrahydrofolate reductase (MTHFR)
were tested in six studies. All included studies were performed with predominantly adult
patients. Goekkurt et al. [52] included 84 patients undergoing busulfan-cyclophosphamide-
based allogeneic HSCT for various malignant and non-malignant diseases and identi-
fied the rs1801131(CC vs. AC/AA) or 1298A > C variant (OR 9.4, CI 1.1–81.9), but
failed to show an association with the rs1801133(CC vs. CT/TT) or 677C > T variant.
Efrati et al. [33] performed an analysis on 62 patients undergoing allogeneic HSCT with a
busulfan–cyclophosphamide-based conditioning regimen for acute myeloid leukemia. The
authors found the rs1801131 (CC vs. AC/AA) variant (no OR published, p = 0.0002) and
the rs1801133(CC vs.CT/TT) variant (no OR, p = 0.0096) associated with SOS. The largest
study by Byun et al. [55] included 177 patients undergoing allogeneic HSCT with various
conditioning regimens for different diagnoses was limited by a low proportion of patients
with SOS (n = 10/177, 5.6%). The authors tested the rs1801133 (CC vs.CT/TT) variant (no
OR, p = 0.089) and the rs1801133(TT vs.CT/CC) variant (no OR, p = 0.234) but did not find
an association with SOS. Further studies in 72 to 107 patients did not identify associations
of these variants with SOS [38,40,44]. Methotrexate was used as graft-versus-host disease
prophylaxis in >90% of patients of the studies that assessed MTHFR except in the study by
Pihusch et al. [44], which also showed a very low SOS incidence (n = 3/89, 3.4%).

3.4.4. Other Liver Enzymes

Kallianpur et al. [35] found an association of the hemostatic iron regulator variant
rs1800562(A > G) (HFE; RR 3.7; CI 1.2–12.1) and carbamoyl phosphate synthetase I variant
rs7422339(CC vs. AC/AA) (CPS1, no RR; p = 0.04) with SOS in 166 adult patients under-
going autologous or allogeneic HSCT for various malignancies. Sucak et al. [50] did not
identify the HFE variant rs1799945C > G in 102 adult patients with various underlying
diseases. CPS1 was not included in further studies. The HPSE variants rs4364254 (TT vs.
TC/CC, p = 0.004) and rs4693608 (AA vs. AG/GG, p = 0.038) were associated with SOS
in the study by Seifert et al. [45]. Curtis et al. [46] found the cystathionine gamma-lyase
(CTH) gene variant rs1021737(TT vs.GT/GG) to be associated with SOS in 76 pediatric pa-
tients undergoing busulfan-based HSCT for various malignant and non-malignant diseases
(OR 10.6, CI 2.2–51.5). Variants in the flavin-containing monooxygenase 3 (FMO3) [43] and
vitamin D receptor (VDR) [40] were not associated with SOS.

3.4.5. Coagulation and Vascular System

Genes encoding coagulation system proteins were included in four identified studies.
Duggan et al. and Pihusch et al. [22,44] did not find an association of prothrombin (F2)
and factor V (F5) variants in mostly adult patients undergoing HSCT with varying con-
ditioning regimens for different underlying diagnoses. The study by Pihusch et al. [44]
had a low proportion of participants with SOS (n = 3/89, 3.4%). The study also tested
fibrinogen (FGB), integrin beta-3 (ITGB3), plasminogen activator inhibitor (SERPINE1),
and the vasculature-associated enzyme angiotensin I-converting enzyme (ACE) but did
not find an association with SOS. Elbahlawan et al. [49] tested a variant in the cytokine
interleukine-1 beta (IL1B) gene, which interacts with the endothelium and the coagulation
system without association. Lee et al. [39] did not find an association with SOS of the
purinergic receptor P2X ligand-gated channel 7 gene (P2RX7) known to interact with
interleukine-1 in 152 mostly adult patients.

3.4.6. Whole Exome Analysis

The only exome-wide association study by Ansari et al. [47] in 87 pediatric patients
undergoing busulfan-based allogeneic HSCT for various malignant and non-malignant dis-
eases found eight gene variants associated with SOS in the discovery dataset, of which three
were replicated in an independent cohort of 182 pediatric patients (UGT2B10, KIAA1715,
BHLHE22). The uridine diphosphate glycosyltransferase 2 family, member 10 (UGT2B10,
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HR 4.7, CI 2.0–11.5) and lunapark (LNPK = KIAA1715, HR 2.7, CI 1.0–7.5) gene variants
were retained in a multivariable model, which controlled for underlying disease, regimen
type, and the previously identified risk variants in the GSTA1 promoter (slow metabolizer
haplotypes, HR 3.1, CI 1.2–8.0).

3.5. Investigated Genes for Association with Antineoplastic Agent Exposure

We identified six different genes in four studies investigating SOS after antineoplastic
treatments without HSCT (Table 3). Two studies focused on glutathione S-transferase
genes: Aplenc et al. [32] assessed variants in GSTM1, GSTP1, and GSTT1 in 18 successfully
genotyped adult patients receiving ozogamycin-gemtuzumab treatment for relapsed acute
myeloid leukemia after HSCT. The study found no association with SOS. Vreuls et al. [48]
tested 55 adult patients with metastatic colorectal cancer and oxaliplatin treatment for an
association of GSTM1 and GSTT1 and found the GSTM1 “null genotype” to be associated
with SOS (no OR published, p = 0.03). Lennard et al. examined the TPMT*3A/*3B/*3C
haplotypes in 203 patients [12], and Wray et al. examined the same haplotypes and
MTHFR variants in 351 patients [13] undergoing acute lymphoblastic leukemia treatment.
Both studies included patients from prospective trials. The former study found that the
prevalence of the TPMT*3A/*3B/*3C alleles was nearly double in the SOS cohort without
evidence of association (p = 0.11). The other study found no evidence of association of
variants in TPMT or MTHFR.

Table 3. Summary of 4 studies on genetic variants and their association with sinusoidal obstruction syndrome after
antineoplastic agents without hematopoietic stem cell transplantation. Publications are listed in chronological order of
publication.

Lead
Author,

Journal Year
Study

Design Location Population
(Diagnoses, Age)

Exposure,
Location

n
(SOS/Total)

Genes/
Re-

gion
Variants

Investigated OR (CI) p-Value

Aplenc
R, et al. Acta
Haematolog-

ica. 2003
[32]

Candidate-
gene;

case-control

University
of

Washington
Medical
Center,

Seattle, USA

Relapsed AML;
mean age
45.4 years

Gemtuzumab for
relapsed disease
after HSCT (SOS

not primarily
associated

with HSCT)

11/21 (52%)
Genotyped:
9/18 (50%)

GSTM1 “null
genotype” ‡ - NS

GSTT1 “null
genotype” ‡ - NS

GSTP1 *B haplotype OR 4 (NA) NS

*C
haplotype - NS

NQ01 *2 haplotype - NS

Lennard
L, et al. Clin.
Pharmacol.
Ther. 2006

[12]

Candidate-
gene;

case-control
based on

prospective
trial

Multicentric,
USA

Acute
lymphoblastic

leukemia; median
age 4 years (range

1–16)

Treatment
according to

protocols
CCG-ALL97

(n = 33/393 with
SOS, 8%) and
CCG-ALL99

(n = 49/355 with
SOS, 14%)

50/203
(24.6%) TPMT *3A/*3C

haplotypes - p = 0.11

Vreuls
CPH, et al.

Brit J Cancer.
2013 [48]

Candidate-
gene;

cohort

Maastricht
University

Medical
Centre, NL

Patients with
metastatic

colorectal cancer;
mean age 62 years

(range 40–81)

Initial partial
hepatic resection

and treatment
with oxaliplatin

32/55 (58%)
GSTM1 “null

genotype” ‡ - p = 0.026 †

GSTT1 “null
genotype” ‡ - NS

Wray L, et al.
Pediatr
Blood

Cancer.
2014 [13]

Candidate-
gene;

prospective
trial

Children’s
Hospital of

Philadelphia,
USA

Acute
lymphoblastic

leukemia;
pediatric patients
(range 1–10 years)

Treatment
according to

protocol
CCG-1952

79/351
(22.5%)

TPMT *3A
haplotype

OR 0.7
(0.3–1.6) † NS †

*3B
haplotype

OR 1.0
(0.4–2.6) † NS †

*3C
haplotype

OR 0.7
(0.2–1.8) † NS †

rs1801133(CC
vs.CT/TT)

OR 0.9
(0.3–2.4) † NS †

MTHFR rs1801131(CC
vs.AC/AA)

OR
1.4(0.5–3.8) † NS †

Legend: bold font, significant association; †, after adjustment for clinical covariables (multivariable regression analysis); ‡, “null genotype”
is used for genotypes with absence of enzyme activity; ALL, acute lymphoblastic leukemia; allo, allogeneic; AML, acute myeloid leukemia;
allo, allogeneic; BM, bone marrow; Bu, Busulfan; CI, 95%-confidence interval; HSCT, hematopoietic stem cell transplantation; HLA, histo-
compatibility lymphocyte antigen; NA, not available; NS, not significant; OR, odds ratio; SOS, sinusoidal obstruction syndrome; TBI, total
body irradiation. Gene names: GSTA1, glutathione S transferase A1; GSTM1, glutathione S transferase M1; GSTP1, glutathione S transferase
P1; GSTT1, glutathione S transferase T1; MTHFR, methylenetetrahydrofolate reductase; NQ01, NAD(P)H Quinone Dehydrogenase 1;
TPMT, thiopurine S-methyltransferase.
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4. Discussion

This is the first systemtic review that collected the evidence for any postulated
germline genetic predictors for sinusoidal obstruction syndrome. We identified 27 studies,
23 on SOS after exposure to HSCT, and 4 after antineoplastic agents without HSCT. Three
groups of genes were included in candidate-gene association studies on SOS: genes encod-
ing (i) drug-metabolizing enzymes, mainly glutathione S-transferases (GST), cytochrome
P450 family enzymes (CYP), and MTHFR; (ii) other enzymes mainly active in the liver;
and (iii) coagulation factors and other proteins closely interacting with the coagulation
or vascular system. Variants in nine different genes showed an association with SOS in
the included candidate-gene association studies (CPS1, CTH, CYP2B6, GSTA1, GSTM1,
GSTP1, HFE, HPSE, MTHFR). Of those, only two were associated in more than one study:
GSTA1 in three studies [46,47,51] and MTHFR in two studies [33,52]. Additionally, the
study using WES data [47] identified variants in eight genes, of which two were retained
after a stepwise selection using a multivariate Cox regression model after replication in an
independent cohort (UGT2B10 and KIAA1715 = LNPK).

GSTA1 variants were frequently included in genotype–phenotype association analyses
due to their importance in drug metabolism, particularly in electrophilic chemotherapies
such as busulfan. An association of these chemotherapies with SOS has been known for
more than three decades [56]. The metabolization of busulfan is performed in the liver
through conjugation with glutathione both spontaneously and by catalysis particularly of
the alpha1 isoform (GSTA1), followed by mu1 (GSTM1) and pi1 (GSTP1) [57]. Three of the
nine studies identified an association of GSTA1 variants with SOS, while six did not. The
first reason for this discrepancy might be the differences in the genetic variants that were
compared: different genetic variants in promoter regions have been shown to modify the
expression of the metabolic enzyme to varying degrees [58]. Slow metabolizer haplotypes
were only tested by Ansari et al. [47,51]. The slow metabolizer haplotypes were associated
with SOS in multivariable association analyses taking into account underlying disease and
type of conditioning regimen. Curtis et al. [46] found an association of the *B*B haplotype
with SOS. Other studies compared the *B haplotypes but did not find an association.
Second, a limited number of participants included in many studies might have impacted
the ability to identify associations and the precision of effect sizes with large confidence
intervals. The studies reporting no association with pediatric participants included only
29 to 77 participants. Third, GSTA1 haplotypes have been consistently associated with
busulfan pharmacokinetics [51,59]. However, GSTA1 was reported to be more important for
busulfan clearance in young versus older children due to the maturation of other pathways
for busulfan clearance, with older age rendering GSTA1 less important [60,61]. Infants also
had a more variable clearance than older patients [62]. A limitation of all these studies is
that busulfan clearance was not included in the models testing GSTA1 variants with SOS.
Therefore, it remains unclear if GSTA1 has an association with SOS beyond its effect on
busulfan clearance.

Variants in two other genes from the glutathione S-transferase family were associated
with SOS in one study each, while other studies failed to report an association. GSTM1
“null genotype” was associated with SOS in one [42] study, while seven did not reveal
an association [36,37,40,41,51,52,54]. GSTP1 rs1695(A > G) was found associated with
SOS in one study [37], while six studies showed no association [36,40,51–54]. Possibly,
the heterogeneity between these studies in terms of age at HSCT, HSCT conditioning
regimen, and underlying disease might have contributed to the varying results. A recent
systematic review with a meta-analysis of glutathione S-transferase genes was performed
by Kim et al. [23]. The authors included nine studies on GSTA1*A*A versus *B haplotypes,
seven studies on GSTM1 “null genotype”, and five studies on GSTP1. They showed
an association of the GSTA1*B haplotype with the area under the curve of intravenous
busulfan but failed to show an association of glutathione S-transferases with SOS. However,
some of the studies we identified were not included in the analysis by Kim et al. [23]. The
studies by Ansari et al., 2013, 2017 and 2020 [30,47,51] were not assessed, while some
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studies that they included did not meet our inclusion criteria as they reported low patient
numbers (<20 participants) or no patients with the outcome of interest. While GSTM1
“null genotype” is often cited as a risk factor for SOS [7,63], our review showed that this
association is inconsistently reported and needs further evaluation.

CYP2B6 variants were inconsistently associated with SOS. CYP2B6 is involved in the
metabolization of the antineoplastic drug cyclophosphamide, which is often used alone or
in combination during the conditioning regimen [64]. CYP2B6 has a variable expression
between individuals due to genetic and treatment-related factors (e.g., induction by cy-
clophosphamide or inhibition by thiotepa). The cytochrome P450 gene CYP2B6*6 haplotype
was associated with SOS in the study by Rocha et al. [40]. This was also the largest study
including CYP2B6 with 107 mainly adult patients. Two other studies with 66 pediatric and
55 adult patients did not show an association of this haplotype with SOS [36,43]. These two
studies included patients treated with busulfan and cyclophosphamide, while the study
by Rocha et al. [40] included conditioning regimens mostly containing cyclophosphamide
with other agents. The role of CYP2B6 variants in SOS remains unclear.

MTHFR variants were associated with SOS in two studies [33,52], but not in
four [38,40,44,55]. MTHFR is coding for a key enzyme involved in the homocysteine
and folate metabolism [65]. Elevated levels of homocysteine were shown to be associ-
ated with vascular injury and thrombosis [66], which provided a rationale for including
MTHFR genetic variants in studies on SOS. Methotrexate is a folic acid antagonist and
used as graft-versus-host disease prophylaxis in many HSCT conditioning regimens [67].
The importance of MTHFR in the folate metabolism was another reason that this gene
was investigated. We found two possible explanations for the differences in associations:
First, the incidence of SOS varied widely between the studies. SOS was seen in 15% [33]
to 42.9% [52] of participants in studies with, and 3.4% [44] to 14% [40] in those without
association, illustrating heterogeneity in the baseline risk for SOS in the different popula-
tions. Second, we found that studies showing an association included patients undergoing
busulfan-based regimens, while studies showing no association included various condi-
tioning regimens. In conclusion, MTHFR variants might play a role in high-risk patients
and after busulfan-based conditioning.

Several other liver enzymes were analyzed in included studies. The HFE gene
rs1800562(A > G) variant was associated with hemochromatosis previously, which leads
to excessive iron accumulation in the liver and hepatocyte injury. That variant was as-
sociated with SOS in the study by Kallianpur et al. [35]). Sucak et al. [50] tested another
hemochromatosis-associated variant rs1799945(C > G) without association with SOS. Vari-
ants in three other genes were associated with SOS in one study without testing in further
studies: CTH was associated with SOS in the study by Curtis et al. [46] but a wide con-
fidence interval indicated low precision of the estimate. CTH is involved in glutathione
synthesis. Glutathione is depleted by busulfan and cyclophosphamide. CPS1 codes for
the enzyme necessary for the first step of the urea cycle and metabolization of excess
nitrogen. It was hypothesized that the s7422339(CC vs. AC/AA) variant in CPS1 might
lead to reduced antioxidant efficiency. Kallianpur et al. found an association of that vari-
ant with SOS, which was not investigated in further studies [35]. The protein coded by
HPSE cleaves heparan sulfate proteoglycans, which are part of the extracellular matrix and
are involved in inflammation, angiogenesis, and tissue repair. Two HPSE variants were
associated with SOS in the study by Seifert et al. [45]. The importance of these genetic
variants remains unclear without further replication. Genes coding for proteins relevant to
the coagulation or vascular system were investigated in four studies, none of them found
an association [22,39,44,49].

The study by Ansari et al. 2020 [47] showed in their exome-wide analysis an associa-
tion of UGT2B10 with SOS in the discovery dataset and replication in independent patients.
The association remained when assessing the gene variant in different subgroups of one
and multiple alkylating agents. UGT2B10 is involved in detoxifying various compounds
through glucuronidation [68] and is exclusively expressed in liver tissue [69]. The other
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gene identified and replicated in the independent cohort was KIAA1715 = LNPK. This
gene encodes the endoplasmic reticulum (ER) junction formation factor involved in the
structural organization of the endoplasmic reticulum and associated with neurodegen-
erative disease. LNPK was only associated with SOS in patients receiving two or more
alkylating agents.

In the studies including antineoplastic agents without HSCT as exposure, two large
studies by Lennard et al. [12] and Wray et al. [13] did not find an association of TPMT
variants with SOS after acute lymphoblastic leukemia (ALL) treatment including patients
exposed to thioguanine. The latter study did also test MTHFR variants without evidence
of association. The study by Aplenc et al. [32] on 18 genotyped patients with ozogamicin-
gemtuzumab treatment did find an OR of 4 of patients with the GSTP1*B haplotype
but did not give further details on the strength of the association due to the low patient
numbers. The study by Vreuls et al. [48] on 55 adult patients with metastatic colorectal
cancer treated with oxaliplatin found an association with the GSTM1 “null genotype”.
Only histopathological criteria were used to identify SOS, which makes this study difficult
to compare to others in our review.

The quality of studies included in this review was overall low, which is a limitation of
the presented data in this review. There were very few studies that stratified or adjusted
the analysis for ethnicity (n = 2, 7%), performed a power calculation for the sample size
(n = 2, 7%), corrected results for multiple testing (n = 1, 4%), or replicated results in a
separate sample (n = 1, 4%). We then found large heterogeneity between studies. Patients
varied in terms of underlying diagnoses, types of conditioning regimens or antineoplastic
agents without HSCT, and outcome definitions. The age range, definition, and prevalence
of outcomes varied between studies. Finally, prophylactic treatments were used in some
studies in a standardized way, while most included patients with several prophylactic
treatments. The heterogeneity of patients within studies was also large. Many studies in-
cluded pediatric and adult patients, different underlying diagnoses, different conditioning
regimens, and different prophylactic treatments in the same study sample. We estimated
that the heterogeneity within and between studies is too large to perform a meta-analysis.
Additionally, many gene variants were only assessed in one or only a few studies.

The strengths of our review are the broad scope and the number of studies that we
identified and summarized. We applied a stringent pre-published protocol, including a
data collection form, quality and bias assessment with a pre-defined threshold for high
versus low-quality studies. We did not restrict our literature search for language and
screened a large number of databases. We used two assessors for the screening and quality
evaluation process and a third assessor for arbitration. Data collection was checked by a
second author.

5. Conclusions

The strongest evidence for an association of genotypes with SOS was found for GSTA1
variants (slow metabolizer haplotypes). Still, it is unclear whether GSTA1 affects SOS
beyond its influence on busulfan clearance. Some evidence was found for MTHFR variants
in high-risk patients after busulfan-based conditioning regimens. Most included studies
used a candidate-gene approach. Only one study used an exome-wide approach, which
was also the only study with replication of results in an independent patient cohort. A
wide number of genes was either inconsistently associated with SOS or only studied in
one cohort.

Future studies should include sufficiently large samples of patients with ideally a
single underlying disease using one treatment protocol. Power analyses are essential
to design appropriate studies. An ideal setup are clinical trials with ancillary genetic
studies using a clearly defined patient population. It is also important to adequately assess
and adjust for relevant clinical covariates and ethnicity. To be able to compare future
studies, standardized outcome measures should be employed. Finally, future studies
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should include replication populations that are similar to the discovery dataset to assess
the external validity of identified associations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11050347/s1. Table S1. PRISMA checklist for the systematic review of genetic predictors
for sinusoidal obstruction syndrome. Table S2. Detailed search strategy to identify manuscripts of
genetic risk analysis with sinusoidal obstruction syndrome (PubMed). Table S3. Quality assessment
tool: Detailed description for scoring (0–12 possible points; based on STREGA checklist1 and adapted
from Zazuli et al. and Leusink et al.). Table S4. Quality assessment of 27 included studies on genetic
predictors for sinusoidal obstruction syndrome after HSCT or chemotherapy; after agreement was
reached between authors.
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